Nutraceuticals and Herbs in Reducing the Risk and Improving the Treatment of COVID-19 by Targeting SARS-CoV-2

. 2021 Sep 18 ; 9 (9) : . [epub] 20210918

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34572452
Odkazy

PubMed 34572452
PubMed Central PMC8468567
DOI 10.3390/biomedicines9091266
PII: biomedicines9091266
Knihovny.cz E-zdroje

The worldwide transmission of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a deadly or devastating disease is known to affect thousands of people every day, many of them dying all over the planet. The main reason for the massive effect of COVID-19 on society is its unpredictable spread, which does not allow for proper planning or management of this disease. Antibiotics, antivirals, and other prescription drugs, necessary and used in therapy, obviously have side effects (minor or significant) on the affected person, there are still not clear enough studies to elucidate their combined effect in this specific treatment, and existing protocols are sometimes unclear and uncertain. In contrast, it has been found that nutraceuticals, supplements, and various herbs can be effective in reducing the chances of SARS-CoV-2 infection, but also in alleviating COVID-19 symptoms. However, not enough specific details are yet available, and precise scientific studies to validate the approved benefits of natural food additives, probiotics, herbs, and nutraceuticals will need to be standardized according to current regulations. These alternative treatments may not have a direct effect on the virus or reduce the risk of infection with it, but these products certainly stimulate the human immune system so that the body is better prepared to fight the disease. This paper aims at a specialized literary foray precisely in the field of these "cures" that can provide real revelations in the therapy of coronavirus infection.

Zobrazit více v PubMed

Rahimi F., Talebi Bezmin Abadi A. Ethical and sensible dissemination of information during the COVID-19 pandemic. Am. J. Bioeth. 2020;20:W4–W6. doi: 10.1080/15265161.2020.1761200. PubMed DOI

Sharma S., Batra S., Gupta S., Sharma V.K., Rahman M.H., Kamal M.A. Persons with co-existing neurological disorders: Risk analysis, considerations and management in COVID-19 pandemic. CNS Neurol. Disord. Drug Targets. 2021;20:1. doi: 10.2174/1871527320666210308113457. PubMed DOI

Larsen J.R., Martin M.R., Martin J.D., Kuhn P., Hicks J.B. Modeling the onset of symptoms of COVID-19. Front. Public Health. 2020;8:473. doi: 10.3389/fpubh.2020.00473. PubMed DOI PMC

World Health Organization Tuberculosis. [(accessed on 14 June 2021)]. Available online: https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis.

Otrisal P., Bungau C., Obsel V., Melicharik Z., Tont G. Selected Respiratory Protective Devices: Respirators and Significance of Some Markings. Sustainability. 2021;13:4988. doi: 10.3390/su13094988. DOI

Wang H.-Y., Li X.-L., Yan Z.-R., Sun X.-P., Han J., Zhang B.-W. Potential neurological symptoms of COVID-19. Ther. Adv. Neurol. Disord. 2020;13:1756286420917830. doi: 10.1177/1756286420917830. PubMed DOI PMC

Bouaziz J., Duong T., Jachiet M., Velter C., Lestang P., Cassius C., Arsouze A., Domergue Than Trong E., Bagot M., Begon E. Vascular skin symptoms in COVID-19: A french observational study. J. Eur. Acad. Derm. Venereol. 2020;34:e451–e452. doi: 10.1111/jdv.16544. PubMed DOI PMC

Rahman M.H., Akter R., Behl T., Chowdhury M.A., Mohammed M., Bulbul I.J., Elshenawy S.E., Kamal M.A. COVID-19 outbreak and emerging management through pharmaceutical therapeutic strategy. Curr. Pharm. Des. 2020;26:5224–5240. doi: 10.2174/1381612826666200713174140. PubMed DOI

Infusino F., Marazzato M., Mancone M., Fedele F., Mastroianni C.M., Severino P., Ceccarelli G., Santinelli L., Cavarretta E., Marullo A.G. Diet supplementation, probiotics, and nutraceuticals in SARS-CoV-2 infection: A scoping review. Nutrients. 2020;12:1718. doi: 10.3390/nu12061718. PubMed DOI PMC

Mason R.J. Pathogenesis of COVID-19 from a cell biology perspective. Eur. Respir. Soc. 2020;55:2000607. doi: 10.1183/13993003.00607-2020. PubMed DOI PMC

Kabir M.T., Uddin M.S., Hossain M.F., Abdulhakim J.A., Alam M.A., Ashraf G.M., Bungau S.G., Bin-Jumah M.N., Abdel-Daim M.M., Aleya L. nCOVID-19 pandemic: From molecular pathogenesis to potential investigational therapeutics. Front. Cell Dev. Biol. 2020;8:616. doi: 10.3389/fcell.2020.00616. PubMed DOI PMC

Rockx B., Kuiken T., Herfst S., Bestebroer T., Lamers M.M., Oude Munnink B.B., de Meulder D., van Amerongen G., van den Brand J., Okba N.M.A., et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020;368:1012–1015. doi: 10.1126/science.abb7314. PubMed DOI PMC

Mahase E. Hydroxychloroquine for COVID-19: The end of the line? BMJ. 2020;369:m2378. doi: 10.1136/bmj.m2378. PubMed DOI

Boehmer T.K., DeVies J., Caruso E., van Santen K.L., Tang S., Black C.L., Hartnett K.P., Kite-Powell A., Dietz S., Lozier M., et al. Changing Age Distribution of the COVID-19 Pandemic-United States, May-August 2020. MMWR Morb. Mortal. Wkly. Rep. 2020;69:1404–1409. doi: 10.15585/mmwr.mm6939e1. PubMed DOI PMC

Mrityunjaya M., Pavithra V., Neelam R., Janhavi P., Halami P.M., Ravindra P.V. Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Front. Immunol. 2020;11:570122. doi: 10.3389/fimmu.2020.570122. PubMed DOI PMC

Hasan S.S., Radford S., Kow C.S., Zaidi S.T.R. Venous thromboembolism in critically ill COVID-19 patients receiving prophylactic or therapeutic anticoagulation: A systematic review and meta-analysis. J. Thromb. Thrombolysis. 2020;50:814–821. doi: 10.1007/s11239-020-02235-z. PubMed DOI PMC

Waikar S., Oli A. COVID-19: Ophthalmic prophylactic and therapeutic measures. Indian J. Ophthalmol. 2020;68:1223–1224. doi: 10.4103/ijo.IJO_883_20. PubMed DOI PMC

Bar-On Y.M., Flamholz A., Phillips R., Milo R. SARS-CoV-2 (COVID-19) by the numbers. eLife. 2020;9 doi: 10.7554/eLife.57309. PubMed DOI PMC

Hu B., Guo H., Zhou P., Shi Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021;19:141–154. doi: 10.1038/s41579-020-00459-7. PubMed DOI PMC

Alhenc-Gelas F., Bouby N., Girolami J.-P. Kallikrein/K1, Kinins, and ACE/Kininase II in Homeostasis and in Disease Insight From Human and Experimental Genetic Studies, Therapeutic Implication. Front. Med. 2019;6:136. doi: 10.3389/fmed.2019.00136. PubMed DOI PMC

Vaduganathan M., Vardeny O., Michel T., McMurray J.J.V., Pfeffer M.A., Solomon S.D. Renin-Angiotensin-Aldosterone System Inhibitors in Patients with COVID-19. N. Engl. J. Med. 2020;382:1653–1659. doi: 10.1056/NEJMsr2005760. PubMed DOI PMC

Abobaker A., Alzwi A., Alraied A.H.A. Overview of the possible role of vitamin C in management of COVID-19. Pharm. Rep. 2020;72:1517–1528. doi: 10.1007/s43440-020-00176-1. PubMed DOI PMC

Tahir A.H., Javed M.M., Hussain Z. Nutraceuticals and herbal extracts: A ray of hope for COVID-19 and related infections (Review) Int. J. Funct. Nutr. 2020;1:6. doi: 10.3892/ijfn.2020.6. DOI

De Almeida Brasiel P.G. The key role of zinc in elderly immunity: A possible approach in the COVID-19 crisis. Clin. Nutr. ESPEN. 2020;38:65–66. doi: 10.1016/j.clnesp.2020.06.003. PubMed DOI PMC

Panfili F.M., Roversi M., D’Argenio P., Rossi P., Cappa M., Fintini D. Possible role of vitamin D in COVID-19 infection in pediatric population. J. Endocrinol. Investig. 2021;44:27–35. doi: 10.1007/s40618-020-01327-0. PubMed DOI PMC

Kodchakorn K., Poovorawan Y., Suwannakarn K., Kongtawelert P. Molecular modelling investigation for drugs and nutraceuticals against protease of SARS-CoV-2. J. Mol. Graph. Model. 2020;101:107717. doi: 10.1016/j.jmgm.2020.107717. PubMed DOI PMC

Savant S., Srinivasan S., Kruthiventi A.K. Potential Nutraceuticals for COVID-19. Nutr. Diet. Suppl. 2021;13:25. doi: 10.2147/NDS.S294231. DOI

Heller R.A., Sun Q., Hackler J., Seelig J., Seibert L., Cherkezov A., Minich W.B., Seemann P., Diegmann J., Pilz M., et al. Prediction of survival odds in COVID-19 by zinc, age and selenoprotein P as composite biomarker. Redox Biol. 2021;38:101764. doi: 10.1016/j.redox.2020.101764. PubMed DOI PMC

Romani L., Tomino C., Puccetti P., Garaci E. Off-label therapy targeting pathogenic inflammation in COVID-19. Cell Death Discov. 2020;6:49. doi: 10.1038/s41420-020-0283-2. PubMed DOI PMC

Xu Y., Baylink D.J., Chen C.S., Reeves M.E., Xiao J., Lacy C., Lau E., Cao H. The importance of vitamin d metabolism as a potential prophylactic, immunoregulatory and neuroprotective treatment for COVID-19. J. Transl. Med. 2020;18:322. doi: 10.1186/s12967-020-02488-5. PubMed DOI PMC

Galanakis C.M., Aldawoud T.M.S., Rizou M., Rowan N.J., Ibrahim S.A. Food Ingredients and Active Compounds against the Coronavirus Disease (COVID-19) Pandemic: A Comprehensive Review. Foods. 2020;9:1701. doi: 10.3390/foods9111701. PubMed DOI PMC

Muscogiuri G., Barrea L., Savastano S., Colao A. Nutritional recommendations for COVID-19 quarantine. Eur. J. Clin. Nutr. 2020;74:850–851. doi: 10.1038/s41430-020-0635-2. PubMed DOI PMC

Long C., Xu H., Shen Q., Zhang X., Fan B., Wang C., Zeng B., Li Z., Li X., Li H. Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? Eur. J. Radiol. 2020;126:108961. doi: 10.1016/j.ejrad.2020.108961. PubMed DOI PMC

Zhang S., Wang Z., Chang R., Wang H., Xu C., Yu X., Tsamlag L., Dong Y., Wang H., Cai Y. COVID-19 containment: China provides important lessons for global response. Front. Med. 2020;14:215–219. doi: 10.1007/s11684-020-0766-9. PubMed DOI PMC

Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021;134:178–189. doi: 10.1016/j.jclinepi.2021.03.001. PubMed DOI

Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Moher D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021;134:103–112. doi: 10.1016/j.jclinepi.2021.02.003. PubMed DOI

Cao X. COVID-19: Immunopathology and its implications for therapy. Nat. Rev. Immunol. 2020;20:269–270. doi: 10.1038/s41577-020-0308-3. PubMed DOI PMC

Thevarajan I., Nguyen T.H.O., Koutsakos M., Druce J., Caly L., van de Sandt C.E., Jia X., Nicholson S., Catton M., Cowie B., et al. Breadth of concomitant immune responses prior to patient recovery: A case report of non-severe COVID-19. Nat. Med. 2020;26:453–455. doi: 10.1038/s41591-020-0819-2. PubMed DOI PMC

Zhang B., Zhou X., Zhu C., Song Y., Feng F., Qiu Y., Feng J., Jia Q., Song Q., Zhu B., et al. Immune Phenotyping Based on the Neutrophil-to-Lymphocyte Ratio and IgG Level Predicts Disease Severity and Outcome for Patients With COVID-19. Front. Mol. Biosci. 2020;7:157. doi: 10.3389/fmolb.2020.00157. PubMed DOI PMC

Boni M.F., Lemey P., Jiang X., Lam T.T.-Y., Perry B.W., Castoe T.A., Rambaut A., Robertson D.L. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat. Microbiol. 2020;5:1408–1417. doi: 10.1038/s41564-020-0771-4. PubMed DOI

Zheng J. SARS-CoV-2: An Emerging Coronavirus that Causes a Global Threat. Int. J. Biol. Sci. 2020;16:1678–1685. doi: 10.7150/ijbs.45053. PubMed DOI PMC

Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L., et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv. 2020 doi: 10.1101/2020.01.22.914952. DOI

Kimball A., Hatfield K.M., Arons M., James A., Taylor J., Spicer K., Bardossy A.C., Oakley L.P., Tanwar S., Chisty Z. Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a long-term care skilled nursing facility—King County, Washington, March 2020. Morb. Mortal. Wkly. Rep. 2020;69:377. doi: 10.15585/mmwr.mm6913e1. PubMed DOI PMC

Ferrario C.M., Ahmad S., Groban L. Mechanisms by which angiotensin-receptor blockers increase ACE2 levels. Nat. Rev. Cardiol. 2020;17:378. doi: 10.1038/s41569-020-0387-7. PubMed DOI PMC

Zhang Y., Kutateladze T.G. Molecular structure analyses suggest strategies to therapeutically target SARS-CoV-2. Nat. Commun. 2020;11:2920. doi: 10.1038/s41467-020-16779-4. PubMed DOI PMC

Allam M., Cai S., Ganesh S., Venkatesan M., Doodhwala S., Song Z., Hu T., Kumar A., Heit J., Study Group C., et al. COVID-19 Diagnostics, Tools, and Prevention. Diagnostics. 2020;10:409. doi: 10.3390/diagnostics10060409. PubMed DOI PMC

Jayawardena R., Sooriyaarachchi P., Chourdakis M., Jeewandara C., Ranasinghe P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab. Syndr. 2020;14:367–382. doi: 10.1016/j.dsx.2020.04.015. PubMed DOI PMC

Kumar V., Kancharla S., Jena M.K. In silico virtual screening-based study of nutraceuticals predicts the therapeutic potentials of folic acid and its derivatives against COVID-19. Virusdisease. 2021;32:1–9. doi: 10.1007/s13337-020-00643-6. PubMed DOI PMC

Ratha S.K., Renuka N., Rawat I., Bux F. Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases. Nutrition. 2021;83:111089. doi: 10.1016/j.nut.2020.111089. PubMed DOI PMC

Clohisey S., Baillie J.K. Host susceptibility to severe influenza A virus infection. Crit. Care. 2019;23:303. doi: 10.1186/s13054-019-2566-7. PubMed DOI PMC

Kumar N.B. Does COVID-19-related cachexia mimic cancer-related cachexia? Examining mechanisms, clinical biomarkers, and potential targets for clinical management. J. Cachexia Sarcopenia Muscle. 2021;12:519–522. doi: 10.1002/jcsm.12681. PubMed DOI PMC

Sikander M., Malik S., Rodriguez A., Yallapu M.M., Narula A.S., Satapathy S.K., Dhevan V., Chauhan S.C., Jaggi M. Role of Nutraceuticals in COVID-19 Mediated Liver Dysfunction. Molecules. 2020;25:5905. doi: 10.3390/molecules25245905. PubMed DOI PMC

Nasri H., Baradaran A., Shirzad H., Rafieian-Kopaei M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int. J. Prev. Med. 2014;5:1487–1499. PubMed PMC

Dhalaria R., Verma R., Kumar D., Puri S., Tapwal A., Kumar V., Nepovimova E., Kuca K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants. 2020;9:1123. doi: 10.3390/antiox9111123. PubMed DOI PMC

Allen C., Heaven Taylor B., Winchester C. COVID-19–Where should we go now? Integr. Med. Res. 2020;9:100468. doi: 10.1016/j.imr.2020.100468. PubMed DOI PMC

Ayseli Y.I., Aytekin N., Buyukkayhan D., Aslan I., Ayseli M.T. Food policy, nutrition and nutraceuticals in the prevention and management of COVID-19: Advice for healthcare professionals. Trends Food Sci. Technol. 2020;105:186–199. doi: 10.1016/j.tifs.2020.09.001. PubMed DOI PMC

DiNicolantonio J.J., McCarty M. Thrombotic complications of COVID-19 may reflect an upregulation of endothelial tissue factor expression that is contingent on activation of endosomal NADPH oxidase. Open Heart. 2020;7:e001337. doi: 10.1136/openhrt-2020-001337. PubMed DOI PMC

Verweij P.E., Gangneux J.P., Bassetti M., Brüggemann R.J.M., Cornely O.A., Koehler P., Lass-Flörl C., van de Veerdonk F.L., Chakrabarti A., Hoenigl M. Diagnosing COVID-19-associated pulmonary aspergillosis. Lancet Microbe. 2020;1:e53–e55. doi: 10.1016/S2666-5247(20)30027-6. PubMed DOI PMC

Ntyonga-Pono M.P. COVID-19 infection and oxidative stress: An under-explored approach for prevention and treatment? Pan. Afr. Med. J. 2020;35:12. doi: 10.11604/pamj.supp.2020.35.2.22877. PubMed DOI PMC

McCarty M.F., Iloki Assanga S.B., Lewis Luján L., O’keefe J.H., DiNicolantonio J.J. Nutraceutical strategies for suppressing NLRP3 inflammasome activation: Pertinence to the management of COVID-19 and beyond. Nutrients. 2021;13:47. doi: 10.3390/nu13010047. PubMed DOI PMC

Shahrajabian M.H., Sun W., Shen H., Cheng Q. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak. Acta Agric. Scand. Sect. B—Soil Plant. Sci. 2020;70:437–443. doi: 10.1080/09064710.2020.1763448. DOI

Carr A.C., Rowe S. The Emerging Role of Vitamin C in the Prevention and Treatment of COVID-19. Nutrients. 2020;12:3286. doi: 10.3390/nu12113286. PubMed DOI PMC

Kaur I., Behl T., Aleya L., Rahman H., Kumar A., Arora S., Bulbul I.J. Artificial intelligence as a fundamental tool in management of infectious diseases and its current implementation in COVID-19 pandemic. Env. Sci. Pollut. Res. Int. 2021;28:40515–40532. doi: 10.1007/s11356-021-13823-8. PubMed DOI PMC

Weir E.K., Thenappan T., Bhargava M., Chen Y. Does vitamin D deficiency increase the severity of COVID-19? Clin. Med. 2020;20:e107–e108. doi: 10.7861/clinmed.2020-0301. PubMed DOI PMC

Grant W.B., Lahore H., McDonnell S.L., Baggerly C.A., French C.B., Aliano J.L., Bhattoa H.P. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 2020;12:988. doi: 10.3390/nu12040988. PubMed DOI PMC

Pilz S., März W., Cashman K.D., Kiely M.E., Whiting S.J., Holick M.F., Grant W.B., Pludowski P., Hiligsmann M., Trummer C., et al. Rationale and Plan for Vitamin D Food Fortification: A Review and Guidance Paper. Front. Endocrinol. 2018;9:373. doi: 10.3389/fendo.2018.00373. PubMed DOI PMC

Brenner H. Vitamin D Supplementation to Prevent COVID-19 Infections and Deaths-Accumulating Evidence from Epidemiological and Intervention Studies Calls for Immediate Action. Nutrients. 2021;13:411. doi: 10.3390/nu13020411. PubMed DOI PMC

Faniyi A.A., Lugg S.T., Faustini S.E., Webster C., Duffy J.E., Hewison M., Shields A., Nightingale P., Richter A.G., Thickett D.R. Vitamin D status and seroconversion for COVID-19 in UK healthcare workers. Eur. Respir. J. 2021;57 doi: 10.1183/13993003.04234-2020. PubMed DOI PMC

Breslin N., Baptiste C., Gyamfi-Bannerman C., Miller R., Martinez R., Bernstein K., Ring L., Landau R., Purisch S., Friedman A.M., et al. Coronavirus disease 2019 infection among asymptomatic and symptomatic pregnant women: Two weeks of confirmed presentations to an affiliated pair of New York City hospitals. Am. J. Obs. Gynecol MFM. 2020;2:100118. doi: 10.1016/j.ajogmf.2020.100118. PubMed DOI PMC

Tagde P., Kulkarni G.T., Mishra D.K., Kesharwani P. Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. J. Drug Deliv. Sci. Technol. 2020;56:101613. doi: 10.1016/j.jddst.2020.101613. DOI

Singh S. Covariation of Zinc Deficiency with COVID-19 Infections and Mortality in European Countries: Is Zinc Deficiency a Risk Factor for COVID-19? medRxiv. 2020 doi: 10.1101/2020.06.12.20105676. DOI

Xue J., Moyer A., Peng B., Wu J., Hannafon B.N., Ding W.-Q. Chloroquine is a zinc ionophore. PLoS ONE. 2014;9:e109180. doi: 10.1371/journal.pone.0109180. PubMed DOI PMC

Calder P.C., Carr A.C., Gombart A.F., Eggersdorfer M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients. 2020;12:1181. doi: 10.3390/nu12041181. PubMed DOI PMC

Adams K.K., Baker W.L., Sobieraj D.M. Myth Busters: Dietary Supplements and COVID-19. Ann. Pharm. 2020;54:820–826. doi: 10.1177/1060028020928052. PubMed DOI PMC

Singh K., Rao A. Probiotics: A potential immunomodulator in COVID-19 infection management. Nutr. Res. 2021;87:1–12. doi: 10.1016/j.nutres.2020.12.014. PubMed DOI PMC

Kanauchi O., Andoh A., AbuBakar S., Yamamoto N. Probiotics and Paraprobiotics in Viral Infection: Clinical Application and Effects on the Innate and Acquired Immune Systems. Curr. Pharm. Des. 2018;24:710–717. doi: 10.2174/1381612824666180116163411. PubMed DOI PMC

Sundararaman A., Ray M., Ravindra P.V., Halami P.M. Role of probiotics to combat viral infections with emphasis on COVID-19. Appl. Microbiol. Biotechnol. 2020;104:8089–8104. doi: 10.1007/s00253-020-10832-4. PubMed DOI PMC

Gohil K., Samson R., Dastager S., Dharne M. Probiotics in the prophylaxis of COVID-19: Something is better than nothing. 3 Biotech. 2021;11:1. doi: 10.1007/s13205-020-02554-1. PubMed DOI PMC

Rajesh E., Sankari L.S., Malathi L., Krupaa J.R. Naturally occurring products in cancer therapy. J. Pharm. Bioallied. Sci. 2015;7:S181–S183. doi: 10.4103/0975-7406.155895. PubMed DOI PMC

Wang D., Sun-Waterhouse D., Li F., Xin L., Li D. MicroRNAs as molecular targets of quercetin and its derivatives underlying their biological effects: A preclinical strategy. Crit. Rev. Food Sci. Nutr. 2019;59:2189–2201. doi: 10.1080/10408398.2018.1441123. PubMed DOI

Xu D., Hu M.J., Wang Y.Q., Cui Y.L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules. 2019;24:1123. doi: 10.3390/molecules24061123. PubMed DOI PMC

Lin S.-C., Ho C.-T., Chuo W.-H., Li S., Wang T.T., Lin C.-C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect. Dis. 2017;17:144. doi: 10.1186/s12879-017-2253-8. PubMed DOI PMC

Ramdani L.H., Bachari K. Potential therapeutic effects of Resveratrol against SARS-CoV-2. Acta Virol. 2020;64:276–280. doi: 10.4149/av_2020_309. PubMed DOI

Zhao X., Xu J., Song X., Jia R., Yin Z., Cheng A., Jia R., Zou Y., Li L., Yin L., et al. Antiviral effect of resveratrol in ducklings infected with virulent duck enteritis virus. Antivir. Res. 2016;130:93–100. doi: 10.1016/j.antiviral.2016.03.014. PubMed DOI

Wahedi H.M., Ahmad S., Abbasi S.W. Stilbene-based natural compounds as promising drug candidates against COVID-19. J. Biomol. Struct. Dyn. 2021;39:3225–3234. doi: 10.1080/07391102.2020.1762743. PubMed DOI

Shawon J., Akter Z., Hossen M.M., Akter Y., Sayeed A., Junaid M., Afrose S.S., Khan M.A. Current Landscape of Natural Products against Coronaviruses: Perspectives in COVID-19 Treatment and Anti-viral Mechanism. Curr. Pharm. Des. 2020;26:5241–5260. doi: 10.2174/1381612826666201106093912. PubMed DOI

Gautam S., Gautam A., Chhetri S., Bhattarai U. Immunity Against COVID-19: Potential Role of Ayush Kwath. J. Ayurveda Integr. Med. 2020 doi: 10.1016/j.jaim.2020.08.003. PubMed DOI PMC

Shree P., Mishra P., Selvaraj C., Singh S.K., Chaube R., Garg N., Tripathi Y.B. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants-Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi)—A molecular docking study. J. Biomol. Struct. Dyn. 2020:1–4. doi: 10.1080/07391102.2020.1810778. PubMed DOI PMC

Tripathi M.K., Singh P., Sharma S., Singh T.P., Ethayathulla A.S., Kaur P. Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor. J. Biomol. Struct. Dyn. 2021;39:5668–5681. doi: 10.1080/07391102.2020.1790425. PubMed DOI PMC

Saggam A., Limgaokar K., Borse S., Chavan-Gautam P., Dixit S., Tillu G., Patwardhan B. Withania somnifera (L.) Dunal: Opportunity for Clinical Repurposing in COVID-19 Management. Front. Pharmacol. 2021;12 doi: 10.3389/fphar.2021.623795. PubMed DOI PMC

Derosa G., Maffioli P., D’Angelo A., Di Pierro F. A role for quercetin in coronavirus disease 2019 (COVID-19) Phytother. Res. 2021;35:1230–1236. doi: 10.1002/ptr.6887. PubMed DOI PMC

Rahman M.H., Bajgai J., Fadriquela A., Sharma S., Trinh Thi T., Akter R., Goh S.H., Kim C.-S., Lee K.-J. Redox Effects of Molecular Hydrogen and Its Therapeutic Efficacy in the Treatment of Neurodegenerative Diseases. Processes. 2021;9:308. doi: 10.3390/pr9020308. DOI

Huang J., Tao G., Liu J., Cai J., Huang Z., Chen J.X. Current Prevention of COVID-19: Natural Products and Herbal Medicine. Front. Pharm. 2020;11:588508. doi: 10.3389/fphar.2020.588508. PubMed DOI PMC

Fadus M.C., Lau C., Bikhchandani J., Lynch H.T. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. J. Tradit. Complement. Med. 2017;7:339–346. doi: 10.1016/j.jtcme.2016.08.002. PubMed DOI PMC

Heydarian M., Abdorrahimian F., Emami S.M.A., Beheshti S.I. The provenance and distribution of Early Bronze ceramics in the Kolyaei Plain, central Zagros, Iran. Archaeometry. 2020;62:694–711. doi: 10.1111/arcm.12551. DOI

Suravajhala R., Gupta S., Kumar N., Suravajhala P. Deciphering LncRNA-protein interactions using docking complexes. J. Biomol. Struct. Dyn. 2020:1–8. doi: 10.1080/07391102.2020.1850354. PubMed DOI

Wang Y., Wang W.J., Su C., Zhang D.M., Xu L.P., He R.R., Wang L., Zhang J., Zhang X.Q., Ye W.C. Cytotoxic quassinoids from Ailanthus altissima. Bioorg. Med. Chem. Lett. 2013;23:654–657. doi: 10.1016/j.bmcl.2012.11.116. PubMed DOI

Soleimani V., Sahebkar A., Hosseinzadeh H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother. Res. 2018;32:985–995. doi: 10.1002/ptr.6054. PubMed DOI

Manoharan Y., Haridas V., Vasanthakumar K.C., Muthu S., Thavoorullah F.F., Shetty P. Curcumin: A Wonder Drug as a Preventive Measure for COVID19 Management. Indian J. Clin. Biochem. 2020;35:373–375. doi: 10.1007/s12291-020-00902-9. PubMed DOI PMC

Li H.Y., Yang M., Li Z., Meng Z. Curcumin inhibits angiotensin II-induced inflammation and proliferation of rat vascular smooth muscle cells by elevating PPAR-γ activity and reducing oxidative stress. Int. J. Mol. Med. 2017;39:1307–1316. doi: 10.3892/ijmm.2017.2924. PubMed DOI

Kim H.R., Kim W.K., Ha A.W. Effects of Phytochemicals on Blood Pressure and Neuroprotection Mediated Via Brain Renin-Angiotensin System. Nutrients. 2019;11:2761. doi: 10.3390/nu11112761. PubMed DOI PMC

Otobone F.J., Sanches A.C., Nagae R., Martins J.V., Sela V.R., de Mello J.C., Audi E.A. Effect of lyophilized extracts from guaraná seeds [Paullinia cupana var. sorbilis (Mart.) Ducke] on behavioral profiles in rats. Phytother. Res. 2007;21:531–535. doi: 10.1002/ptr.2089. PubMed DOI

Odeh N.D., Babkair H., Abu-Hammad S., Borzangy S., Abu-Hammad A., Abu-Hammad O. COVID-19: Present and Future Challenges for Dental Practice. Int. J. Env. Res. Public Health. 2020;17:3151. doi: 10.3390/ijerph17093151. PubMed DOI PMC

McBride D.A., Kerr M.D., Dorn N.C., Ogbonna D.A., Santos E.C., Shah N.J. Triggers, Timescales, and Treatments for Cytokine-Mediated Tissue Damage. Eur. Med. J. Innov. 2021;5:52–62. doi: 10.33590/emjinnov/20-00203. PubMed DOI PMC

Zhang D., Zhang B., Lv J.T., Sa R.N., Zhang X.M., Lin Z.J. The clinical benefits of Chinese patent medicines against COVID-19 based on current evidence. Pharm. Res. 2020;157:104882. doi: 10.1016/j.phrs.2020.104882. PubMed DOI PMC

Adaki S., Adaki R., Shah K., Karagir A. Garlic: Review of literature. Indian J. Cancer. 2014;51:577–581. doi: 10.4103/0019-509X.175383. PubMed DOI

Arreola R., Quintero-Fabián S., López-Roa R.I., Flores-Gutiérrez E.O., Reyes-Grajeda J.P., Carrera-Quintanar L., Ortuño-Sahagún D. Immunomodulation and anti-inflammatory effects of garlic compounds. J. Immunol. Res. 2015;2015:401630. doi: 10.1155/2015/401630. PubMed DOI PMC

Petrovic V., Nepal A., Olaisen C., Bachke S., Hira J., Søgaard C.K., Røst L.M., Misund K., Andreassen T., Melø T.M., et al. Anti-Cancer Potential of Homemade Fresh Garlic Extract Is Related to Increased Endoplasmic Reticulum Stress. Nutrients. 2018;10:450. doi: 10.3390/nu10040450. PubMed DOI PMC

Donma M.M., Donma O. The effects of allium sativum on immunity within the scope of COVID-19 infection. Med. Hypotheses. 2020;144:109934. doi: 10.1016/j.mehy.2020.109934. PubMed DOI PMC

Sánchez-Sánchez M.A., Zepeda-Morales A.S.M., Carrera-Quintanar L., Viveros-Paredes J.M., Franco-Arroyo N.N., Godínez-Rubí M., Ortuño-Sahagun D., López-Roa R.I. Alliin, an Allium sativum Nutraceutical, ReducesMetaflammation Markers in DIO Mice. Nutrients. 2020;12:624. doi: 10.3390/nu12030624. PubMed DOI PMC

El-Saber Batiha G., Magdy Beshbishy A., Wasef L.G., Elewa Y.H.A., Al-Sagan A.A., El-Hack M.E., Taha A.E., Abd-Elhakim Y.M., Prasad Devkota H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients. 2020;12:872. doi: 10.3390/nu12030872. PubMed DOI PMC

Vlachojannis J.E., Cameron M., Chrubasik S. A systematic review on the sambuci fructus effect and efficacy profiles. Phytother. Res. 2010;24:1–8. doi: 10.1002/ptr.2729. PubMed DOI

Torabian G., Valtchev P., Adil Q., Dehghani F. Anti-influenza activity of elderberry (Sambucus nigra) J. Funct. Foods. 2019;54:353–360. doi: 10.1016/j.jff.2019.01.031. DOI

Kaack K., Austed T. Interaction of vitamin C and flavonoids in elderberry (Sambucus nigra L.) during juice processing. Plant. Foods Hum. Nutr. 1998;52:187–198. doi: 10.1023/A:1008069422202. PubMed DOI

Veberic R., Jakopic J., Stampar F., Schmitzer V. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chem. 2009;114:511–515. doi: 10.1016/j.foodchem.2008.09.080. DOI

Christensen L.P., Kaack K., Fretté X.C. Selection of elderberry (Sambucus nigra L.) genotypes best suited for the preparation of elderflower extracts rich in flavonoids and phenolic acids. Eur. Food Res. Technol. 2008;227:293–305. doi: 10.1007/s00217-007-0723-8. DOI

Takooree H., Aumeeruddy M.Z., Rengasamy K.R.R., Venugopala K.N., Jeewon R., Zengin G., Mahomoodally M.F. A systematic review on black pepper (Piper nigrum L.): From folk uses to pharmacological applications. Crit. Rev. Food Sci. Nutr. 2019;59:S210–S243. doi: 10.1080/10408398.2019.1565489. PubMed DOI

Choudhary P., Chakdar H., Singh D., Selvaraj C., Singh S.K., Kumar S., Saxena A. Computational studies reveal piperine, the predominant oleoresin of black pepper (Piper nigrum) as a potential inhibitor of SARS-CoV-2 (COVID-19) Curr. Sci. 2020;119:1333–1342. doi: 10.18520/cs/v119/i8/1333-1342. DOI

McCubrey J.A., Lertpiriyapong K., Steelman L.S., Abrams S.L., Yang L.V., Murata R.M., Rosalen P.L., Scalisi A., Neri L.M., Cocco L., et al. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging. 2017;9:1477–1536. doi: 10.18632/aging.101250. PubMed DOI PMC

Alharris E., Alghetaa H., Seth R., Chatterjee S., Singh N.P., Nagarkatti M., Nagarkatti P. Resveratrol Attenuates Allergic Asthma and Associated Inflammation in the Lungs Through Regulation of miRNA-34a That Targets FoxP3 in Mice. Front. Immunol. 2018;9:2992. doi: 10.3389/fimmu.2018.02992. PubMed DOI PMC

Burns J., Yokota T., Ashihara H., Lean M.E., Crozier A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem. 2002;50:3337–3340. doi: 10.1021/jf0112973. PubMed DOI

Balkrishna A., Pokhrel S., Singh H., Joshi M., Mulay V.P., Haldar S., Varshney A. Withanone from Withania somnifera Attenuates SARS-CoV-2 RBD and Host ACE2 Interactions to Rescue Spike Protein Induced Pathologies in Humanized Zebrafish Model. Drug Des. Dev. 2021;15:1111–1133. doi: 10.2147/dddt.S292805. PubMed DOI PMC

Kumar V., Dhanjal J.K., Bhargava P., Kaul A., Wang J., Zhang H., Kaul S.C., Wadhwa R., Sundar D. Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. J. Biomol. Struct. Dyn. 2020:1–13. doi: 10.1080/07391102.2020.1775704. PubMed DOI PMC

Ganguly B., Mrigesh M., Chauhan P., Rastogi S.K. Dietary supplementation with Withania somnifera root powder ameliorates experimentally induced Infectious Bursal Disease in chicken. Trop. Anim. Health Prod. 2020;52:1195–1206. doi: 10.1007/s11250-019-02104-9. PubMed DOI PMC

Jamshidi N., Cohen M.M. The Clinical Efficacy and Safety of Tulsi in Humans: A Systematic Review of the Literature. Evid.-Based Complementary Altern. Med. Ecam. 2017;2017:9217567. doi: 10.1155/2017/9217567. PubMed DOI PMC

Harsha M., Mohan Kumar K.P., Kagathur S., Amberkar V.S. Effect of Ocimum sanctum extract on leukemic cell lines: A preliminary in-vitro study. J. Oral Maxillofac. Pathol. 2020;24:93–98. doi: 10.4103/jomfp.JOMFP_181_19. PubMed DOI PMC

Saleh A.A., Mohammed A.A., Ahmad A., Arshad Husain R. Ocimum sanctum: Role in Diseases Management through Modulating Various Biological Activity. Pharmacogn. J. 2020;12:5.

Cohen M.M. Tulsi-Ocimum sanctum: A herb for all reasons. J. Ayurveda Integr. Med. 2014;5:251–259. doi: 10.4103/0975-9476.146554. PubMed DOI PMC

Das S.K., Chandra A., Agarwal S.S., Singh N. Ocimum sanctum (Tulsi) in the treatment of viral encephalitis. Antiseptic. 1983;80(7):323–327.

Ak S., Jp C., Khan R., Dhand C., Verma S. Role of Medicinal Plants of Traditional Use in Recuperating Devastating COVID-19 Situation. Med. Aromat. Plants. 2020;9:1–16.

Islam M.T., Khan M.R., Mishra S.K. An updated literature-based review: Phytochemistry, pharmacology and therapeutic promises of Nigella sativa L. Orient. Pharm. Exp. Med. 2019;19:115–129. doi: 10.1007/s13596-019-00363-3. DOI

Hunt L.M., de Voogd K.B. Are good intentions good enough? Informed consent without trained interpreters. J. Gen. Intern. Med. 2007;22:598–605. doi: 10.1007/s11606-007-0136-1. PubMed DOI PMC

Sarkar C., Mondal M., Torequl Islam M., Martorell M., Docea A.O., Maroyi A., Sharifi-Rad J., Calina D. Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives. Front. Pharmacol. 2020;11:572870. doi: 10.3389/fphar.2020.572870. PubMed DOI PMC

Sharma B.R., Park C.M., Kim H.A., Kim H.J., Rhyu D.Y. Tinospora cordifolia preserves pancreatic beta cells and enhances glucose uptake in adipocytes to regulate glucose metabolism in diabetic rats. Phytother. Res. 2019;33:2765–2774. doi: 10.1002/ptr.6462. PubMed DOI

Nayak P., Tiwari P., Prusty S., Sahu P. Phytochemistry and Pharmacology of Tinospora cordifolia: A Review. Syst. Rev. Pharm. 2018;9:70–78. doi: 10.5530/srp.2018.1.14. DOI

Ghatpande N.S., Misar A.V., Waghole R.J., Jadhav S.H., Kulkarni P.P. Tinospora cordifolia protects against inflammation associated anemia by modulating inflammatory cytokines and hepcidin expression in male Wistar rats. Sci. Rep. 2019;9:10969. doi: 10.1038/s41598-019-47458-0. PubMed DOI PMC

George M., Josepha L., Mathew M. A research on screening of learning and memory enhancing activity of whole plant extract of Tinospora cordifolia (Willd) Pharm. Innov. J. 2016;5:104–107.

Sagar V., Kumar A.H.S. Efficacy of natural compounds from Tinospora cordifolia against SARS-CoV-2 protease, surface glycoprotein and RNA polymerase. [(accessed on 23 April 2021)];Virology. 2020 :1–10. doi: 10.5530/bems.6.1.2. Available online: https://assets.researchsquare.com/files/rs-27375/v1/ec9bf967-ea5b-4362-b609-1859a5e370a1.pdf?c=1631834057. DOI

Agarwal S., Ramamurthy P.H., Fernandes B., Rath A., Sidhu P. Assessment of antimicrobial activity of different concentrations of Tinospora cordifolia against Streptococcus mutans: An in vitro study. Dent. Res. J. 2019;16:24–28. PubMed PMC

Thakur A., Raj P. Pharmacological perspective of Glycyrrhiza glabra Linn: A mini-review. J. Anal. Pharm. Res. 2017;5:00156. doi: 10.15406/japlr.2017.05.00156. DOI

Bailly C., Vergoten G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol. Ther. 2020;214:107618. doi: 10.1016/j.pharmthera.2020.107618. PubMed DOI PMC

Cinatl J., Morgenstern B., Bauer G., Chandra P., Rabenau H., Doerr H.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003;361:2045–2046. doi: 10.1016/S0140-6736(03)13615-X. PubMed DOI PMC

Mao Q.-Q., Xu X.-Y., Cao S.-Y., Gan R.-Y., Corke H., Beta T., Li H.-B. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe) Foods. 2019;8:185. doi: 10.3390/foods8060185. PubMed DOI PMC

Murck H. Symptomatic Protective Action of Glycyrrhizin (Licorice) in COVID-19 Infection? Front. Immunol. 2020;11:1239. doi: 10.3389/fimmu.2020.01239. PubMed DOI PMC

Sharifi-Rad M., Varoni E.M., Salehi B., Sharifi-Rad J., Matthews K.R., Ayatollahi S.A., Kobarfard F., Ibrahim S.A., Mnayer D., Zakaria Z.A., et al. Plants of the Genus Zingiber as a Source of Bioactive Phytochemicals: From Tradition to Pharmacy. Molecules. 2017;22:2145. doi: 10.3390/molecules22122145. PubMed DOI PMC

Rathinavel T., Palanisamy M., Srinivasan P., Subramanian A., Thangaswamy S. Phytochemical 6-Gingerol -A promising Drug of choice for COVID-19. Int. J. Adv. Sci. Eng. 2020;6 doi: 10.29294/IJASE.6.4.2020.1482-1489. DOI

Lestari S., Rifa M. Regulatory T cells and anti-inflammatory cytokine profile of mice fed a high-fat diet after single-bulb garlic (Allium sativum L.) oil treatment. Trop. J. Pharm. Res. 2018;17:2157–2162. doi: 10.4314/tjpr.v17i11.7. DOI

Akter R., Chowdhury M.A.R., Rahman M.H. Flavonoids and Polyphenolic Compounds as Potential Talented Agents for the Treatment of Alzheimer’s Disease and their Antioxidant Activities. Curr. Pharm. Des. 2021;27:345–356. doi: 10.2174/1381612826666201102102810. PubMed DOI

Zhao X., Cui Q., Fu Q., Song X., Jia R., Yang Y., Zou Y., Li L., He C., Liang X., et al. Antiviral properties of resveratrol against pseudorabies virus are associated with the inhibition of IκB kinase activation. Sci. Rep. 2017;7:8782. doi: 10.1038/s41598-017-09365-0. PubMed DOI PMC

Baldassarre M.E., Di Mauro A., Labellarte G., Pignatelli M., Fanelli M., Schiavi E., Mastromarino P., Capozza M., Panza R., Laforgia N. Resveratrol plus carboxymethyl-β-glucan in infants with common cold: A randomized double-blind trial. Heliyon. 2020;6:e03814. doi: 10.1016/j.heliyon.2020.e03814. PubMed DOI PMC

Thakkar S.S., Shelat F., Thakor P. Magical bullets from an indigenous Indian medicinal plant Tinospora cordifolia: An in silico approach for the antidote of SARS-CoV-2. Egypt. J. Pet. 2021;30:53–66. doi: 10.1016/j.ejpe.2021.02.005. DOI

Saeed M., Naveed M., Leskovec J., Ali kamboh A., Kakar I., Ullah K., Ahmad F., Sharif M., Javaid A., Rauf M., et al. Using Guduchi (Tinospora cordifolia) as an eco-friendly feed supplement in human and poultry nutrition. Poult. Sci. 2020;99:801–811. doi: 10.1016/j.psj.2019.10.051. PubMed DOI PMC

Ivanović M., Makoter K., Islamčević Razboršek M. Comparative Study of Chemical Composition and Antioxidant Activity of Essential Oils and Crude Extracts of Four Characteristic Zingiberaceae Herbs. Plants. 2021;10:501. doi: 10.3390/plants10030501. PubMed DOI PMC

Di Sotto A., Vitalone A., Di Giacomo S. Plant-Derived Nutraceuticals and Immune System Modulation: An Evidence-Based Overview. Vaccines. 2020;8:468. doi: 10.3390/vaccines8030468. PubMed DOI PMC

Zhou J., Huang J. Current Findings Regarding Natural Components with Potential Anti-2019-nCoV Activity. Front. Cell Dev. Biol. 2020;8:589. doi: 10.3389/fcell.2020.00589. PubMed DOI PMC

Yu M.S., Lee J., Lee J.M., Kim Y., Chin Y.W., Jee J.G., Keum Y.S., Jeong Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett. 2012;22:4049–4054. doi: 10.1016/j.bmcl.2012.04.081. PubMed DOI PMC

Van Doremalen N., Lambe T., Spencer A., Belij-Rammerstorfer S., Purushotham J.N., Port J.R., Avanzato V.A., Bushmaker T., Flaxman A., Ulaszewska M., et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020;586:578–582. doi: 10.1038/s41586-020-2608-y. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace