Fruit Extract Mediated Green Synthesis of Metallic Nanoparticles: A New Avenue in Pomology Applications

. 2020 Nov 11 ; 21 (22) : . [epub] 20201111

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33187086

Grantová podpora
VT2019-2021 UHK CEP - Centrální evidence projektů

Fruit extracts have natural bioactive molecules that are known to possess significant therapeutic potential. Traditionally, metallic nanoparticles were synthesized via chemical methods, in which the chemical act as the reducing agent. Later, these traditional metallic nanoparticles emerged as the biological risk, which prompted researchers to explore an eco-friendly approach. There are different eco-friendly methods employed for synthesizing these metallic nanoparticles via the usage of microbes and plants, primarily via fruit extract. These explorations have paved the way for using fruit extracts for developing nanoparticles, as they eliminate the usage of reducing and stabilizing agents. Metallic nanoparticles have gained significant attention, and are used for diverse biological applications. The present review discusses the potential activities of phytochemicals, and it intends to summarize the different metallic nanoparticles synthesized using fruit extracts and their associated pharmacological activities like anti-cancerous, antimicrobial, antioxidant and catalytic efficiency.

Zobrazit více v PubMed

Bachheti R.K., Fikadu A., Bachheti A., Husen A. Biogenic fabrication of nanomaterials from flower-based chemical compounds, characterization and their various applications: A review. Saudi J. Biol. Sci. 2020;27:2551–2562. doi: 10.1016/j.sjbs.2020.05.012. PubMed DOI PMC

Kalia A., Singh S. Myco-decontamination of azo dyes: Nano-augmentation technologies. 3 Biotech. 2020;10:384. doi: 10.1007/s13205-020-02378-z. PubMed DOI PMC

Kumar H., Bhardwaj K., Kuča K., Kalia A., Nepovimova E., Verma R., Kumar D. Flower-based green synthesis of metallic nanoparticles: Applications beyond fragrance. Nanomaterials. 2020;10:766. doi: 10.3390/nano10040766. PubMed DOI PMC

Kumar H., Bhardwaj K., Sharma R., Nepovimova E., Kuča K., Dhanjal D.S., Verma R., Bhardwaj P., Sharma S., Kumar D. Fruit and vegetable peels: Utilization of high value horticultural waste in novel industrial applications. Molecules. 2020;25:2812. doi: 10.3390/molecules25122812. PubMed DOI PMC

Sharma D., Kanchi S., Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab J. Chem. 2019;12:3576–3600. doi: 10.1016/j.arabjc.2015.11.002. DOI

Khanna P., Kaur A., Goyal D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. J. Microbiol. Methods. 2019;163 doi: 10.1016/j.mimet.2019.105656. PubMed DOI

Nadagouda M.N., Varma R.S. A greener synthesis of core (Fe, Cu)-shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C. Cryst. Growth Des. 2007;7:2582–2587. doi: 10.1021/cg070554e. DOI

Nadagouda M.N., Varma R.S. Microwave-assisted shape-controlled bulk synthesis of noble nanocrystals and their catalytic properties. Cryst. Growth Des. 2007;7:686–690.

Baruwati B., Polshettiwara V., Varma R.S. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem. 2009;11:926–930. doi: 10.1039/b902184a. DOI

Polshettiwar V., Baruwati B., Varma R.S. Self-assembly of metal oxides into three-dimensional nanostructures: Synthesis and application in catalysis. ACS Nano. 2009;3:728–736. doi: 10.1021/nn800903p. PubMed DOI

Baruwati B., Nadagouda M.N., Varma R.S. Bulk synthesis of monodisperse ferrite nanoparticles at water-organic interfaces under conventional and microwave hydrothermal treatment and their surface functionalization. J. Phys. Chem. C. 2008;112:18399–18404. doi: 10.1021/jp807245g. DOI

Nadagouda M.N., Varma R.S. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 2008;10:859–862. doi: 10.1039/b804703k. DOI

Sidhu J.S., Zafar T.A. Bioactive compounds in banana fruits and their health benefits. Food Qual. Saf. 2018;2:183–188. doi: 10.1093/fqsafe/fyy019. DOI

WHO Promoting Fruit and Vegetable Consumption Around the World. [(accessed on 8 June 2020)]; Available online: https://www.who.int/dietphysicalactivity/fruit/en/

Chen L., Vigneault C., Raghavan G.S.V., Kubow S. Importance of the phytochemical content of fruits and vegetables to human health. Stewart Postharvest Rev. 2007;3:1–5.

Mathews-Roth M.M. Recent progress in the medical applications of carotenoids. Pure Appl. Chem. 1991;63:147–156. doi: 10.1351/pac199163010147. DOI

Fraser P.D., Bramley P.M. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 2004;43:228–265. doi: 10.1016/j.plipres.2003.10.002. PubMed DOI

Clinton S.K. Lycopene: Chemistry, biology, and implications for human health and disease. Nutr. Rev. 1998;56:35–51. doi: 10.1111/j.1753-4887.1998.tb01691.x. PubMed DOI

Bramley P.M. Is lycopene beneficial to human health? Phytochemistry. 2000;54:233–236. doi: 10.1016/S0031-9422(00)00103-5. PubMed DOI

Giovannucci E., Ascherio A., Rimm E.B., Stampfer M.J., Colditz G.A., Willett W.C. Intake of carotenoids and retinol in relation to risk of prostate cancer. J. Natl. Cancer Inst. 1995;87:1767–1776. doi: 10.1093/jnci/87.23.1767. PubMed DOI

De Stefani E., Oreggia F., Boffetta P., Deneo-Pellegrini H., Ronco A., Mendilaharsu M. Tomatoes, tomato-rich foods, lycopene and cancer of the upper respiratory tract: A case control in Uruguay. Oral Oncol. 2000;36:47–53. doi: 10.1016/S1368-8375(99)00050-0. PubMed DOI

Knekt P., Jarvinen R., Reppanen R., Heliovaara M., Teppo L., Pukkala E., Aroma A. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am. J. Epidemiol. 1997;146:223–230. doi: 10.1093/oxfordjournals.aje.a009257. PubMed DOI

Gillman M.W., Cupples L.A., Gagnon D., Posner B.M., Ellison R.C., Castelli W.P., Wolf P.A. Protective effect of fruits and vegetables on development of stroke in men. J. Am. Med. Assoc. 1995;273:1113–1117. doi: 10.1001/jama.1995.03520380049034. PubMed DOI

Cox B.D., Whichelow M.J., Prevost A.T. Seasonal consumption of salad vegetables and fresh fruit in relation to the development of cardiovascular disease and cancer. Public Health Nutr. 2000;3:19–29. doi: 10.1017/S1368980000000045. PubMed DOI

Variya B.C., Bakrania A.K., Patel S.S. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol. Res. 2016;111:180–200. doi: 10.1016/j.phrs.2016.06.013. PubMed DOI

Singh B., Singh J.P., Kaur A., Singh N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review. Food Chem. 2018;261:75–86. doi: 10.1016/j.foodchem.2018.04.039. PubMed DOI

Yugandhar P., Vasavi T., Rao Y.J., Devi P.U.M., Narasimha G., Savithramma N. Cost effective, green synthesis of copper oxide nanoparticles using fruit extract of Syzygium alternifolium (Wt.) Walp., characterization and evaluation of antiviral activity. J. Cluster Sci. 2018;29:743–755. doi: 10.1007/s10876-018-1395-1. DOI

Khani R., Roostaei B., Bagherzade G., Moudi M. Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd: Application for adsorption of triphenylmethane dye and antibacterial assay. J. Mol. Liq. 2018;255:541–549. doi: 10.1016/j.molliq.2018.02.010. DOI

Ebrahimi K., Shiravand S., Mahmoudvand H. Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity. Marmara Pharm. J. 2017;21:866–871. doi: 10.12991/mpj.2017.31. DOI

Hemmati S., Ahmeda A., Salehabadi Y., Zangeneh A., Zangeneh M.M. Synthesis, characterization, and evaluation of cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing effects of copper nanoparticles using the aqueous extract of Strawberry fruit and L-Ascorbic acid. Polyhedron. 2020;180:114425. doi: 10.1016/j.poly.2020.114425. DOI

Carloling G., Priyadharshini M.N., Vinodhini E., Ranjitham A.M., Shanthi P. Biosynthesis of copper nanoparticles using aqueous guava extract-characterisation and study of antibacterial effects. Int. J. Pharm. Biol. Sci. 2015;5:25–43.

Kaur P., Thakur A., Chaudhary A. Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem. Lett. Rev. 2016;9:33–38. doi: 10.1080/17518253.2016.1141238. DOI

Gutiérrez R.M.P., Mitchell S., Solis R.V. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2008;117:1–27. doi: 10.1016/j.jep.2008.01.025. PubMed DOI

Chhikara N., Kour R., Jaglan S., Gupta P., Gat Y., Panghal A. Citrus medica: Nutritional, phytochemical composition and health benefits-a review. Food Funct. 2018;9:1978–1992. doi: 10.1039/C7FO02035J. PubMed DOI

Dash S.S., Bag B.G. Synthesis of gold nanoparticles using renewable Punica granatum juice and study of its catalytic activity. Appl. Nanosci. 2014;4:55–59. doi: 10.1007/s13204-012-0179-4. DOI

Khan A.F., Yuan Q., Wei Y., Khan S.U., Tahir K., Khna Z.U.H., Ahmad A., Ali F., Ali S., Nazir S. Longan fruit juice mediated synthesis of uniformly dispersed spherical AuNPs: Cytotoxicity against human breast cancer cell line MCF-7, antioxidant and fluorescent properties. RSC Adv. 2016;6:23775–23782. doi: 10.1039/C5RA27100B. DOI

Gubitosa J., Rizzi V., Lopedota A., Fini P., Laurenzana A., Fibbi G., Fanelli F., Petrella A., Laquintana V., Denora N., et al. One pot environmental friendly synthesis of gold nanoparticles using Punica Granatum juice: A novel antioxidant agent for future dermatological and cosmetic applications. J. Colloid Interface Sci. 2018;521:50–61. doi: 10.1016/j.jcis.2018.02.069. PubMed DOI

Yu J., Xu D., Guan H.N., Wang C., Huang L.K., Chi D.F. Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater. Lett. 2016;166:110–112. doi: 10.1016/j.matlet.2015.12.031. DOI

Patra J.K., Baek K.H. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. Int. J. Nanomed. 2015;10:7253–7264. PubMed PMC

Dauthal P., Mukhopadhyay M. Prunus domestica fruit extract-mediated synthesis of gold nanoparticles and its catalytic activity for 4-nitrophenol reduction. Ind. Eng. Chem. Res. 2012;51:13014–13020. doi: 10.1021/ie300369g. DOI

Jassim A.M.N., Mohammed M.T., Farhan S.A., Dadoosh R.M., Majeed Z.N., Abdula A.M. Green synthesis of silver nanoparticles using Carica papaya juice and study of their biochemical application. J. Pharm. Sci. Res. 2019;11:1025–1034.

Edison T.J.I., Sethuraman M.G. Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Proc. Biochem. 2012;47:1351–1357. doi: 10.1016/j.procbio.2012.04.025. DOI

Ramesh P.S., Kokila T., Geetha D. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica Officinalis fruit extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015;142:339–343. doi: 10.1016/j.saa.2015.01.062. PubMed DOI

Masum M.M.I., Siddiqa M.M., Ali K.A., Zhang Y., Abdallah Y., Ibrahim E., Qiu W., Yan C., Li B. Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Front. Microbiol. 2019;10:820. doi: 10.3389/fmicb.2019.00820. PubMed DOI PMC

Jacob S.J.P., Prasad V.L.S., Sivasankar S., Muralidharan P. Biosynthesis of silver nanoparticles using dried fruit extract of Ficus carica screening for its anticancer activity and toxicity in animal models. Food Chem. Toxicol. 2017;109:951–956. doi: 10.1016/j.fct.2017.03.066. PubMed DOI

Renuka R., Devi K.R., Sivakami M., Thilagavathi T., Uthrakumar R. Biosynthesis of silver nanoparticles using Phyllanthus emblica fruit extract for antimicrobial application. Biocatal. Agric. Biotechnol. 2020;24:101567. doi: 10.1016/j.bcab.2020.101567. DOI

Ebrahimzadeh M.A., Naghizadeh A., Amiri O., Shirzadi-Ahodashti M. Mortazavi-Derazkola, S. Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorg. Chem. 2020;94:103425. doi: 10.1016/j.bioorg.2019.103425. PubMed DOI

Klimek-Szczykutowicz M., Szopa A., Ekiert H. Citrus limon (Lemon) phenomenon-A review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants. 2020;9:119. doi: 10.3390/plants9010119. PubMed DOI PMC

Soto M.L., Falqué E., Domínguez H. Relevance of natural phenolics from grape and derivative products in the formulation of cosmetics. Cosmetics. 2015;2:259–276. doi: 10.3390/cosmetics2030259. DOI

Manzoor Z., Nawaz A., Mukhtar H., Haq I. Bromelain: Methods of extraction, purification and therapeutic applications. Braz. Arch. Biol. Technol. 2016;59:e16150010. doi: 10.1590/1678-4324-2016150010. DOI

Parate A.M., Bajpai N.D., Walke D.D. Role of Syzygium cumini (Jamun) in cosmetic. Int. J. Sci. Dev. Res. 2019;4:193–201.

Aminuzzaman M., Ying L.P., Goh W.S., Watanabe A. Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull. Mater. Sci. 2018;41:50. doi: 10.1007/s12034-018-1568-4. DOI

Timoszyk A. A review of the biological synthesis of gold nanoparticles using fruit extracts: Scientific potential and application. Bull. Mater. Sci. 2018;41:154. doi: 10.1007/s12034-018-1673-4. DOI

Shende S., Ingle A.P., Gade A., Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol. 2015;31:865–873. doi: 10.1007/s11274-015-1840-3. PubMed DOI

Majumdar M., Biswas S.C., Choudhury R., Upadhyay P., Adhikary A., Roy D.N., Misra T.K. Synthesis of gold nanoparticles using Citrus macroptera fruit extract: Anti-biofilm and anticancer activity. ChemistrySelect. 2019;4:5714–5723. doi: 10.1002/slct.201804021. DOI

Ibrahim M.H., Ibrahiem A.A., Dalloul T.R. Biosynthesis of silver nanoparticles using pomegranate juice extract and its antibacterial activity. Int. J. Appl. Sci. Biotechnol. 2016;4:254–258. doi: 10.3126/ijasbt.v4i3.15417. DOI

Gnanajobitha G., Paulkumar K., Vanaja M., Rajeshkumar S., Malarkodi C., Annadurai G., Kannan C. Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J. Nanostruct. Chem. 2013;3:67. doi: 10.1186/2193-8865-3-67. DOI

Zafar S., Zafar A. Biosynthesis and characterization of silver nanoparticles using Phoenix dactylifera fruits extract and their in vitro antimicrobial and cytotoxic effects. Open Biotechnol. J. 2019;13:37–46. doi: 10.2174/1874070701913010037. DOI

Farhadi S., Ajerloo B., Mohammadi A. Green biosynthesis of spherical silver nanoparticles by using date palm (Phoenix dactylifera) fruit extract and study of their antibacterial and catalytic activities. Acta Chim. Slov. 2017;64:129–143. doi: 10.17344/acsi.2016.2956. PubMed DOI

Ali Z.A., Yahya R., Sekaran S.D., Puteh R. Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Adv. Mater. Sci. Eng. 2016;2016:4102196. doi: 10.1155/2016/4102196. DOI

Shanmugavadivu M., Kuppusamy S., Ranjithkumar R. Synthesis of pomegranate peel extract mediated silver nanoparticles and its antibacterial activity. Am. J. Adv. Drug Deliv. 2014;2:174–182.

Ibrahim H.M.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 2015;8:265–275. doi: 10.1016/j.jrras.2015.01.007. DOI

Kokila T., Ramesh P.S., Geetha D. Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its antibacterial and free radical scavenging assay: A novel biological approach. Appl. Nanosci. 2015;5:911–920. doi: 10.1007/s13204-015-0401-2. DOI

Kahrilas G.A., Wally L.M., Fredrick S.J., Hiskey M., Prieto A.L., Owens J.E. Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustain. Chem. Eng. 2014;2:367–376. doi: 10.1021/sc4003664. DOI

Ajmal N., Saraswat K., Sharma V., Zafar M.E. Synthesis and antibacterial activity of silver nanoparticles from Prunus armeniaca (Apricot) fruit peel extract. Bull. Environ. Pharmacol. Life Sci. 2016;5:91–94.

Devanesan S., AlSalh M.S., Balaji R.V., Ranjitsingh A.J.A., Ahamed A., Alfuraydi A.A., AlQahtani F.Y., Aleanizy F.S., Othman A.H. Antimicrobial and cytotoxicity effects of synthesized silver nanoparticles from Punica granatum peel extract. Nanoscale Res. Lett. 2018;13:315. doi: 10.1186/s11671-018-2731-y. PubMed DOI PMC

Das G., Patra J.Y., Debnath D., Ansari A., Shin H.S. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.) PLoS ONE. 2019;14 doi: 10.1371/journal.pone.0220950. PubMed DOI PMC

He Y., Du Z., Ma S., Cheng S., Jiang S., Liu Y., Li D., Huang H., Zhang K., Zheng X. Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (pc-3) cells of silver nanoparticles using Dimocarpus longan Lour. peel extract. Nanoscale Res. Lett. 2016;11:300. doi: 10.1186/s11671-016-1511-9. PubMed DOI PMC

Pavithra N.S., Lingaraju K., Raghu G.K., Nagaraju G. Citrus maxima (Pomelo) juice mediated eco-friendly synthesis of ZnO nanoparticles: Applications to photocatalytic, electrochemical sensor and antibacterial activities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017;185:11–19. doi: 10.1016/j.saa.2017.05.032. PubMed DOI

Sukri S.N.A.M., Shameli K., Wong M.M.T., Teow S.Y., Chew J., Ismail N.F. Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract. J. Mol. Struct. 2019;1189:57–65. doi: 10.1016/j.molstruc.2019.04.026. DOI

Ahmad R.A.R., Harun Z., Othman M.H.D., Basri H., Yunos M.Z., Ahmad A., Akhair S.H.M., Rashid A.Q.A., Azhar F.H., Alias S.S., et al. Biosynthesis of zinc oxide nanoparticles by using fruits extracts of Ananas comosus and its antibacterial activity. Malays. J. Fund. Appl. Sci. 2019;15:268–273. doi: 10.11113/mjfas.v15n2.1217. DOI

Verma N., Kumar N. Synthesis and biomedical applications of copper oxide nanoparticles: An expanding horizon. ACS Biomater. Sci. Eng. 2019;5:1170–1188. doi: 10.1021/acsbiomaterials.8b01092. PubMed DOI

Kumar H., Bhardwaj K., Nepovimova E., Kučca K., Dhanjal D.S., Bhardwaj S., Bhatia S.K., Verma R., Kumar D. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials. 2020;10:1334. doi: 10.3390/nano10071334. PubMed DOI PMC

Nirmala J.G., Akila S., Nadar M.S.A.M., Narendhirakannan R.T., Chatterjee S. Biosynthesized Vitis vinifera seed gold nanoparticles induce apoptotic cell death in A431 skin cancer cells. RSC Adv. 2016;6:82205–82218. doi: 10.1039/C6RA16310F. DOI

Nirmala J.G., Akila S., Nadar M.S.A.M., Narendhirakannan R.T., Chatterjee S. Vitis vinifera peel polyphenols stabilized gold nanoparticles induce cytotoxicity and apoptotic cell death in A431 skin cancer cell lines. Adv. Powder Technol. 2017;28:1170–1184. doi: 10.1016/j.apt.2017.02.003. DOI

Agarwal H., Kumar S.V., Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles -An eco-friendly approach. Res. Effic. Technol. 2017;3:406–413. doi: 10.1016/j.reffit.2017.03.002. DOI

Jayaseelan C., Rahuman A.A., Kirthi A.V., Marimuthu S., Santhoshkumar T., Bagavan A., Guarav K., Karthik L., Rao K.V. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012;90:78–84. doi: 10.1016/j.saa.2012.01.006. PubMed DOI

Pulit-prociak J., Chwastowski J., Kucharski A., Banach M. Applied surface science functionalization of textiles with silver and zinc oxide nanoparticles. Appl. Surf. Sci. 2016;385:543–553. doi: 10.1016/j.apsusc.2016.05.167. DOI

Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI

Cragg G.M., Newman D.J. Plants as a source of anticancer agents. J. Ethnopharmacol. 2005;100:72–79. doi: 10.1016/j.jep.2005.05.011. PubMed DOI

Balunas M.J., Kinghorn A.D. Drug discovery from medicinal plants. Life Sci. 2005;78:431–441. doi: 10.1016/j.lfs.2005.09.012. PubMed DOI

Ren W., Qiao Z., Wang H., Zhu L., Zhang L. Flavonoids: Promising anticancer agents. Med. Res. Rev. 2003;23:519–534. doi: 10.1002/med.10033. PubMed DOI

Hu M.L. Dietary polyphenols as antioxidants and anticancer agents: More questions than answers. Chang. Gung Med. J. 2011;34:449–460. PubMed

Dzubak P., Hajduch M., Vydra D., Hustova A., Kvasnica M., Biedermann D., Markova L., Urban M., Sarek J. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat. Prod. Rep. 2006;23:394–411. doi: 10.1039/b515312n. PubMed DOI

Wang M., Thanou M. Targeting nanoparticles to cancer. Pharmacol. Res. 2010;62:90–99. doi: 10.1016/j.phrs.2010.03.005. PubMed DOI

Ratan Z.A., Haidere M.F., Nurunnabi M., Shahriar S.M., Ahammad A.J.S., Shim Y.Y., Reaney M.J.T., Cho J.Y. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancer. 2020;12:855. doi: 10.3390/cancers12040855. PubMed DOI PMC

Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956. PubMed DOI PMC

Lesniak A., Salvati A., Santos-Martinez M.J., Radomski M.W., Dawson K.A., Åberg C. Nanoparticle adhesion to the cell membrane and its effect on nano particle uptake efficiency. J. Am. Chem. Soc. 2013;135:1438–1444. doi: 10.1021/ja309812z. PubMed DOI

Singh J., Dutta T., Kim K.H., Rawat M., Samddar P., Kumar P. ‘Green’ synthesis of metals and their oxidenanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018;16:84. doi: 10.1186/s12951-018-0408-4. PubMed DOI PMC

Panigrahi S., Basu S., Praharaj S., Pande S., Jana S., Pal A., Ghosh S.K., Pal T. Synthesis and size-selective catalysis by supported gold nanoparticles: Study on heterogeneous and homogeneous catalytic process. J. Phys. Chem. C. 2007;111:4596–4605. doi: 10.1021/jp067554u. DOI

Woo Y., Lai D.Y. Aromatic amino and nitro-amino compounds and their halogenated derivatives. In: Bingham E., Cohrssen B., Powell C.H., editors. Patty’s Toxicology. Wiley; Hoboken, NJ, USA: 2012.

Sharma J.K., Akhtar M.S., Ameen S., Srivastva P., Singh G. Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J. Alloys Compd. 2015;632:321–325. doi: 10.1016/j.jallcom.2015.01.172. DOI

Lim S.H., Ahn E.Y., Park Y. Green synthesis and catalytic activity of gold nanoparticles synthesized by Artemisia capillaries water extract. Nanoscale Res. Lett. 2016;11:474. doi: 10.1186/s11671-016-1694-0. PubMed DOI PMC

Rostami-Vartooni A., Nasrollahzadeh M., Alizadeh M. Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and congo red. J. Alloys Compd. 2016;680:309–314. doi: 10.1016/j.jallcom.2016.04.008. DOI

Gopalakrishnan R., Loganathan B., Dinesh S., Raghu K. Strategic green synthesis, characterization and catalytic application to 4-nitrophenol reduction of palladium nanoparticles. J. Clust. Sci. 2017;28:2123–2131. doi: 10.1007/s10876-017-1207-z. DOI

Senobari S., Nezamzadeh-Ejhieh A. A comprehensive study on the enhanced photocatalytic activity of CuO-NiO nanoparticles: Designing the experiments. J. Mol. Liq. 2018;261:208–217. doi: 10.1016/j.molliq.2018.04.028. DOI

Begum R., Najeeb J., Sattar A., Naseem K., Irfan A., Al-Sehemi A.G., Farooqi Z.H. Chemical reduction of methylene blue in the presence of nanocatalysts: A critical review. Rev. Chem. Eng. 2019;36 doi: 10.1515/revce-2018-0047. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace