Fruit Extract Mediated Green Synthesis of Metallic Nanoparticles: A New Avenue in Pomology Applications
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VT2019-2021
UHK
CEP - Centrální evidence projektů
PubMed
33187086
PubMed Central
PMC7697565
DOI
10.3390/ijms21228458
PII: ijms21228458
Knihovny.cz E-zdroje
- Klíčová slova
- anticancer, antimicrobial, antioxidant, bioactive molecules, catalytic, fruits, metallic nanoparticles,
- MeSH
- fytonutrienty chemie MeSH
- kovové nanočástice chemie MeSH
- lidé MeSH
- ovoce chemie MeSH
- rostlinné extrakty chemie MeSH
- technologie zelené chemie metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fytonutrienty MeSH
- rostlinné extrakty MeSH
Fruit extracts have natural bioactive molecules that are known to possess significant therapeutic potential. Traditionally, metallic nanoparticles were synthesized via chemical methods, in which the chemical act as the reducing agent. Later, these traditional metallic nanoparticles emerged as the biological risk, which prompted researchers to explore an eco-friendly approach. There are different eco-friendly methods employed for synthesizing these metallic nanoparticles via the usage of microbes and plants, primarily via fruit extract. These explorations have paved the way for using fruit extracts for developing nanoparticles, as they eliminate the usage of reducing and stabilizing agents. Metallic nanoparticles have gained significant attention, and are used for diverse biological applications. The present review discusses the potential activities of phytochemicals, and it intends to summarize the different metallic nanoparticles synthesized using fruit extracts and their associated pharmacological activities like anti-cancerous, antimicrobial, antioxidant and catalytic efficiency.
Biomedical Research Center University Hospital Hradec Kralove 50005 Hradec Kralove Czech Republic
Department of Biological Engineering College of Engineering Konkuk University Seoul 05029 Korea
School of Water Energy and Environment Cranfield University Cranfield MK430AL UK
Zobrazit více v PubMed
Bachheti R.K., Fikadu A., Bachheti A., Husen A. Biogenic fabrication of nanomaterials from flower-based chemical compounds, characterization and their various applications: A review. Saudi J. Biol. Sci. 2020;27:2551–2562. doi: 10.1016/j.sjbs.2020.05.012. PubMed DOI PMC
Kalia A., Singh S. Myco-decontamination of azo dyes: Nano-augmentation technologies. 3 Biotech. 2020;10:384. doi: 10.1007/s13205-020-02378-z. PubMed DOI PMC
Kumar H., Bhardwaj K., Kuča K., Kalia A., Nepovimova E., Verma R., Kumar D. Flower-based green synthesis of metallic nanoparticles: Applications beyond fragrance. Nanomaterials. 2020;10:766. doi: 10.3390/nano10040766. PubMed DOI PMC
Kumar H., Bhardwaj K., Sharma R., Nepovimova E., Kuča K., Dhanjal D.S., Verma R., Bhardwaj P., Sharma S., Kumar D. Fruit and vegetable peels: Utilization of high value horticultural waste in novel industrial applications. Molecules. 2020;25:2812. doi: 10.3390/molecules25122812. PubMed DOI PMC
Sharma D., Kanchi S., Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab J. Chem. 2019;12:3576–3600. doi: 10.1016/j.arabjc.2015.11.002. DOI
Khanna P., Kaur A., Goyal D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. J. Microbiol. Methods. 2019;163 doi: 10.1016/j.mimet.2019.105656. PubMed DOI
Nadagouda M.N., Varma R.S. A greener synthesis of core (Fe, Cu)-shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C. Cryst. Growth Des. 2007;7:2582–2587. doi: 10.1021/cg070554e. DOI
Nadagouda M.N., Varma R.S. Microwave-assisted shape-controlled bulk synthesis of noble nanocrystals and their catalytic properties. Cryst. Growth Des. 2007;7:686–690.
Baruwati B., Polshettiwara V., Varma R.S. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem. 2009;11:926–930. doi: 10.1039/b902184a. DOI
Polshettiwar V., Baruwati B., Varma R.S. Self-assembly of metal oxides into three-dimensional nanostructures: Synthesis and application in catalysis. ACS Nano. 2009;3:728–736. doi: 10.1021/nn800903p. PubMed DOI
Baruwati B., Nadagouda M.N., Varma R.S. Bulk synthesis of monodisperse ferrite nanoparticles at water-organic interfaces under conventional and microwave hydrothermal treatment and their surface functionalization. J. Phys. Chem. C. 2008;112:18399–18404. doi: 10.1021/jp807245g. DOI
Nadagouda M.N., Varma R.S. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 2008;10:859–862. doi: 10.1039/b804703k. DOI
Sidhu J.S., Zafar T.A. Bioactive compounds in banana fruits and their health benefits. Food Qual. Saf. 2018;2:183–188. doi: 10.1093/fqsafe/fyy019. DOI
WHO Promoting Fruit and Vegetable Consumption Around the World. [(accessed on 8 June 2020)]; Available online: https://www.who.int/dietphysicalactivity/fruit/en/
Chen L., Vigneault C., Raghavan G.S.V., Kubow S. Importance of the phytochemical content of fruits and vegetables to human health. Stewart Postharvest Rev. 2007;3:1–5.
Mathews-Roth M.M. Recent progress in the medical applications of carotenoids. Pure Appl. Chem. 1991;63:147–156. doi: 10.1351/pac199163010147. DOI
Fraser P.D., Bramley P.M. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 2004;43:228–265. doi: 10.1016/j.plipres.2003.10.002. PubMed DOI
Clinton S.K. Lycopene: Chemistry, biology, and implications for human health and disease. Nutr. Rev. 1998;56:35–51. doi: 10.1111/j.1753-4887.1998.tb01691.x. PubMed DOI
Bramley P.M. Is lycopene beneficial to human health? Phytochemistry. 2000;54:233–236. doi: 10.1016/S0031-9422(00)00103-5. PubMed DOI
Giovannucci E., Ascherio A., Rimm E.B., Stampfer M.J., Colditz G.A., Willett W.C. Intake of carotenoids and retinol in relation to risk of prostate cancer. J. Natl. Cancer Inst. 1995;87:1767–1776. doi: 10.1093/jnci/87.23.1767. PubMed DOI
De Stefani E., Oreggia F., Boffetta P., Deneo-Pellegrini H., Ronco A., Mendilaharsu M. Tomatoes, tomato-rich foods, lycopene and cancer of the upper respiratory tract: A case control in Uruguay. Oral Oncol. 2000;36:47–53. doi: 10.1016/S1368-8375(99)00050-0. PubMed DOI
Knekt P., Jarvinen R., Reppanen R., Heliovaara M., Teppo L., Pukkala E., Aroma A. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am. J. Epidemiol. 1997;146:223–230. doi: 10.1093/oxfordjournals.aje.a009257. PubMed DOI
Gillman M.W., Cupples L.A., Gagnon D., Posner B.M., Ellison R.C., Castelli W.P., Wolf P.A. Protective effect of fruits and vegetables on development of stroke in men. J. Am. Med. Assoc. 1995;273:1113–1117. doi: 10.1001/jama.1995.03520380049034. PubMed DOI
Cox B.D., Whichelow M.J., Prevost A.T. Seasonal consumption of salad vegetables and fresh fruit in relation to the development of cardiovascular disease and cancer. Public Health Nutr. 2000;3:19–29. doi: 10.1017/S1368980000000045. PubMed DOI
Variya B.C., Bakrania A.K., Patel S.S. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol. Res. 2016;111:180–200. doi: 10.1016/j.phrs.2016.06.013. PubMed DOI
Singh B., Singh J.P., Kaur A., Singh N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review. Food Chem. 2018;261:75–86. doi: 10.1016/j.foodchem.2018.04.039. PubMed DOI
Yugandhar P., Vasavi T., Rao Y.J., Devi P.U.M., Narasimha G., Savithramma N. Cost effective, green synthesis of copper oxide nanoparticles using fruit extract of Syzygium alternifolium (Wt.) Walp., characterization and evaluation of antiviral activity. J. Cluster Sci. 2018;29:743–755. doi: 10.1007/s10876-018-1395-1. DOI
Khani R., Roostaei B., Bagherzade G., Moudi M. Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd: Application for adsorption of triphenylmethane dye and antibacterial assay. J. Mol. Liq. 2018;255:541–549. doi: 10.1016/j.molliq.2018.02.010. DOI
Ebrahimi K., Shiravand S., Mahmoudvand H. Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity. Marmara Pharm. J. 2017;21:866–871. doi: 10.12991/mpj.2017.31. DOI
Hemmati S., Ahmeda A., Salehabadi Y., Zangeneh A., Zangeneh M.M. Synthesis, characterization, and evaluation of cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing effects of copper nanoparticles using the aqueous extract of Strawberry fruit and L-Ascorbic acid. Polyhedron. 2020;180:114425. doi: 10.1016/j.poly.2020.114425. DOI
Carloling G., Priyadharshini M.N., Vinodhini E., Ranjitham A.M., Shanthi P. Biosynthesis of copper nanoparticles using aqueous guava extract-characterisation and study of antibacterial effects. Int. J. Pharm. Biol. Sci. 2015;5:25–43.
Kaur P., Thakur A., Chaudhary A. Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem. Lett. Rev. 2016;9:33–38. doi: 10.1080/17518253.2016.1141238. DOI
Gutiérrez R.M.P., Mitchell S., Solis R.V. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2008;117:1–27. doi: 10.1016/j.jep.2008.01.025. PubMed DOI
Chhikara N., Kour R., Jaglan S., Gupta P., Gat Y., Panghal A. Citrus medica: Nutritional, phytochemical composition and health benefits-a review. Food Funct. 2018;9:1978–1992. doi: 10.1039/C7FO02035J. PubMed DOI
Dash S.S., Bag B.G. Synthesis of gold nanoparticles using renewable Punica granatum juice and study of its catalytic activity. Appl. Nanosci. 2014;4:55–59. doi: 10.1007/s13204-012-0179-4. DOI
Khan A.F., Yuan Q., Wei Y., Khan S.U., Tahir K., Khna Z.U.H., Ahmad A., Ali F., Ali S., Nazir S. Longan fruit juice mediated synthesis of uniformly dispersed spherical AuNPs: Cytotoxicity against human breast cancer cell line MCF-7, antioxidant and fluorescent properties. RSC Adv. 2016;6:23775–23782. doi: 10.1039/C5RA27100B. DOI
Gubitosa J., Rizzi V., Lopedota A., Fini P., Laurenzana A., Fibbi G., Fanelli F., Petrella A., Laquintana V., Denora N., et al. One pot environmental friendly synthesis of gold nanoparticles using Punica Granatum juice: A novel antioxidant agent for future dermatological and cosmetic applications. J. Colloid Interface Sci. 2018;521:50–61. doi: 10.1016/j.jcis.2018.02.069. PubMed DOI
Yu J., Xu D., Guan H.N., Wang C., Huang L.K., Chi D.F. Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater. Lett. 2016;166:110–112. doi: 10.1016/j.matlet.2015.12.031. DOI
Patra J.K., Baek K.H. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. Int. J. Nanomed. 2015;10:7253–7264. PubMed PMC
Dauthal P., Mukhopadhyay M. Prunus domestica fruit extract-mediated synthesis of gold nanoparticles and its catalytic activity for 4-nitrophenol reduction. Ind. Eng. Chem. Res. 2012;51:13014–13020. doi: 10.1021/ie300369g. DOI
Jassim A.M.N., Mohammed M.T., Farhan S.A., Dadoosh R.M., Majeed Z.N., Abdula A.M. Green synthesis of silver nanoparticles using Carica papaya juice and study of their biochemical application. J. Pharm. Sci. Res. 2019;11:1025–1034.
Edison T.J.I., Sethuraman M.G. Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Proc. Biochem. 2012;47:1351–1357. doi: 10.1016/j.procbio.2012.04.025. DOI
Ramesh P.S., Kokila T., Geetha D. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica Officinalis fruit extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015;142:339–343. doi: 10.1016/j.saa.2015.01.062. PubMed DOI
Masum M.M.I., Siddiqa M.M., Ali K.A., Zhang Y., Abdallah Y., Ibrahim E., Qiu W., Yan C., Li B. Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Front. Microbiol. 2019;10:820. doi: 10.3389/fmicb.2019.00820. PubMed DOI PMC
Jacob S.J.P., Prasad V.L.S., Sivasankar S., Muralidharan P. Biosynthesis of silver nanoparticles using dried fruit extract of Ficus carica screening for its anticancer activity and toxicity in animal models. Food Chem. Toxicol. 2017;109:951–956. doi: 10.1016/j.fct.2017.03.066. PubMed DOI
Renuka R., Devi K.R., Sivakami M., Thilagavathi T., Uthrakumar R. Biosynthesis of silver nanoparticles using Phyllanthus emblica fruit extract for antimicrobial application. Biocatal. Agric. Biotechnol. 2020;24:101567. doi: 10.1016/j.bcab.2020.101567. DOI
Ebrahimzadeh M.A., Naghizadeh A., Amiri O., Shirzadi-Ahodashti M. Mortazavi-Derazkola, S. Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorg. Chem. 2020;94:103425. doi: 10.1016/j.bioorg.2019.103425. PubMed DOI
Klimek-Szczykutowicz M., Szopa A., Ekiert H. Citrus limon (Lemon) phenomenon-A review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants. 2020;9:119. doi: 10.3390/plants9010119. PubMed DOI PMC
Soto M.L., Falqué E., Domínguez H. Relevance of natural phenolics from grape and derivative products in the formulation of cosmetics. Cosmetics. 2015;2:259–276. doi: 10.3390/cosmetics2030259. DOI
Manzoor Z., Nawaz A., Mukhtar H., Haq I. Bromelain: Methods of extraction, purification and therapeutic applications. Braz. Arch. Biol. Technol. 2016;59:e16150010. doi: 10.1590/1678-4324-2016150010. DOI
Parate A.M., Bajpai N.D., Walke D.D. Role of Syzygium cumini (Jamun) in cosmetic. Int. J. Sci. Dev. Res. 2019;4:193–201.
Aminuzzaman M., Ying L.P., Goh W.S., Watanabe A. Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull. Mater. Sci. 2018;41:50. doi: 10.1007/s12034-018-1568-4. DOI
Timoszyk A. A review of the biological synthesis of gold nanoparticles using fruit extracts: Scientific potential and application. Bull. Mater. Sci. 2018;41:154. doi: 10.1007/s12034-018-1673-4. DOI
Shende S., Ingle A.P., Gade A., Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol. 2015;31:865–873. doi: 10.1007/s11274-015-1840-3. PubMed DOI
Majumdar M., Biswas S.C., Choudhury R., Upadhyay P., Adhikary A., Roy D.N., Misra T.K. Synthesis of gold nanoparticles using Citrus macroptera fruit extract: Anti-biofilm and anticancer activity. ChemistrySelect. 2019;4:5714–5723. doi: 10.1002/slct.201804021. DOI
Ibrahim M.H., Ibrahiem A.A., Dalloul T.R. Biosynthesis of silver nanoparticles using pomegranate juice extract and its antibacterial activity. Int. J. Appl. Sci. Biotechnol. 2016;4:254–258. doi: 10.3126/ijasbt.v4i3.15417. DOI
Gnanajobitha G., Paulkumar K., Vanaja M., Rajeshkumar S., Malarkodi C., Annadurai G., Kannan C. Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J. Nanostruct. Chem. 2013;3:67. doi: 10.1186/2193-8865-3-67. DOI
Zafar S., Zafar A. Biosynthesis and characterization of silver nanoparticles using Phoenix dactylifera fruits extract and their in vitro antimicrobial and cytotoxic effects. Open Biotechnol. J. 2019;13:37–46. doi: 10.2174/1874070701913010037. DOI
Farhadi S., Ajerloo B., Mohammadi A. Green biosynthesis of spherical silver nanoparticles by using date palm (Phoenix dactylifera) fruit extract and study of their antibacterial and catalytic activities. Acta Chim. Slov. 2017;64:129–143. doi: 10.17344/acsi.2016.2956. PubMed DOI
Ali Z.A., Yahya R., Sekaran S.D., Puteh R. Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Adv. Mater. Sci. Eng. 2016;2016:4102196. doi: 10.1155/2016/4102196. DOI
Shanmugavadivu M., Kuppusamy S., Ranjithkumar R. Synthesis of pomegranate peel extract mediated silver nanoparticles and its antibacterial activity. Am. J. Adv. Drug Deliv. 2014;2:174–182.
Ibrahim H.M.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 2015;8:265–275. doi: 10.1016/j.jrras.2015.01.007. DOI
Kokila T., Ramesh P.S., Geetha D. Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its antibacterial and free radical scavenging assay: A novel biological approach. Appl. Nanosci. 2015;5:911–920. doi: 10.1007/s13204-015-0401-2. DOI
Kahrilas G.A., Wally L.M., Fredrick S.J., Hiskey M., Prieto A.L., Owens J.E. Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustain. Chem. Eng. 2014;2:367–376. doi: 10.1021/sc4003664. DOI
Ajmal N., Saraswat K., Sharma V., Zafar M.E. Synthesis and antibacterial activity of silver nanoparticles from Prunus armeniaca (Apricot) fruit peel extract. Bull. Environ. Pharmacol. Life Sci. 2016;5:91–94.
Devanesan S., AlSalh M.S., Balaji R.V., Ranjitsingh A.J.A., Ahamed A., Alfuraydi A.A., AlQahtani F.Y., Aleanizy F.S., Othman A.H. Antimicrobial and cytotoxicity effects of synthesized silver nanoparticles from Punica granatum peel extract. Nanoscale Res. Lett. 2018;13:315. doi: 10.1186/s11671-018-2731-y. PubMed DOI PMC
Das G., Patra J.Y., Debnath D., Ansari A., Shin H.S. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.) PLoS ONE. 2019;14 doi: 10.1371/journal.pone.0220950. PubMed DOI PMC
He Y., Du Z., Ma S., Cheng S., Jiang S., Liu Y., Li D., Huang H., Zhang K., Zheng X. Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (pc-3) cells of silver nanoparticles using Dimocarpus longan Lour. peel extract. Nanoscale Res. Lett. 2016;11:300. doi: 10.1186/s11671-016-1511-9. PubMed DOI PMC
Pavithra N.S., Lingaraju K., Raghu G.K., Nagaraju G. Citrus maxima (Pomelo) juice mediated eco-friendly synthesis of ZnO nanoparticles: Applications to photocatalytic, electrochemical sensor and antibacterial activities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017;185:11–19. doi: 10.1016/j.saa.2017.05.032. PubMed DOI
Sukri S.N.A.M., Shameli K., Wong M.M.T., Teow S.Y., Chew J., Ismail N.F. Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract. J. Mol. Struct. 2019;1189:57–65. doi: 10.1016/j.molstruc.2019.04.026. DOI
Ahmad R.A.R., Harun Z., Othman M.H.D., Basri H., Yunos M.Z., Ahmad A., Akhair S.H.M., Rashid A.Q.A., Azhar F.H., Alias S.S., et al. Biosynthesis of zinc oxide nanoparticles by using fruits extracts of Ananas comosus and its antibacterial activity. Malays. J. Fund. Appl. Sci. 2019;15:268–273. doi: 10.11113/mjfas.v15n2.1217. DOI
Verma N., Kumar N. Synthesis and biomedical applications of copper oxide nanoparticles: An expanding horizon. ACS Biomater. Sci. Eng. 2019;5:1170–1188. doi: 10.1021/acsbiomaterials.8b01092. PubMed DOI
Kumar H., Bhardwaj K., Nepovimova E., Kučca K., Dhanjal D.S., Bhardwaj S., Bhatia S.K., Verma R., Kumar D. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials. 2020;10:1334. doi: 10.3390/nano10071334. PubMed DOI PMC
Nirmala J.G., Akila S., Nadar M.S.A.M., Narendhirakannan R.T., Chatterjee S. Biosynthesized Vitis vinifera seed gold nanoparticles induce apoptotic cell death in A431 skin cancer cells. RSC Adv. 2016;6:82205–82218. doi: 10.1039/C6RA16310F. DOI
Nirmala J.G., Akila S., Nadar M.S.A.M., Narendhirakannan R.T., Chatterjee S. Vitis vinifera peel polyphenols stabilized gold nanoparticles induce cytotoxicity and apoptotic cell death in A431 skin cancer cell lines. Adv. Powder Technol. 2017;28:1170–1184. doi: 10.1016/j.apt.2017.02.003. DOI
Agarwal H., Kumar S.V., Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles -An eco-friendly approach. Res. Effic. Technol. 2017;3:406–413. doi: 10.1016/j.reffit.2017.03.002. DOI
Jayaseelan C., Rahuman A.A., Kirthi A.V., Marimuthu S., Santhoshkumar T., Bagavan A., Guarav K., Karthik L., Rao K.V. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012;90:78–84. doi: 10.1016/j.saa.2012.01.006. PubMed DOI
Pulit-prociak J., Chwastowski J., Kucharski A., Banach M. Applied surface science functionalization of textiles with silver and zinc oxide nanoparticles. Appl. Surf. Sci. 2016;385:543–553. doi: 10.1016/j.apsusc.2016.05.167. DOI
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
Cragg G.M., Newman D.J. Plants as a source of anticancer agents. J. Ethnopharmacol. 2005;100:72–79. doi: 10.1016/j.jep.2005.05.011. PubMed DOI
Balunas M.J., Kinghorn A.D. Drug discovery from medicinal plants. Life Sci. 2005;78:431–441. doi: 10.1016/j.lfs.2005.09.012. PubMed DOI
Ren W., Qiao Z., Wang H., Zhu L., Zhang L. Flavonoids: Promising anticancer agents. Med. Res. Rev. 2003;23:519–534. doi: 10.1002/med.10033. PubMed DOI
Hu M.L. Dietary polyphenols as antioxidants and anticancer agents: More questions than answers. Chang. Gung Med. J. 2011;34:449–460. PubMed
Dzubak P., Hajduch M., Vydra D., Hustova A., Kvasnica M., Biedermann D., Markova L., Urban M., Sarek J. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat. Prod. Rep. 2006;23:394–411. doi: 10.1039/b515312n. PubMed DOI
Wang M., Thanou M. Targeting nanoparticles to cancer. Pharmacol. Res. 2010;62:90–99. doi: 10.1016/j.phrs.2010.03.005. PubMed DOI
Ratan Z.A., Haidere M.F., Nurunnabi M., Shahriar S.M., Ahammad A.J.S., Shim Y.Y., Reaney M.J.T., Cho J.Y. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancer. 2020;12:855. doi: 10.3390/cancers12040855. PubMed DOI PMC
Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956. PubMed DOI PMC
Lesniak A., Salvati A., Santos-Martinez M.J., Radomski M.W., Dawson K.A., Åberg C. Nanoparticle adhesion to the cell membrane and its effect on nano particle uptake efficiency. J. Am. Chem. Soc. 2013;135:1438–1444. doi: 10.1021/ja309812z. PubMed DOI
Singh J., Dutta T., Kim K.H., Rawat M., Samddar P., Kumar P. ‘Green’ synthesis of metals and their oxidenanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018;16:84. doi: 10.1186/s12951-018-0408-4. PubMed DOI PMC
Panigrahi S., Basu S., Praharaj S., Pande S., Jana S., Pal A., Ghosh S.K., Pal T. Synthesis and size-selective catalysis by supported gold nanoparticles: Study on heterogeneous and homogeneous catalytic process. J. Phys. Chem. C. 2007;111:4596–4605. doi: 10.1021/jp067554u. DOI
Woo Y., Lai D.Y. Aromatic amino and nitro-amino compounds and their halogenated derivatives. In: Bingham E., Cohrssen B., Powell C.H., editors. Patty’s Toxicology. Wiley; Hoboken, NJ, USA: 2012.
Sharma J.K., Akhtar M.S., Ameen S., Srivastva P., Singh G. Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J. Alloys Compd. 2015;632:321–325. doi: 10.1016/j.jallcom.2015.01.172. DOI
Lim S.H., Ahn E.Y., Park Y. Green synthesis and catalytic activity of gold nanoparticles synthesized by Artemisia capillaries water extract. Nanoscale Res. Lett. 2016;11:474. doi: 10.1186/s11671-016-1694-0. PubMed DOI PMC
Rostami-Vartooni A., Nasrollahzadeh M., Alizadeh M. Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and congo red. J. Alloys Compd. 2016;680:309–314. doi: 10.1016/j.jallcom.2016.04.008. DOI
Gopalakrishnan R., Loganathan B., Dinesh S., Raghu K. Strategic green synthesis, characterization and catalytic application to 4-nitrophenol reduction of palladium nanoparticles. J. Clust. Sci. 2017;28:2123–2131. doi: 10.1007/s10876-017-1207-z. DOI
Senobari S., Nezamzadeh-Ejhieh A. A comprehensive study on the enhanced photocatalytic activity of CuO-NiO nanoparticles: Designing the experiments. J. Mol. Liq. 2018;261:208–217. doi: 10.1016/j.molliq.2018.04.028. DOI
Begum R., Najeeb J., Sattar A., Naseem K., Irfan A., Al-Sehemi A.G., Farooqi Z.H. Chemical reduction of methylene blue in the presence of nanocatalysts: A critical review. Rev. Chem. Eng. 2019;36 doi: 10.1515/revce-2018-0047. DOI
Pleurotus Macrofungi-Assisted Nanoparticle Synthesis and Its Potential Applications: A Review
Conifer-Derived Metallic Nanoparticles: Green Synthesis and Biological Applications