Nutraceuticals and Herbs in Reducing the Risk and Improving the Treatment of COVID-19 by Targeting SARS-CoV-2
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34572452
PubMed Central
PMC8468567
DOI
10.3390/biomedicines9091266
PII: biomedicines9091266
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, SARS-CoV-2, herbs, nutraceuticals, probiotics, supplements, therapy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The worldwide transmission of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a deadly or devastating disease is known to affect thousands of people every day, many of them dying all over the planet. The main reason for the massive effect of COVID-19 on society is its unpredictable spread, which does not allow for proper planning or management of this disease. Antibiotics, antivirals, and other prescription drugs, necessary and used in therapy, obviously have side effects (minor or significant) on the affected person, there are still not clear enough studies to elucidate their combined effect in this specific treatment, and existing protocols are sometimes unclear and uncertain. In contrast, it has been found that nutraceuticals, supplements, and various herbs can be effective in reducing the chances of SARS-CoV-2 infection, but also in alleviating COVID-19 symptoms. However, not enough specific details are yet available, and precise scientific studies to validate the approved benefits of natural food additives, probiotics, herbs, and nutraceuticals will need to be standardized according to current regulations. These alternative treatments may not have a direct effect on the virus or reduce the risk of infection with it, but these products certainly stimulate the human immune system so that the body is better prepared to fight the disease. This paper aims at a specialized literary foray precisely in the field of these "cures" that can provide real revelations in the therapy of coronavirus infection.
Bhabha Pharmacy Research Institute Bhabha University Bhopal 462026 India
Chrono Environment CNRS 6249 Université de Franche Comté 25000 Besançon France
Department of Pharmacology Chitkara College of Pharmacy Chitkara University Punjab 140401 India
Department of Pharmacy Faculty of Medicine and Pharmacy University of Oradea 410028 Oradea Romania
Department of Pharmacy Jagannath University Sadarghat Dhaka 1100 Bangladesh
Department of Pharmacy Southeast University Banani Dhaka 1213 Bangladesh
Doctoral School of Biological and Biomedical Sciences University of Oradea 410087 Oradea Romania
Faculty of Physical Culture Palacký University Olomouc 77111 Olomouc Czech Republic
Integro Global Ltd Dhaka 1206 Bangladesh
Pharmacology Department Faculty of Veterinary Medicine Suez Canal University Ismailia 41522 Egypt
Practice of Medicine Department Government Homeopathic Medical College Bhopal 462003 India
PRISAL Foundation Pharmaceutical Royal International Society Bhopal 462042 India
School of Chemistry and Chemical Engineering Hubei University Hubei 430062 China
Techno India NJR Institute of Technology Udaipur 313003 India
Zobrazit více v PubMed
Rahimi F., Talebi Bezmin Abadi A. Ethical and sensible dissemination of information during the COVID-19 pandemic. Am. J. Bioeth. 2020;20:W4–W6. doi: 10.1080/15265161.2020.1761200. PubMed DOI
Sharma S., Batra S., Gupta S., Sharma V.K., Rahman M.H., Kamal M.A. Persons with co-existing neurological disorders: Risk analysis, considerations and management in COVID-19 pandemic. CNS Neurol. Disord. Drug Targets. 2021;20:1. doi: 10.2174/1871527320666210308113457. PubMed DOI
Larsen J.R., Martin M.R., Martin J.D., Kuhn P., Hicks J.B. Modeling the onset of symptoms of COVID-19. Front. Public Health. 2020;8:473. doi: 10.3389/fpubh.2020.00473. PubMed DOI PMC
World Health Organization Tuberculosis. [(accessed on 14 June 2021)]. Available online: https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis.
Otrisal P., Bungau C., Obsel V., Melicharik Z., Tont G. Selected Respiratory Protective Devices: Respirators and Significance of Some Markings. Sustainability. 2021;13:4988. doi: 10.3390/su13094988. DOI
Wang H.-Y., Li X.-L., Yan Z.-R., Sun X.-P., Han J., Zhang B.-W. Potential neurological symptoms of COVID-19. Ther. Adv. Neurol. Disord. 2020;13:1756286420917830. doi: 10.1177/1756286420917830. PubMed DOI PMC
Bouaziz J., Duong T., Jachiet M., Velter C., Lestang P., Cassius C., Arsouze A., Domergue Than Trong E., Bagot M., Begon E. Vascular skin symptoms in COVID-19: A french observational study. J. Eur. Acad. Derm. Venereol. 2020;34:e451–e452. doi: 10.1111/jdv.16544. PubMed DOI PMC
Rahman M.H., Akter R., Behl T., Chowdhury M.A., Mohammed M., Bulbul I.J., Elshenawy S.E., Kamal M.A. COVID-19 outbreak and emerging management through pharmaceutical therapeutic strategy. Curr. Pharm. Des. 2020;26:5224–5240. doi: 10.2174/1381612826666200713174140. PubMed DOI
Infusino F., Marazzato M., Mancone M., Fedele F., Mastroianni C.M., Severino P., Ceccarelli G., Santinelli L., Cavarretta E., Marullo A.G. Diet supplementation, probiotics, and nutraceuticals in SARS-CoV-2 infection: A scoping review. Nutrients. 2020;12:1718. doi: 10.3390/nu12061718. PubMed DOI PMC
Mason R.J. Pathogenesis of COVID-19 from a cell biology perspective. Eur. Respir. Soc. 2020;55:2000607. doi: 10.1183/13993003.00607-2020. PubMed DOI PMC
Kabir M.T., Uddin M.S., Hossain M.F., Abdulhakim J.A., Alam M.A., Ashraf G.M., Bungau S.G., Bin-Jumah M.N., Abdel-Daim M.M., Aleya L. nCOVID-19 pandemic: From molecular pathogenesis to potential investigational therapeutics. Front. Cell Dev. Biol. 2020;8:616. doi: 10.3389/fcell.2020.00616. PubMed DOI PMC
Rockx B., Kuiken T., Herfst S., Bestebroer T., Lamers M.M., Oude Munnink B.B., de Meulder D., van Amerongen G., van den Brand J., Okba N.M.A., et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020;368:1012–1015. doi: 10.1126/science.abb7314. PubMed DOI PMC
Mahase E. Hydroxychloroquine for COVID-19: The end of the line? BMJ. 2020;369:m2378. doi: 10.1136/bmj.m2378. PubMed DOI
Boehmer T.K., DeVies J., Caruso E., van Santen K.L., Tang S., Black C.L., Hartnett K.P., Kite-Powell A., Dietz S., Lozier M., et al. Changing Age Distribution of the COVID-19 Pandemic-United States, May-August 2020. MMWR Morb. Mortal. Wkly. Rep. 2020;69:1404–1409. doi: 10.15585/mmwr.mm6939e1. PubMed DOI PMC
Mrityunjaya M., Pavithra V., Neelam R., Janhavi P., Halami P.M., Ravindra P.V. Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Front. Immunol. 2020;11:570122. doi: 10.3389/fimmu.2020.570122. PubMed DOI PMC
Hasan S.S., Radford S., Kow C.S., Zaidi S.T.R. Venous thromboembolism in critically ill COVID-19 patients receiving prophylactic or therapeutic anticoagulation: A systematic review and meta-analysis. J. Thromb. Thrombolysis. 2020;50:814–821. doi: 10.1007/s11239-020-02235-z. PubMed DOI PMC
Waikar S., Oli A. COVID-19: Ophthalmic prophylactic and therapeutic measures. Indian J. Ophthalmol. 2020;68:1223–1224. doi: 10.4103/ijo.IJO_883_20. PubMed DOI PMC
Bar-On Y.M., Flamholz A., Phillips R., Milo R. SARS-CoV-2 (COVID-19) by the numbers. eLife. 2020;9 doi: 10.7554/eLife.57309. PubMed DOI PMC
Hu B., Guo H., Zhou P., Shi Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021;19:141–154. doi: 10.1038/s41579-020-00459-7. PubMed DOI PMC
Alhenc-Gelas F., Bouby N., Girolami J.-P. Kallikrein/K1, Kinins, and ACE/Kininase II in Homeostasis and in Disease Insight From Human and Experimental Genetic Studies, Therapeutic Implication. Front. Med. 2019;6:136. doi: 10.3389/fmed.2019.00136. PubMed DOI PMC
Vaduganathan M., Vardeny O., Michel T., McMurray J.J.V., Pfeffer M.A., Solomon S.D. Renin-Angiotensin-Aldosterone System Inhibitors in Patients with COVID-19. N. Engl. J. Med. 2020;382:1653–1659. doi: 10.1056/NEJMsr2005760. PubMed DOI PMC
Abobaker A., Alzwi A., Alraied A.H.A. Overview of the possible role of vitamin C in management of COVID-19. Pharm. Rep. 2020;72:1517–1528. doi: 10.1007/s43440-020-00176-1. PubMed DOI PMC
Tahir A.H., Javed M.M., Hussain Z. Nutraceuticals and herbal extracts: A ray of hope for COVID-19 and related infections (Review) Int. J. Funct. Nutr. 2020;1:6. doi: 10.3892/ijfn.2020.6. DOI
De Almeida Brasiel P.G. The key role of zinc in elderly immunity: A possible approach in the COVID-19 crisis. Clin. Nutr. ESPEN. 2020;38:65–66. doi: 10.1016/j.clnesp.2020.06.003. PubMed DOI PMC
Panfili F.M., Roversi M., D’Argenio P., Rossi P., Cappa M., Fintini D. Possible role of vitamin D in COVID-19 infection in pediatric population. J. Endocrinol. Investig. 2021;44:27–35. doi: 10.1007/s40618-020-01327-0. PubMed DOI PMC
Kodchakorn K., Poovorawan Y., Suwannakarn K., Kongtawelert P. Molecular modelling investigation for drugs and nutraceuticals against protease of SARS-CoV-2. J. Mol. Graph. Model. 2020;101:107717. doi: 10.1016/j.jmgm.2020.107717. PubMed DOI PMC
Savant S., Srinivasan S., Kruthiventi A.K. Potential Nutraceuticals for COVID-19. Nutr. Diet. Suppl. 2021;13:25. doi: 10.2147/NDS.S294231. DOI
Heller R.A., Sun Q., Hackler J., Seelig J., Seibert L., Cherkezov A., Minich W.B., Seemann P., Diegmann J., Pilz M., et al. Prediction of survival odds in COVID-19 by zinc, age and selenoprotein P as composite biomarker. Redox Biol. 2021;38:101764. doi: 10.1016/j.redox.2020.101764. PubMed DOI PMC
Romani L., Tomino C., Puccetti P., Garaci E. Off-label therapy targeting pathogenic inflammation in COVID-19. Cell Death Discov. 2020;6:49. doi: 10.1038/s41420-020-0283-2. PubMed DOI PMC
Xu Y., Baylink D.J., Chen C.S., Reeves M.E., Xiao J., Lacy C., Lau E., Cao H. The importance of vitamin d metabolism as a potential prophylactic, immunoregulatory and neuroprotective treatment for COVID-19. J. Transl. Med. 2020;18:322. doi: 10.1186/s12967-020-02488-5. PubMed DOI PMC
Galanakis C.M., Aldawoud T.M.S., Rizou M., Rowan N.J., Ibrahim S.A. Food Ingredients and Active Compounds against the Coronavirus Disease (COVID-19) Pandemic: A Comprehensive Review. Foods. 2020;9:1701. doi: 10.3390/foods9111701. PubMed DOI PMC
Muscogiuri G., Barrea L., Savastano S., Colao A. Nutritional recommendations for COVID-19 quarantine. Eur. J. Clin. Nutr. 2020;74:850–851. doi: 10.1038/s41430-020-0635-2. PubMed DOI PMC
Long C., Xu H., Shen Q., Zhang X., Fan B., Wang C., Zeng B., Li Z., Li X., Li H. Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? Eur. J. Radiol. 2020;126:108961. doi: 10.1016/j.ejrad.2020.108961. PubMed DOI PMC
Zhang S., Wang Z., Chang R., Wang H., Xu C., Yu X., Tsamlag L., Dong Y., Wang H., Cai Y. COVID-19 containment: China provides important lessons for global response. Front. Med. 2020;14:215–219. doi: 10.1007/s11684-020-0766-9. PubMed DOI PMC
Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021;134:178–189. doi: 10.1016/j.jclinepi.2021.03.001. PubMed DOI
Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Moher D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021;134:103–112. doi: 10.1016/j.jclinepi.2021.02.003. PubMed DOI
Cao X. COVID-19: Immunopathology and its implications for therapy. Nat. Rev. Immunol. 2020;20:269–270. doi: 10.1038/s41577-020-0308-3. PubMed DOI PMC
Thevarajan I., Nguyen T.H.O., Koutsakos M., Druce J., Caly L., van de Sandt C.E., Jia X., Nicholson S., Catton M., Cowie B., et al. Breadth of concomitant immune responses prior to patient recovery: A case report of non-severe COVID-19. Nat. Med. 2020;26:453–455. doi: 10.1038/s41591-020-0819-2. PubMed DOI PMC
Zhang B., Zhou X., Zhu C., Song Y., Feng F., Qiu Y., Feng J., Jia Q., Song Q., Zhu B., et al. Immune Phenotyping Based on the Neutrophil-to-Lymphocyte Ratio and IgG Level Predicts Disease Severity and Outcome for Patients With COVID-19. Front. Mol. Biosci. 2020;7:157. doi: 10.3389/fmolb.2020.00157. PubMed DOI PMC
Boni M.F., Lemey P., Jiang X., Lam T.T.-Y., Perry B.W., Castoe T.A., Rambaut A., Robertson D.L. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat. Microbiol. 2020;5:1408–1417. doi: 10.1038/s41564-020-0771-4. PubMed DOI
Zheng J. SARS-CoV-2: An Emerging Coronavirus that Causes a Global Threat. Int. J. Biol. Sci. 2020;16:1678–1685. doi: 10.7150/ijbs.45053. PubMed DOI PMC
Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L., et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv. 2020 doi: 10.1101/2020.01.22.914952. DOI
Kimball A., Hatfield K.M., Arons M., James A., Taylor J., Spicer K., Bardossy A.C., Oakley L.P., Tanwar S., Chisty Z. Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a long-term care skilled nursing facility—King County, Washington, March 2020. Morb. Mortal. Wkly. Rep. 2020;69:377. doi: 10.15585/mmwr.mm6913e1. PubMed DOI PMC
Ferrario C.M., Ahmad S., Groban L. Mechanisms by which angiotensin-receptor blockers increase ACE2 levels. Nat. Rev. Cardiol. 2020;17:378. doi: 10.1038/s41569-020-0387-7. PubMed DOI PMC
Zhang Y., Kutateladze T.G. Molecular structure analyses suggest strategies to therapeutically target SARS-CoV-2. Nat. Commun. 2020;11:2920. doi: 10.1038/s41467-020-16779-4. PubMed DOI PMC
Allam M., Cai S., Ganesh S., Venkatesan M., Doodhwala S., Song Z., Hu T., Kumar A., Heit J., Study Group C., et al. COVID-19 Diagnostics, Tools, and Prevention. Diagnostics. 2020;10:409. doi: 10.3390/diagnostics10060409. PubMed DOI PMC
Jayawardena R., Sooriyaarachchi P., Chourdakis M., Jeewandara C., Ranasinghe P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab. Syndr. 2020;14:367–382. doi: 10.1016/j.dsx.2020.04.015. PubMed DOI PMC
Kumar V., Kancharla S., Jena M.K. In silico virtual screening-based study of nutraceuticals predicts the therapeutic potentials of folic acid and its derivatives against COVID-19. Virusdisease. 2021;32:1–9. doi: 10.1007/s13337-020-00643-6. PubMed DOI PMC
Ratha S.K., Renuka N., Rawat I., Bux F. Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases. Nutrition. 2021;83:111089. doi: 10.1016/j.nut.2020.111089. PubMed DOI PMC
Clohisey S., Baillie J.K. Host susceptibility to severe influenza A virus infection. Crit. Care. 2019;23:303. doi: 10.1186/s13054-019-2566-7. PubMed DOI PMC
Kumar N.B. Does COVID-19-related cachexia mimic cancer-related cachexia? Examining mechanisms, clinical biomarkers, and potential targets for clinical management. J. Cachexia Sarcopenia Muscle. 2021;12:519–522. doi: 10.1002/jcsm.12681. PubMed DOI PMC
Sikander M., Malik S., Rodriguez A., Yallapu M.M., Narula A.S., Satapathy S.K., Dhevan V., Chauhan S.C., Jaggi M. Role of Nutraceuticals in COVID-19 Mediated Liver Dysfunction. Molecules. 2020;25:5905. doi: 10.3390/molecules25245905. PubMed DOI PMC
Nasri H., Baradaran A., Shirzad H., Rafieian-Kopaei M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int. J. Prev. Med. 2014;5:1487–1499. PubMed PMC
Dhalaria R., Verma R., Kumar D., Puri S., Tapwal A., Kumar V., Nepovimova E., Kuca K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants. 2020;9:1123. doi: 10.3390/antiox9111123. PubMed DOI PMC
Allen C., Heaven Taylor B., Winchester C. COVID-19–Where should we go now? Integr. Med. Res. 2020;9:100468. doi: 10.1016/j.imr.2020.100468. PubMed DOI PMC
Ayseli Y.I., Aytekin N., Buyukkayhan D., Aslan I., Ayseli M.T. Food policy, nutrition and nutraceuticals in the prevention and management of COVID-19: Advice for healthcare professionals. Trends Food Sci. Technol. 2020;105:186–199. doi: 10.1016/j.tifs.2020.09.001. PubMed DOI PMC
DiNicolantonio J.J., McCarty M. Thrombotic complications of COVID-19 may reflect an upregulation of endothelial tissue factor expression that is contingent on activation of endosomal NADPH oxidase. Open Heart. 2020;7:e001337. doi: 10.1136/openhrt-2020-001337. PubMed DOI PMC
Verweij P.E., Gangneux J.P., Bassetti M., Brüggemann R.J.M., Cornely O.A., Koehler P., Lass-Flörl C., van de Veerdonk F.L., Chakrabarti A., Hoenigl M. Diagnosing COVID-19-associated pulmonary aspergillosis. Lancet Microbe. 2020;1:e53–e55. doi: 10.1016/S2666-5247(20)30027-6. PubMed DOI PMC
Ntyonga-Pono M.P. COVID-19 infection and oxidative stress: An under-explored approach for prevention and treatment? Pan. Afr. Med. J. 2020;35:12. doi: 10.11604/pamj.supp.2020.35.2.22877. PubMed DOI PMC
McCarty M.F., Iloki Assanga S.B., Lewis Luján L., O’keefe J.H., DiNicolantonio J.J. Nutraceutical strategies for suppressing NLRP3 inflammasome activation: Pertinence to the management of COVID-19 and beyond. Nutrients. 2021;13:47. doi: 10.3390/nu13010047. PubMed DOI PMC
Shahrajabian M.H., Sun W., Shen H., Cheng Q. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak. Acta Agric. Scand. Sect. B—Soil Plant. Sci. 2020;70:437–443. doi: 10.1080/09064710.2020.1763448. DOI
Carr A.C., Rowe S. The Emerging Role of Vitamin C in the Prevention and Treatment of COVID-19. Nutrients. 2020;12:3286. doi: 10.3390/nu12113286. PubMed DOI PMC
Kaur I., Behl T., Aleya L., Rahman H., Kumar A., Arora S., Bulbul I.J. Artificial intelligence as a fundamental tool in management of infectious diseases and its current implementation in COVID-19 pandemic. Env. Sci. Pollut. Res. Int. 2021;28:40515–40532. doi: 10.1007/s11356-021-13823-8. PubMed DOI PMC
Weir E.K., Thenappan T., Bhargava M., Chen Y. Does vitamin D deficiency increase the severity of COVID-19? Clin. Med. 2020;20:e107–e108. doi: 10.7861/clinmed.2020-0301. PubMed DOI PMC
Grant W.B., Lahore H., McDonnell S.L., Baggerly C.A., French C.B., Aliano J.L., Bhattoa H.P. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 2020;12:988. doi: 10.3390/nu12040988. PubMed DOI PMC
Pilz S., März W., Cashman K.D., Kiely M.E., Whiting S.J., Holick M.F., Grant W.B., Pludowski P., Hiligsmann M., Trummer C., et al. Rationale and Plan for Vitamin D Food Fortification: A Review and Guidance Paper. Front. Endocrinol. 2018;9:373. doi: 10.3389/fendo.2018.00373. PubMed DOI PMC
Brenner H. Vitamin D Supplementation to Prevent COVID-19 Infections and Deaths-Accumulating Evidence from Epidemiological and Intervention Studies Calls for Immediate Action. Nutrients. 2021;13:411. doi: 10.3390/nu13020411. PubMed DOI PMC
Faniyi A.A., Lugg S.T., Faustini S.E., Webster C., Duffy J.E., Hewison M., Shields A., Nightingale P., Richter A.G., Thickett D.R. Vitamin D status and seroconversion for COVID-19 in UK healthcare workers. Eur. Respir. J. 2021;57 doi: 10.1183/13993003.04234-2020. PubMed DOI PMC
Breslin N., Baptiste C., Gyamfi-Bannerman C., Miller R., Martinez R., Bernstein K., Ring L., Landau R., Purisch S., Friedman A.M., et al. Coronavirus disease 2019 infection among asymptomatic and symptomatic pregnant women: Two weeks of confirmed presentations to an affiliated pair of New York City hospitals. Am. J. Obs. Gynecol MFM. 2020;2:100118. doi: 10.1016/j.ajogmf.2020.100118. PubMed DOI PMC
Tagde P., Kulkarni G.T., Mishra D.K., Kesharwani P. Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. J. Drug Deliv. Sci. Technol. 2020;56:101613. doi: 10.1016/j.jddst.2020.101613. DOI
Singh S. Covariation of Zinc Deficiency with COVID-19 Infections and Mortality in European Countries: Is Zinc Deficiency a Risk Factor for COVID-19? medRxiv. 2020 doi: 10.1101/2020.06.12.20105676. DOI
Xue J., Moyer A., Peng B., Wu J., Hannafon B.N., Ding W.-Q. Chloroquine is a zinc ionophore. PLoS ONE. 2014;9:e109180. doi: 10.1371/journal.pone.0109180. PubMed DOI PMC
Calder P.C., Carr A.C., Gombart A.F., Eggersdorfer M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients. 2020;12:1181. doi: 10.3390/nu12041181. PubMed DOI PMC
Adams K.K., Baker W.L., Sobieraj D.M. Myth Busters: Dietary Supplements and COVID-19. Ann. Pharm. 2020;54:820–826. doi: 10.1177/1060028020928052. PubMed DOI PMC
Singh K., Rao A. Probiotics: A potential immunomodulator in COVID-19 infection management. Nutr. Res. 2021;87:1–12. doi: 10.1016/j.nutres.2020.12.014. PubMed DOI PMC
Kanauchi O., Andoh A., AbuBakar S., Yamamoto N. Probiotics and Paraprobiotics in Viral Infection: Clinical Application and Effects on the Innate and Acquired Immune Systems. Curr. Pharm. Des. 2018;24:710–717. doi: 10.2174/1381612824666180116163411. PubMed DOI PMC
Sundararaman A., Ray M., Ravindra P.V., Halami P.M. Role of probiotics to combat viral infections with emphasis on COVID-19. Appl. Microbiol. Biotechnol. 2020;104:8089–8104. doi: 10.1007/s00253-020-10832-4. PubMed DOI PMC
Gohil K., Samson R., Dastager S., Dharne M. Probiotics in the prophylaxis of COVID-19: Something is better than nothing. 3 Biotech. 2021;11:1. doi: 10.1007/s13205-020-02554-1. PubMed DOI PMC
Rajesh E., Sankari L.S., Malathi L., Krupaa J.R. Naturally occurring products in cancer therapy. J. Pharm. Bioallied. Sci. 2015;7:S181–S183. doi: 10.4103/0975-7406.155895. PubMed DOI PMC
Wang D., Sun-Waterhouse D., Li F., Xin L., Li D. MicroRNAs as molecular targets of quercetin and its derivatives underlying their biological effects: A preclinical strategy. Crit. Rev. Food Sci. Nutr. 2019;59:2189–2201. doi: 10.1080/10408398.2018.1441123. PubMed DOI
Xu D., Hu M.J., Wang Y.Q., Cui Y.L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules. 2019;24:1123. doi: 10.3390/molecules24061123. PubMed DOI PMC
Lin S.-C., Ho C.-T., Chuo W.-H., Li S., Wang T.T., Lin C.-C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect. Dis. 2017;17:144. doi: 10.1186/s12879-017-2253-8. PubMed DOI PMC
Ramdani L.H., Bachari K. Potential therapeutic effects of Resveratrol against SARS-CoV-2. Acta Virol. 2020;64:276–280. doi: 10.4149/av_2020_309. PubMed DOI
Zhao X., Xu J., Song X., Jia R., Yin Z., Cheng A., Jia R., Zou Y., Li L., Yin L., et al. Antiviral effect of resveratrol in ducklings infected with virulent duck enteritis virus. Antivir. Res. 2016;130:93–100. doi: 10.1016/j.antiviral.2016.03.014. PubMed DOI
Wahedi H.M., Ahmad S., Abbasi S.W. Stilbene-based natural compounds as promising drug candidates against COVID-19. J. Biomol. Struct. Dyn. 2021;39:3225–3234. doi: 10.1080/07391102.2020.1762743. PubMed DOI
Shawon J., Akter Z., Hossen M.M., Akter Y., Sayeed A., Junaid M., Afrose S.S., Khan M.A. Current Landscape of Natural Products against Coronaviruses: Perspectives in COVID-19 Treatment and Anti-viral Mechanism. Curr. Pharm. Des. 2020;26:5241–5260. doi: 10.2174/1381612826666201106093912. PubMed DOI
Gautam S., Gautam A., Chhetri S., Bhattarai U. Immunity Against COVID-19: Potential Role of Ayush Kwath. J. Ayurveda Integr. Med. 2020 doi: 10.1016/j.jaim.2020.08.003. PubMed DOI PMC
Shree P., Mishra P., Selvaraj C., Singh S.K., Chaube R., Garg N., Tripathi Y.B. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants-Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi)—A molecular docking study. J. Biomol. Struct. Dyn. 2020:1–4. doi: 10.1080/07391102.2020.1810778. PubMed DOI PMC
Tripathi M.K., Singh P., Sharma S., Singh T.P., Ethayathulla A.S., Kaur P. Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor. J. Biomol. Struct. Dyn. 2021;39:5668–5681. doi: 10.1080/07391102.2020.1790425. PubMed DOI PMC
Saggam A., Limgaokar K., Borse S., Chavan-Gautam P., Dixit S., Tillu G., Patwardhan B. Withania somnifera (L.) Dunal: Opportunity for Clinical Repurposing in COVID-19 Management. Front. Pharmacol. 2021;12 doi: 10.3389/fphar.2021.623795. PubMed DOI PMC
Derosa G., Maffioli P., D’Angelo A., Di Pierro F. A role for quercetin in coronavirus disease 2019 (COVID-19) Phytother. Res. 2021;35:1230–1236. doi: 10.1002/ptr.6887. PubMed DOI PMC
Rahman M.H., Bajgai J., Fadriquela A., Sharma S., Trinh Thi T., Akter R., Goh S.H., Kim C.-S., Lee K.-J. Redox Effects of Molecular Hydrogen and Its Therapeutic Efficacy in the Treatment of Neurodegenerative Diseases. Processes. 2021;9:308. doi: 10.3390/pr9020308. DOI
Huang J., Tao G., Liu J., Cai J., Huang Z., Chen J.X. Current Prevention of COVID-19: Natural Products and Herbal Medicine. Front. Pharm. 2020;11:588508. doi: 10.3389/fphar.2020.588508. PubMed DOI PMC
Fadus M.C., Lau C., Bikhchandani J., Lynch H.T. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. J. Tradit. Complement. Med. 2017;7:339–346. doi: 10.1016/j.jtcme.2016.08.002. PubMed DOI PMC
Heydarian M., Abdorrahimian F., Emami S.M.A., Beheshti S.I. The provenance and distribution of Early Bronze ceramics in the Kolyaei Plain, central Zagros, Iran. Archaeometry. 2020;62:694–711. doi: 10.1111/arcm.12551. DOI
Suravajhala R., Gupta S., Kumar N., Suravajhala P. Deciphering LncRNA-protein interactions using docking complexes. J. Biomol. Struct. Dyn. 2020:1–8. doi: 10.1080/07391102.2020.1850354. PubMed DOI
Wang Y., Wang W.J., Su C., Zhang D.M., Xu L.P., He R.R., Wang L., Zhang J., Zhang X.Q., Ye W.C. Cytotoxic quassinoids from Ailanthus altissima. Bioorg. Med. Chem. Lett. 2013;23:654–657. doi: 10.1016/j.bmcl.2012.11.116. PubMed DOI
Soleimani V., Sahebkar A., Hosseinzadeh H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother. Res. 2018;32:985–995. doi: 10.1002/ptr.6054. PubMed DOI
Manoharan Y., Haridas V., Vasanthakumar K.C., Muthu S., Thavoorullah F.F., Shetty P. Curcumin: A Wonder Drug as a Preventive Measure for COVID19 Management. Indian J. Clin. Biochem. 2020;35:373–375. doi: 10.1007/s12291-020-00902-9. PubMed DOI PMC
Li H.Y., Yang M., Li Z., Meng Z. Curcumin inhibits angiotensin II-induced inflammation and proliferation of rat vascular smooth muscle cells by elevating PPAR-γ activity and reducing oxidative stress. Int. J. Mol. Med. 2017;39:1307–1316. doi: 10.3892/ijmm.2017.2924. PubMed DOI
Kim H.R., Kim W.K., Ha A.W. Effects of Phytochemicals on Blood Pressure and Neuroprotection Mediated Via Brain Renin-Angiotensin System. Nutrients. 2019;11:2761. doi: 10.3390/nu11112761. PubMed DOI PMC
Otobone F.J., Sanches A.C., Nagae R., Martins J.V., Sela V.R., de Mello J.C., Audi E.A. Effect of lyophilized extracts from guaraná seeds [Paullinia cupana var. sorbilis (Mart.) Ducke] on behavioral profiles in rats. Phytother. Res. 2007;21:531–535. doi: 10.1002/ptr.2089. PubMed DOI
Odeh N.D., Babkair H., Abu-Hammad S., Borzangy S., Abu-Hammad A., Abu-Hammad O. COVID-19: Present and Future Challenges for Dental Practice. Int. J. Env. Res. Public Health. 2020;17:3151. doi: 10.3390/ijerph17093151. PubMed DOI PMC
McBride D.A., Kerr M.D., Dorn N.C., Ogbonna D.A., Santos E.C., Shah N.J. Triggers, Timescales, and Treatments for Cytokine-Mediated Tissue Damage. Eur. Med. J. Innov. 2021;5:52–62. doi: 10.33590/emjinnov/20-00203. PubMed DOI PMC
Zhang D., Zhang B., Lv J.T., Sa R.N., Zhang X.M., Lin Z.J. The clinical benefits of Chinese patent medicines against COVID-19 based on current evidence. Pharm. Res. 2020;157:104882. doi: 10.1016/j.phrs.2020.104882. PubMed DOI PMC
Adaki S., Adaki R., Shah K., Karagir A. Garlic: Review of literature. Indian J. Cancer. 2014;51:577–581. doi: 10.4103/0019-509X.175383. PubMed DOI
Arreola R., Quintero-Fabián S., López-Roa R.I., Flores-Gutiérrez E.O., Reyes-Grajeda J.P., Carrera-Quintanar L., Ortuño-Sahagún D. Immunomodulation and anti-inflammatory effects of garlic compounds. J. Immunol. Res. 2015;2015:401630. doi: 10.1155/2015/401630. PubMed DOI PMC
Petrovic V., Nepal A., Olaisen C., Bachke S., Hira J., Søgaard C.K., Røst L.M., Misund K., Andreassen T., Melø T.M., et al. Anti-Cancer Potential of Homemade Fresh Garlic Extract Is Related to Increased Endoplasmic Reticulum Stress. Nutrients. 2018;10:450. doi: 10.3390/nu10040450. PubMed DOI PMC
Donma M.M., Donma O. The effects of allium sativum on immunity within the scope of COVID-19 infection. Med. Hypotheses. 2020;144:109934. doi: 10.1016/j.mehy.2020.109934. PubMed DOI PMC
Sánchez-Sánchez M.A., Zepeda-Morales A.S.M., Carrera-Quintanar L., Viveros-Paredes J.M., Franco-Arroyo N.N., Godínez-Rubí M., Ortuño-Sahagun D., López-Roa R.I. Alliin, an Allium sativum Nutraceutical, ReducesMetaflammation Markers in DIO Mice. Nutrients. 2020;12:624. doi: 10.3390/nu12030624. PubMed DOI PMC
El-Saber Batiha G., Magdy Beshbishy A., Wasef L.G., Elewa Y.H.A., Al-Sagan A.A., El-Hack M.E., Taha A.E., Abd-Elhakim Y.M., Prasad Devkota H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients. 2020;12:872. doi: 10.3390/nu12030872. PubMed DOI PMC
Vlachojannis J.E., Cameron M., Chrubasik S. A systematic review on the sambuci fructus effect and efficacy profiles. Phytother. Res. 2010;24:1–8. doi: 10.1002/ptr.2729. PubMed DOI
Torabian G., Valtchev P., Adil Q., Dehghani F. Anti-influenza activity of elderberry (Sambucus nigra) J. Funct. Foods. 2019;54:353–360. doi: 10.1016/j.jff.2019.01.031. DOI
Kaack K., Austed T. Interaction of vitamin C and flavonoids in elderberry (Sambucus nigra L.) during juice processing. Plant. Foods Hum. Nutr. 1998;52:187–198. doi: 10.1023/A:1008069422202. PubMed DOI
Veberic R., Jakopic J., Stampar F., Schmitzer V. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chem. 2009;114:511–515. doi: 10.1016/j.foodchem.2008.09.080. DOI
Christensen L.P., Kaack K., Fretté X.C. Selection of elderberry (Sambucus nigra L.) genotypes best suited for the preparation of elderflower extracts rich in flavonoids and phenolic acids. Eur. Food Res. Technol. 2008;227:293–305. doi: 10.1007/s00217-007-0723-8. DOI
Takooree H., Aumeeruddy M.Z., Rengasamy K.R.R., Venugopala K.N., Jeewon R., Zengin G., Mahomoodally M.F. A systematic review on black pepper (Piper nigrum L.): From folk uses to pharmacological applications. Crit. Rev. Food Sci. Nutr. 2019;59:S210–S243. doi: 10.1080/10408398.2019.1565489. PubMed DOI
Choudhary P., Chakdar H., Singh D., Selvaraj C., Singh S.K., Kumar S., Saxena A. Computational studies reveal piperine, the predominant oleoresin of black pepper (Piper nigrum) as a potential inhibitor of SARS-CoV-2 (COVID-19) Curr. Sci. 2020;119:1333–1342. doi: 10.18520/cs/v119/i8/1333-1342. DOI
McCubrey J.A., Lertpiriyapong K., Steelman L.S., Abrams S.L., Yang L.V., Murata R.M., Rosalen P.L., Scalisi A., Neri L.M., Cocco L., et al. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging. 2017;9:1477–1536. doi: 10.18632/aging.101250. PubMed DOI PMC
Alharris E., Alghetaa H., Seth R., Chatterjee S., Singh N.P., Nagarkatti M., Nagarkatti P. Resveratrol Attenuates Allergic Asthma and Associated Inflammation in the Lungs Through Regulation of miRNA-34a That Targets FoxP3 in Mice. Front. Immunol. 2018;9:2992. doi: 10.3389/fimmu.2018.02992. PubMed DOI PMC
Burns J., Yokota T., Ashihara H., Lean M.E., Crozier A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem. 2002;50:3337–3340. doi: 10.1021/jf0112973. PubMed DOI
Balkrishna A., Pokhrel S., Singh H., Joshi M., Mulay V.P., Haldar S., Varshney A. Withanone from Withania somnifera Attenuates SARS-CoV-2 RBD and Host ACE2 Interactions to Rescue Spike Protein Induced Pathologies in Humanized Zebrafish Model. Drug Des. Dev. 2021;15:1111–1133. doi: 10.2147/dddt.S292805. PubMed DOI PMC
Kumar V., Dhanjal J.K., Bhargava P., Kaul A., Wang J., Zhang H., Kaul S.C., Wadhwa R., Sundar D. Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. J. Biomol. Struct. Dyn. 2020:1–13. doi: 10.1080/07391102.2020.1775704. PubMed DOI PMC
Ganguly B., Mrigesh M., Chauhan P., Rastogi S.K. Dietary supplementation with Withania somnifera root powder ameliorates experimentally induced Infectious Bursal Disease in chicken. Trop. Anim. Health Prod. 2020;52:1195–1206. doi: 10.1007/s11250-019-02104-9. PubMed DOI PMC
Jamshidi N., Cohen M.M. The Clinical Efficacy and Safety of Tulsi in Humans: A Systematic Review of the Literature. Evid.-Based Complementary Altern. Med. Ecam. 2017;2017:9217567. doi: 10.1155/2017/9217567. PubMed DOI PMC
Harsha M., Mohan Kumar K.P., Kagathur S., Amberkar V.S. Effect of Ocimum sanctum extract on leukemic cell lines: A preliminary in-vitro study. J. Oral Maxillofac. Pathol. 2020;24:93–98. doi: 10.4103/jomfp.JOMFP_181_19. PubMed DOI PMC
Saleh A.A., Mohammed A.A., Ahmad A., Arshad Husain R. Ocimum sanctum: Role in Diseases Management through Modulating Various Biological Activity. Pharmacogn. J. 2020;12:5.
Cohen M.M. Tulsi-Ocimum sanctum: A herb for all reasons. J. Ayurveda Integr. Med. 2014;5:251–259. doi: 10.4103/0975-9476.146554. PubMed DOI PMC
Das S.K., Chandra A., Agarwal S.S., Singh N. Ocimum sanctum (Tulsi) in the treatment of viral encephalitis. Antiseptic. 1983;80(7):323–327.
Ak S., Jp C., Khan R., Dhand C., Verma S. Role of Medicinal Plants of Traditional Use in Recuperating Devastating COVID-19 Situation. Med. Aromat. Plants. 2020;9:1–16.
Islam M.T., Khan M.R., Mishra S.K. An updated literature-based review: Phytochemistry, pharmacology and therapeutic promises of Nigella sativa L. Orient. Pharm. Exp. Med. 2019;19:115–129. doi: 10.1007/s13596-019-00363-3. DOI
Hunt L.M., de Voogd K.B. Are good intentions good enough? Informed consent without trained interpreters. J. Gen. Intern. Med. 2007;22:598–605. doi: 10.1007/s11606-007-0136-1. PubMed DOI PMC
Sarkar C., Mondal M., Torequl Islam M., Martorell M., Docea A.O., Maroyi A., Sharifi-Rad J., Calina D. Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives. Front. Pharmacol. 2020;11:572870. doi: 10.3389/fphar.2020.572870. PubMed DOI PMC
Sharma B.R., Park C.M., Kim H.A., Kim H.J., Rhyu D.Y. Tinospora cordifolia preserves pancreatic beta cells and enhances glucose uptake in adipocytes to regulate glucose metabolism in diabetic rats. Phytother. Res. 2019;33:2765–2774. doi: 10.1002/ptr.6462. PubMed DOI
Nayak P., Tiwari P., Prusty S., Sahu P. Phytochemistry and Pharmacology of Tinospora cordifolia: A Review. Syst. Rev. Pharm. 2018;9:70–78. doi: 10.5530/srp.2018.1.14. DOI
Ghatpande N.S., Misar A.V., Waghole R.J., Jadhav S.H., Kulkarni P.P. Tinospora cordifolia protects against inflammation associated anemia by modulating inflammatory cytokines and hepcidin expression in male Wistar rats. Sci. Rep. 2019;9:10969. doi: 10.1038/s41598-019-47458-0. PubMed DOI PMC
George M., Josepha L., Mathew M. A research on screening of learning and memory enhancing activity of whole plant extract of Tinospora cordifolia (Willd) Pharm. Innov. J. 2016;5:104–107.
Sagar V., Kumar A.H.S. Efficacy of natural compounds from Tinospora cordifolia against SARS-CoV-2 protease, surface glycoprotein and RNA polymerase. [(accessed on 23 April 2021)];Virology. 2020 :1–10. doi: 10.5530/bems.6.1.2. Available online: https://assets.researchsquare.com/files/rs-27375/v1/ec9bf967-ea5b-4362-b609-1859a5e370a1.pdf?c=1631834057. DOI
Agarwal S., Ramamurthy P.H., Fernandes B., Rath A., Sidhu P. Assessment of antimicrobial activity of different concentrations of Tinospora cordifolia against Streptococcus mutans: An in vitro study. Dent. Res. J. 2019;16:24–28. PubMed PMC
Thakur A., Raj P. Pharmacological perspective of Glycyrrhiza glabra Linn: A mini-review. J. Anal. Pharm. Res. 2017;5:00156. doi: 10.15406/japlr.2017.05.00156. DOI
Bailly C., Vergoten G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol. Ther. 2020;214:107618. doi: 10.1016/j.pharmthera.2020.107618. PubMed DOI PMC
Cinatl J., Morgenstern B., Bauer G., Chandra P., Rabenau H., Doerr H.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003;361:2045–2046. doi: 10.1016/S0140-6736(03)13615-X. PubMed DOI PMC
Mao Q.-Q., Xu X.-Y., Cao S.-Y., Gan R.-Y., Corke H., Beta T., Li H.-B. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe) Foods. 2019;8:185. doi: 10.3390/foods8060185. PubMed DOI PMC
Murck H. Symptomatic Protective Action of Glycyrrhizin (Licorice) in COVID-19 Infection? Front. Immunol. 2020;11:1239. doi: 10.3389/fimmu.2020.01239. PubMed DOI PMC
Sharifi-Rad M., Varoni E.M., Salehi B., Sharifi-Rad J., Matthews K.R., Ayatollahi S.A., Kobarfard F., Ibrahim S.A., Mnayer D., Zakaria Z.A., et al. Plants of the Genus Zingiber as a Source of Bioactive Phytochemicals: From Tradition to Pharmacy. Molecules. 2017;22:2145. doi: 10.3390/molecules22122145. PubMed DOI PMC
Rathinavel T., Palanisamy M., Srinivasan P., Subramanian A., Thangaswamy S. Phytochemical 6-Gingerol -A promising Drug of choice for COVID-19. Int. J. Adv. Sci. Eng. 2020;6 doi: 10.29294/IJASE.6.4.2020.1482-1489. DOI
Lestari S., Rifa M. Regulatory T cells and anti-inflammatory cytokine profile of mice fed a high-fat diet after single-bulb garlic (Allium sativum L.) oil treatment. Trop. J. Pharm. Res. 2018;17:2157–2162. doi: 10.4314/tjpr.v17i11.7. DOI
Akter R., Chowdhury M.A.R., Rahman M.H. Flavonoids and Polyphenolic Compounds as Potential Talented Agents for the Treatment of Alzheimer’s Disease and their Antioxidant Activities. Curr. Pharm. Des. 2021;27:345–356. doi: 10.2174/1381612826666201102102810. PubMed DOI
Zhao X., Cui Q., Fu Q., Song X., Jia R., Yang Y., Zou Y., Li L., He C., Liang X., et al. Antiviral properties of resveratrol against pseudorabies virus are associated with the inhibition of IκB kinase activation. Sci. Rep. 2017;7:8782. doi: 10.1038/s41598-017-09365-0. PubMed DOI PMC
Baldassarre M.E., Di Mauro A., Labellarte G., Pignatelli M., Fanelli M., Schiavi E., Mastromarino P., Capozza M., Panza R., Laforgia N. Resveratrol plus carboxymethyl-β-glucan in infants with common cold: A randomized double-blind trial. Heliyon. 2020;6:e03814. doi: 10.1016/j.heliyon.2020.e03814. PubMed DOI PMC
Thakkar S.S., Shelat F., Thakor P. Magical bullets from an indigenous Indian medicinal plant Tinospora cordifolia: An in silico approach for the antidote of SARS-CoV-2. Egypt. J. Pet. 2021;30:53–66. doi: 10.1016/j.ejpe.2021.02.005. DOI
Saeed M., Naveed M., Leskovec J., Ali kamboh A., Kakar I., Ullah K., Ahmad F., Sharif M., Javaid A., Rauf M., et al. Using Guduchi (Tinospora cordifolia) as an eco-friendly feed supplement in human and poultry nutrition. Poult. Sci. 2020;99:801–811. doi: 10.1016/j.psj.2019.10.051. PubMed DOI PMC
Ivanović M., Makoter K., Islamčević Razboršek M. Comparative Study of Chemical Composition and Antioxidant Activity of Essential Oils and Crude Extracts of Four Characteristic Zingiberaceae Herbs. Plants. 2021;10:501. doi: 10.3390/plants10030501. PubMed DOI PMC
Di Sotto A., Vitalone A., Di Giacomo S. Plant-Derived Nutraceuticals and Immune System Modulation: An Evidence-Based Overview. Vaccines. 2020;8:468. doi: 10.3390/vaccines8030468. PubMed DOI PMC
Zhou J., Huang J. Current Findings Regarding Natural Components with Potential Anti-2019-nCoV Activity. Front. Cell Dev. Biol. 2020;8:589. doi: 10.3389/fcell.2020.00589. PubMed DOI PMC
Yu M.S., Lee J., Lee J.M., Kim Y., Chin Y.W., Jee J.G., Keum Y.S., Jeong Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett. 2012;22:4049–4054. doi: 10.1016/j.bmcl.2012.04.081. PubMed DOI PMC
Van Doremalen N., Lambe T., Spencer A., Belij-Rammerstorfer S., Purushotham J.N., Port J.R., Avanzato V.A., Bushmaker T., Flaxman A., Ulaszewska M., et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020;586:578–582. doi: 10.1038/s41586-020-2608-y. PubMed DOI PMC