Senescence-Associated miRNAs and Their Role in Pancreatic Cancer
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35570840
PubMed Central
PMC9098800
DOI
10.3389/pore.2022.1610156
PII: 1610156
Knihovny.cz E-zdroje
- Klíčová slova
- cellular senescence, oncogene, pancreatic ductal adenocarcinoma, senescence bypass, senescence-associated miRNA, tumor suppressor,
- MeSH
- lidé MeSH
- mikro RNA * genetika metabolismus MeSH
- nádory slinivky břišní * genetika patologie MeSH
- proliferace buněk genetika MeSH
- stárnutí buněk genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mikro RNA * MeSH
Replicative senescence is irreversible cell proliferation arrest for somatic cells which can be circumvented in cancers. Cellular senescence is a process, which may play two opposite roles. On the one hand, this is a natural protection of somatic cells against unlimited proliferation and malignant transformation. On the other hand, cellular secretion caused by senescence can stimulate inflammation and proliferation of adjacent cells that may promote malignancy. The main genes controlling the senescence pathways are also well known as tumor suppressors. Almost 140 genes regulate both cellular senescence and cancer pathways. About two thirds of these genes (64%) are regulated by microRNAs. Senescence-associated miRNAs can stimulate cancer progression or act as tumor suppressors. Here we review the role playing by senescence-associated miRNAs in development, diagnostics and treatment of pancreatic cancer.
Zobrazit více v PubMed
Hayflick L. The Limited In Vitro Lifetime of Human Diploid Cell Strains. Exp Cel Res (1965) 37:614–36. 10.1016/0014-4827(65)90211-9 PubMed DOI
Miura T, Mattson MP, Rao MS. Cellular Lifespan and Senescence Signaling in Embryonic Stem Cells. Aging Cell (2004) 3:333–43. 10.1111/j.1474-9728.2004.00134.x PubMed DOI
Ag Moir J, A White S, Mann J. Arrested Development and the Great Escape - the Role of Cellular Senescence in Pancreatic Cancer. Int J Biochem Cel Biol (2014) 57:142–8. 10.1016/j.biocel.2014.10.018 PubMed DOI
Porciuncula A, Hajdu C, David G. The Dual Role of Senescence in Pancreatic Ductal Adenocarcinoma. Adv Cancer Res (2016) 131:1–20. 10.1016/bs.acr.2016.05.006 PubMed DOI
Rodier F, Campisi J. Four Faces of Cellular Senescence. J Cel Biol (2011) 192:547–56. 10.1083/jcb.201009094 PubMed DOI PMC
Ou HL, Hoffmann R, González‐López C, Doherty GJ, Korkola JE, Muñoz‐Espín D. Cellular Senescence in Cancer: from Mechanisms to Detection. Mol Oncol (2021) 15:2634–71. 10.1002/1878-0261.12807 PubMed DOI PMC
Nakamura AJ, Chiang YJ, Hathcock KS, Horikawa I, Sedelnikova OA, Hodes RJ, et al. Both telomeric and Non-telomeric DNA Damage Are Determinants of Mammalian Cellular Senescence. Epigenetics Chromatin (2008) 1:6. 10.1186/1756-8935-1-6 PubMed DOI PMC
Campisi J. Cellular Senescence: Putting the Paradoxes in Perspective. Curr Opin Genet Develop (2011) 21:107–12. 10.1016/j.gde.2010.10.005 PubMed DOI PMC
Collado M, Blasco MA, Serrano M. Cellular Senescence in Cancer and Aging. Cell (2007) 130:223–33. 10.1016/j.cell.2007.07.003 PubMed DOI
Gire V, Dulić V. Senescence from G2 Arrest, Revisited. Cell Cycle (2015) 14:297–304. 10.1080/15384101.2014.1000134 PubMed DOI PMC
Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cel Dev Biol (2021) 9:645593. 10.3389/fcell.2021.645593 PubMed DOI PMC
Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic Ras Provokes Premature Cell Senescence Associated with Accumulation of P53 and p16INK4a. Cell (1997) 88:593–602. 10.1016/s0092-8674(00)81902-9 PubMed DOI
Ko A, Han SY, Song J. Dynamics of ARF Regulation that Control Senescence and Cancer. BMB Rep (2016) 49:598–606. 10.5483/BMBRep.2016.49.11.120 PubMed DOI PMC
Dimri GP. What Has Senescence Got to Do with Cancer? Cancer Cell (2005) 7:505–12. 10.1016/j.ccr.2005.05.025 PubMed DOI PMC
Silva J, Silva JM, Domínguez G, García JM, Cantos B, Rodríguez R, et al. Concomitant Expression ofp16INK4aandp14ARFin Primary Breast Cancer and Analysis of Inactivation Mechanisms. J Pathol (2003) 199:289–97. 10.1002/path.1297 PubMed DOI
Dominguez G, Silva J, Garcia JM, Silva JM, Rodriguez R, Muñoz C, et al. Prevalence of Aberrant Methylation of p14ARF over p16INK4a in Some Human Primary Tumors. Mutat Res Fundam Mol Mech Mutagenesis (2003) 530:9–17. 10.1016/s0027-5107(03)00133-7 PubMed DOI
Tannapfel A, Busse C, Geissler F, Witzigmann H, Hauss J, Wittekind C. INK4a-ARF Alterations in Liver Cell Adenoma. Gut (2002) 51:253–8. 10.1136/gut.51.2.253 PubMed DOI PMC
Hansel DE, Kern SE, Hruban RH. Molecular Pathogenesis of Pancreatic Cancer. Annu Rev Genom Hum Genet (2003) 4:237–56. 10.1146/annurev.genom.4.070802.110341 PubMed DOI
Astle MV, Hannan KM, Ng PY, Lee RS, George AJ, Hsu AK, et al. AKT Induces Senescence in Human Cells via mTORC1 and P53 in the Absence of DNA Damage: Implications for Targeting mTOR during Malignancy. Oncogene (2012) 31:1949–62. 10.1038/onc.2011.394 PubMed DOI PMC
Murthy D, Attri KS, Singh PK. Phosphoinositide 3-Kinase Signaling Pathway in Pancreatic Ductal Adenocarcinoma Progression, Pathogenesis, and Therapeutics. Front Physiol (2018) 9:335. 10.3389/fphys.2018.00335 PubMed DOI PMC
Lin S, Yang J, Elkahloun AG, Bandyopadhyay A, Wang L, Cornell JE, et al. Attenuation of TGF-β Signaling Suppresses Premature Senescence in a P21-dependent Manner and Promotes Oncogenic Ras-Mediated Metastatic Transformation in Human Mammary Epithelial Cells. MBoC (2012) 23:1569–81. 10.1091/mbc.E11-10-0849 PubMed DOI PMC
Roupakia E, Markopoulos GS, Kolettas E. Genes and Pathways Involved in Senescence Bypass Identified by Functional Genetic Screens. Mech Ageing Develop (2021) 194:111432. 10.1016/j.mad.2021.111432 PubMed DOI
Jing H, Lee S. NF-κB in Cellular Senescence and Cancer Treatment. Mol Cell (2014) 37:189–95. 10.14348/molcells.2014.2353 PubMed DOI PMC
Hoare M, Ito Y, Kang T-W, Weekes MP, Matheson NJ, Patten DA, et al. NOTCH1 Mediates a Switch between Two Distinct Secretomes during Senescence. Nat Cel Biol (2016) 18:979–92. 10.1038/ncb3397 PubMed DOI PMC
Parry AJ, Hoare M, Bihary D, Hänsel-Hertsch R, Smith S, Tomimatsu K, et al. NOTCH-mediated Non-cell Autonomous Regulation of Chromatin Structure during Senescence. Nat Commun (2018) 9:1840. 10.1038/s41467-018-04283-9 PubMed DOI PMC
Aster JC, Pear WS, Blacklow SC. The Varied Roles of Notch in Cancer. Annu Rev Pathol Mech Dis (2017) 12:245–75. 10.1146/annurev-pathol-052016-100127 PubMed DOI PMC
Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, et al. Control of the Senescence-Associated Secretory Phenotype by NF-κB Promotes Senescence and Enhances Chemosensitivity. Genes Dev (2011) 25:2125–36. 10.1101/gad.17276711 PubMed DOI PMC
Laberge R-M, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, et al. MTOR Regulates the Pro-tumorigenic Senescence-Associated Secretory Phenotype by Promoting IL1A Translation. Nat Cel Biol (2015) 17:1049–61. 10.1038/ncb3195 PubMed DOI PMC
Teo YV, Rattanavirotkul N, Olova N, Salzano A, Quintanilla A, Tarrats N, et al. Notch Signaling Mediates Secondary Senescence. Cel Rep (2019) 27:997–1007. 10.1016/j.celrep.2019.03.104 PubMed DOI PMC
Coppé J-P, Desprez P-Y, Krtolica A, Campisi J. The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annu Rev Pathol Mech Dis (2010) 5:99–118. 10.1146/annurev-pathol-121808-102144 PubMed DOI PMC
Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular Senescence: Defining a Path Forward. Cell (2019) 179:813–27. 10.1016/j.cell.2019.10.005 PubMed DOI
Kuilman T, Michaloglou C, Vredeveld LCW, Douma S, van Doorn R, Desmet CJ, et al. Oncogene-Induced Senescence Relayed by an Interleukin-dependent Inflammatory Network. Cell (2008) 133:1019–31. 10.1016/j.cell.2008.03.039 PubMed DOI
Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence. Cell (2008) 133:1006–18. 10.1016/j.cell.2008.03.038 PubMed DOI
Kojima H, Inoue T, Kunimoto H, Nakajima K. IL-6-STAT3 Signaling and Premature Senescence. JAK-STAT (2013) 2:e25763. 10.4161/jkst.25763 PubMed DOI PMC
Laberge R-M, Awad P, Campisi J, Desprez P-Y. Epithelial-mesenchymal Transition Induced by Senescent Fibroblasts. Cancer Microenviron (2012) 5:39–44. 10.1007/s12307-011-0069-4 PubMed DOI PMC
Kapoor P, Deshmukh R. VEGF: A Critical Driver for Angiogenesis and Subsequent Tumor Growth: An IHC Study. J Oral Maxillofac Pathol (2012) 16:330–7. 10.4103/0973-029X.102478 PubMed DOI PMC
Olivieri F, Rippo MR, Monsurrò V, Salvioli S, Capri M, Procopio AD, et al. MicroRNAs Linking Inflamm-Aging, Cellular Senescence and Cancer. Ageing Res Rev (2013) 12:1056–68. 10.1016/j.arr.2013.05.001 PubMed DOI
Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, et al. Senescence in Premalignant Tumours. Nature (2005) 436:642. 10.1038/436642a PubMed DOI
Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, et al. Pancreatic Cancer Genomes Reveal Aberrations in Axon Guidance Pathway Genes. Nature (2012) 491:399–405. 10.1038/nature11547 PubMed DOI PMC
Waters AM, Der CJ. KRAS: The Critical Driver and Therapeutic Target for Pancreatic Cancer. Cold Spring Harb Perspect Med (2018) 8:a031435. 10.1101/cshperspect.a031435 PubMed DOI PMC
Caldwell ME, DeNicola GM, Martins CP, Jacobetz MA, Maitra A, Hruban RH, et al. Cellular Features of Senescence during the Evolution of Human and Murine Ductal Pancreatic Cancer. Oncogene (2012) 31:1599–608. 10.1038/onc.2011.350 PubMed DOI PMC
Deschênes-Simard X, Parisotto M, Rowell M-C, Le Calvé B, Igelmann S, Moineau-Vallée K, et al. Circumventing Senescence Is Associated with Stem Cell Properties and Metformin Sensitivity. Aging Cell (2019) 18:e12889. 10.1111/acel.12889 PubMed DOI PMC
Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernández-Porras I, Cañamero M, et al. Pancreatitis-induced Inflammation Contributes to Pancreatic Cancer by Inhibiting Oncogene-Induced Senescence. Cancer Cell (2011) 19:728–39. 10.1016/j.ccr.2011.05.011 PubMed DOI PMC
Carrière C, Gore AJ, Norris AM, Gunn JR, Young AL, Longnecker DS, et al. Deletion of Rb Accelerates Pancreatic Carcinogenesis by Oncogenic Kras and Impairs Senescence in Premalignant Lesions. Gastroenterology (2011) 141:1091–101. 10.1053/j.gastro.2011.05.041 PubMed DOI PMC
Schild C, Wirth M, Reichert M, Schmid RM, Saur D, Schneider G. PI3K Signaling Maintains C-Myc Expression to Regulate Transcription of E2F1 in Pancreatic Cancer Cells. Mol Carcinog (2009) 48:1149–58. 10.1002/mc.20569 PubMed DOI
Ciernikova S, Earl J, García Bermejo ML, Stevurkova V, Carrato A, Smolkova B. Epigenetic Landscape in Pancreatic Ductal Adenocarcinoma: On the Way to Overcoming Drug Resistance? Int J Mol Sci (2020) 21:4091. 10.3390/ijms21114091 PubMed DOI PMC
Gao J, Wang L, Xu J, Zheng J, Man X, Wu H, et al. Aberrant DNA Methyltransferase Expression in Pancreatic Ductal Adenocarcinoma Development and Progression. J Exp Clin Cancer Res (2013) 32:86. 10.1186/1756-9966-32-86 PubMed DOI PMC
Ueki T, Toyota M, Sohn T, Yeo CJ, Issa JP, Hruban RH, et al. Hypermethylation of Multiple Genes in Pancreatic Adenocarcinoma. Cancer Res (2000) 60:1835–9. PubMed
Hong L, Sun G, Peng L, Tu Y, Wan Z, Xiong H, et al. The Interaction between miR-148a and DNMT1 Suppresses Cell Migration and Invasion by Reactivating Tumor Suppressor Genes in Pancreatic Cancer. Oncol Rep (2018) 40:2916–25. 10.3892/or.2018.6700 PubMed DOI
Lowery MA, Jordan EJ, Basturk O, Ptashkin RN, Zehir A, Berger MF, et al. Real-Time Genomic Profiling of Pancreatic Ductal Adenocarcinoma: Potential Actionability and Correlation with Clinical Phenotype. Clin Cancer Res (2017) 23:6094–100. 10.1158/1078-0432.CCR-17-0899 PubMed DOI
Maniati E, Bossard M, Cook N, Candido JB, Emami-Shahri N, Nedospasov SA, et al. Crosstalk between the Canonical NF-κB and Notch Signaling Pathways Inhibits Pparγ Expression and Promotes Pancreatic Cancer Progression in Mice. J Clin Invest (2011) 121:4685–99. 10.1172/JCI45797 PubMed DOI PMC
Prabhu L, Mundade R, Korc M, Loehrer PJ, Lu T. Critical Role of NF-κB in Pancreatic Cancer. Oncotarget (2014) 5:10969–75. 10.18632/oncotarget.2624 PubMed DOI PMC
Penfield JD, Anderson M, Lutzke L, Wang KK. The Role of Cellular Senescence in the Gastrointestinal Mucosa. Gut Liver (2013) 7:270–7. 10.5009/gnl.2013.7.3.270 PubMed DOI PMC
Fane M, Weeraratna AT. How the Ageing Microenvironment Influences Tumour Progression. Nat Rev Cancer (2020) 20:89–106. 10.1038/s41568-019-0222-9 PubMed DOI PMC
Xue R, Jia K, Wang J, Yang L, Wang Y, Gao L, et al. A Rising Star in Pancreatic Diseases: Pancreatic Stellate Cells. Front Physiol (2018) 9:754. 10.3389/fphys.2018.00754 PubMed DOI PMC
Petroni G, Galluzzi L. Senescence Inflames the Pancreatic Tumor Microenvironment. Cel Rep Med (2020) 1:100020. 10.1016/j.xcrm.2020.100020 PubMed DOI PMC
Shao C, Tu C, Cheng X, Xu Z, Wang X, Shen J, et al. Inflammatory and Senescent Phenotype of Pancreatic Stellate Cells Induced by Sqstm1 Downregulation Facilitates Pancreatic Cancer Progression. Int J Biol Sci (2019) 15:1020–9. 10.7150/ijbs.27825 PubMed DOI PMC
Wang T, Notta F, Navab R, Joseph J, Ibrahimov E, Xu J, et al. Senescent Carcinoma-Associated Fibroblasts Upregulate IL8 to Enhance Prometastatic Phenotypes. Mol Cancer Res (2017) 15:3–14. 10.1158/1541-7786.MCR-16-0192 PubMed DOI
Tacutu R, Budovsky A, Yanai H, Fraifeld VE. Molecular Links between Cellular Senescence, Longevity and Age-Related Diseases - a Systems Biology Perspective. Aging (2011) 3:1178–91. 10.18632/aging.100413 PubMed DOI PMC
Bayraktar R, Van Roosbroeck K, Calin GA. Cell‐to‐cell Communication: microRNAs as Hormones. Mol Oncol (2017) 11:1673–86. 10.1002/1878-0261.12144 PubMed DOI PMC
Bueno MJ, Malumbres M. MicroRNAs and the Cell Cycle. Biochim Biophys Acta Mol Basis Dis (2011) 1812:592–601. 10.1016/j.bbadis.2011.02.002 PubMed DOI
Romano R, Picca A, Eusebi LHU, Marzetti E, Calvani R, Moro L, et al. Extracellular Vesicles and Pancreatic Cancer: Insights on the Roles of miRNA, lncRNA, and Protein Cargos in Cancer Progression. Cells (2021) 10:1361. 10.3390/cells10061361 PubMed DOI PMC
Conti I, Varano G, Simioni C, Laface I, Milani D, Rimondi E, et al. miRNAs as Influencers of Cell-Cell Communication in Tumor Microenvironment. Cells (2020) 9:220. 10.3390/cells9010220 PubMed DOI PMC
Uddin MH, Al-Hallak MN, Philip PA, Mohammad RM, Viola N, Wagner K-U, et al. Exosomal microRNA in Pancreatic Cancer Diagnosis, Prognosis, and Treatment: From Bench to Bedside. Cancers (2021) 13:2777. 10.3390/cancers13112777 PubMed DOI PMC
Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic Cancer Exosomes Initiate Pre-metastatic Niche Formation in the Liver. Nat Cel Biol (2015) 17:816–26. 10.1038/ncb3169 PubMed DOI PMC
Sun W, Ren Y, Lu Z, Zhao X. The Potential Roles of Exosomes in Pancreatic Cancer Initiation and Metastasis. Mol Cancer (2020) 19:135. 10.1186/s12943-020-01255-w PubMed DOI PMC
Vicentini C, Calore F, Nigita G, Fadda P, Simbolo M, Sperandio N, et al. Exosomal miRNA Signatures of Pancreatic Lesions. BMC Gastroenterol (2020) 20:137. 10.1186/s12876-020-01287-y PubMed DOI PMC
Ling H, Fabbri M, Calin GA. MicroRNAs and Other Non-coding RNAs as Targets for Anticancer Drug Development. Nat Rev Drug Discov (2013) 12:847–65. 10.1038/nrd4140 PubMed DOI PMC
Chang X, Yu C, Li J, Yu S, Chen J. hsa-miR-96 and Hsa-miR-217 Expression Down-Regulates with Increasing Dysplasia in Pancreatic Intraepithelial Neoplasias and Intraductal Papillary Mucinous Neoplasms. Int J Med Sci (2017) 14:412–8. 10.7150/ijms.18641 PubMed DOI PMC
Terlecki-Zaniewicz L, Lämmermann I, Latreille J, Bobbili MR, Pils V, Schosserer M, et al. Small Extracellular Vesicles and their miRNA Cargo are Anti-apoptotic Members of the Senescence-Associated Secretory Phenotype. Aging (2018) 10:1103–32. 10.18632/aging.101452 PubMed DOI PMC
Wallis R, Mizen H, Bishop CL. The Bright and Dark Side of Extracellular Vesicles in the Senescence-Associated Secretory Phenotype. Mech Ageing Develop (2020) 189:111263. 10.1016/j.mad.2020.111263 PubMed DOI PMC
Wang Z, Tan Y, Yu W, Zheng S, Zhang S, Sun L, et al. Small Role with Big Impact: miRNAs as Communicators in the Cross-Talk between Cancer-Associated Fibroblasts and Cancer Cells. Int J Biol Sci (2017) 13:339–48. 10.7150/ijbs.17680 PubMed DOI PMC
Zhang Y, Yang P, Wang X-F. Microenvironmental Regulation of Cancer Metastasis by miRNAs. Trends Cel Biol (2014) 24:153–60. 10.1016/j.tcb.2013.09.007 PubMed DOI PMC
Gascard P, Tlsty TD. Carcinoma-associated Fibroblasts: Orchestrating the Composition of Malignancy. Genes Dev (2016) 30:1002–19. 10.1101/gad.279737.116 PubMed DOI PMC
Pang W, Su J, Wang Y, Feng H, Dai X, Yuan Y, et al. Pancreatic Cancer‐secreted miR‐155 Implicates in the Conversion from normal Fibroblasts to Cancer‐associated Fibroblasts. Cancer Sci (2015) 106:1362–9. 10.1111/cas.12747 PubMed DOI PMC
Sun Q, Zhang B, Hu Q, Qin Y, Xu W, Liu W, et al. The Impact of Cancer-Associated Fibroblasts on Major Hallmarks of Pancreatic Cancer. Theranostics (2018) 8:5072–87. 10.7150/thno.26546 PubMed DOI PMC
Olivieri F, Albertini MC, Orciani M, Ceka A, Cricca M, Procopio AD, et al. DNA Damage Response (DDR) and Senescence: Shuttled Inflamma-miRNAs on the Stage of Inflamm-Aging. Oncotarget (2015) 6:35509–21. 10.18632/oncotarget.5899 PubMed DOI PMC
Cortesi M, Zanoni M, Pirini F, Tumedei MM, Ravaioli S, Rapposelli IG, et al. Pancreatic Cancer and Cellular Senescence: Tumor Microenvironment under the Spotlight. Int J Mol Sci (2021) 23:254. 10.3390/ijms23010254 PubMed DOI PMC
Feliciano A, Sánchez-Sendra B, Kondoh H, Lleonart ME. MicroRNAs Regulate Key Effector Pathways of Senescence. J Aging Res (2011) 2011:1–11. 10.4061/2011/205378 PubMed DOI PMC
Nakata K, Ohuchida K, Mizumoto K, Kayashima T, Ikenaga N, Sakai H, et al. MicroRNA-10b Is Overexpressed in Pancreatic Cancer, Promotes its Invasiveness, and Correlates with a Poor Prognosis. Surgery (2011) 150:916–22. 10.1016/j.surg.2011.06.017 PubMed DOI
Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, et al. Expression Profiling Identifies microRNA Signature in Pancreatic Cancer. Int J Cancer (2007) 120:1046–54. 10.1002/ijc.22394 PubMed DOI PMC
Buscaglia LEB, Li Y. Apoptosis and the Target Genes of microRNA-21. Chin J Cancer (2011) 30:371–80. 10.5732/cjc.011.10132 PubMed DOI PMC
Park J-K, Lee EJ, Esau C, Schmittgen TD. Antisense Inhibition of microRNA-21 or -221 Arrests Cell Cycle, Induces Apoptosis, and Sensitizes the Effects of Gemcitabine in Pancreatic Adenocarcinoma. Pancreas (2009) 38:e190–e199. 10.1097/MPA.0b013e3181ba82e1 PubMed DOI
Liu J, Xu D, Wang Q, Zheng D, Jiang X, Xu L. LPS Induced miR-181a Promotes Pancreatic Cancer Cell Migration via Targeting PTEN and MAP2K4. Dig Dis Sci (2014) 59:1452–60. 10.1007/s10620-014-3049-y PubMed DOI
Du Rieu MC, Torrisani J, Selves J, Al Saati T, Souque A, Dufresne M, et al. MicroRNA-21 Is Induced Early in Pancreatic Ductal Adenocarcinoma Precursor Lesions. Clin Chem (2010) 56:603–12. 10.1373/clinchem.2009.137364 PubMed DOI
Giovannetti E, Funel N, Peters GJ, Del Chiaro M, Erozenci LA, Vasile E, et al. MicroRNA-21 in Pancreatic Cancer: Correlation with Clinical Outcome and Pharmacologic Aspects Underlying its Role in the Modulation of Gemcitabine Activity. Cancer Res (2010) 70:4528–38. 10.1158/0008-5472.CAN-09-4467 PubMed DOI
Moriyama T, Ohuchida K, Mizumoto K, Yu J, Sato N, Nabae T, et al. MicroRNA-21 Modulates Biological Functions of Pancreatic Cancer Cells Including Their Proliferation, Invasion, and Chemoresistance. Mol Cancer Ther (2009) 8:1067–74. 10.1158/1535-7163.MCT-08-0592 PubMed DOI
Hu G-y., Tao F, Wang W, Ji K-w. Prognostic Value of microRNA-21 in Pancreatic Ductal Adenocarcinoma: a Meta-Analysis. World J Surg Onc (2016) 14:82. 10.1186/s12957-016-0842-4 PubMed DOI PMC
Ouyang H, Gore J, Deitz S, Korc M. microRNA-10b Enhances Pancreatic Cancer Cell Invasion by Suppressing TIP30 Expression and Promoting EGF and TGF-β Actions. Oncogene (2014) 33:4664–74. 10.1038/onc.2013.405 PubMed DOI PMC
Zhang W-L, Zhang J-H, Wu X-Z, Yan T, Lv W. miR-15b Promotes Epithelial-Mesenchymal Transition by Inhibiting SMURF2 in Pancreatic Cancer. Int J Oncol (2015) 47:1043–53. 10.3892/ijo.2015.3076 PubMed DOI
Cloonan N, Brown MK, Steptoe AL, Wani S, Chan W, Forrest AR, et al. The miR-17-5p microRNA Is a Key Regulator of the G1/S Phase Cell Cycle Transition. Genome Biol (2008) 9:R127. 10.1186/gb-2008-9-8-r127 PubMed DOI PMC
Dellago H, Bobbili MR, Grillari J. MicroRNA-17-5p: At the Crossroads of Cancer and Aging - A Mini-Review. Gerontology (2017) 63:20–8. 10.1159/000447773 PubMed DOI
Yu J, Ohuchida K, Mizumoto K, Fujita H, Nakata K, Tanaka M. MicroRNAmiR-17-5pis Overexpressed in Pancreatic Cancer, Associated with a Poor Prognosis, and Involved in Cancer Cell Proliferation and Invasion. Cancer Biol Ther (2010) 10:748–57. 10.4161/cbt.10.8.13083 PubMed DOI
Zhu Y, Gu J, Li Y, Peng C, Shi M, Wang X, et al. MiR-17-5p Enhances Pancreatic Cancer Proliferation by Altering Cell Cycle Profiles via Disruption of RBL2/E2F4-Repressing Complexes. Cancer Lett (2018) 412:59–68. 10.1016/j.canlet.2017.09.044 PubMed DOI
Gironella M, Seux M, Xie M-J, Cano C, Tomasini R, Gommeaux J, et al. Tumor Protein 53-induced Nuclear Protein 1 Expression is Repressed by miR-155, and its Restoration Inhibits Pancreatic Tumor Development. Proc Natl Acad Sci U.S.A (2007) 104:16170–5. 10.1073/pnas.0703942104 PubMed DOI PMC
Wang P, Zhu C-f., Ma M-z., Chen G, Song M, Zeng Z-l., et al. Micro-RNA-155 is Induced by K-Ras Oncogenic Signal and Promotes ROS Stress in Pancreatic Cancer. Oncotarget (2015) 6:21148–58. 10.18632/oncotarget.4125 PubMed DOI PMC
Huang C, Li H, Wu W, Jiang T, Qiu Z. Regulation of miR-155 Affects Pancreatic Cancer Cell Invasiveness and Migration by Modulating the STAT3 Signaling Pathway through SOCS1. Oncol Rep (2013) 30:1223–30. 10.3892/or.2013.2576 PubMed DOI
Fasanaro P, D'Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, et al. MicroRNA-210 Modulates Endothelial Cell Response to Hypoxia and Inhibits the Receptor Tyrosine Kinase Ligand Ephrin-A3. J Biol Chem (2008) 283:15878–83. 10.1074/jbc.M800731200 PubMed DOI PMC
Zhang Z, Sun H, Dai H, Walsh R, Imakura M, Schelter J, et al. MicroRNA miR-210 Modulates Cellular Response to Hypoxia through the MYC Antagonist MNT. Cell Cycle (2009) 8:2756–68. 10.4161/cc.8.17.9387 PubMed DOI
Huang X, Le Q-T, Giaccia AJ. MiR-210 - Micromanager of the Hypoxia Pathway. Trends Mol Med (2010) 16:230–7. 10.1016/j.molmed.2010.03.004 PubMed DOI PMC
Huang X, Zuo J. Emerging Roles of miR-210 and Other Non-coding RNAs in the Hypoxic Response. Acta Biochim Biophys Sinica (2014) 46:220–32. 10.1093/abbs/gmt141 PubMed DOI
Xu Q, Li P, Chen X, Zong L, Jiang Z, Nan L, et al. miR-221/222 Induces Pancreatic Cancer Progression through the Regulation of Matrix Metalloproteinases. Oncotarget (2015) 6:14153–64. 10.18632/oncotarget.3686 PubMed DOI PMC
Sarkar S, Dubaybo H, Ali S, Goncalves P, Kollepara SL, Sethi S, et al. Down-regulation of miR-221 Inhibits Proliferation of Pancreatic Cancer Cells through Up-Regulation of PTEN, P27(kip1), P57(kip2), and PUMA. Am J Cancer Res (2013) 3:465–77. PubMed PMC
Balzeau J, Menezes MR, Cao S, Hagan JP. The LIN28/let-7 Pathway in Cancer. Front Genet (2017) 8:31. 10.3389/fgene.2017.00031 PubMed DOI PMC
Wang H, Chirshev E, Hojo N, Suzuki T, Bertucci A, Pierce M, et al. The Epithelial-Mesenchymal Transcription Factor SNAI1 Represses Transcription of the Tumor Suppressor miRNA Let-7 in Cancer. Cancers (2021) 13:1469. 10.3390/cancers13061469 PubMed DOI PMC
Bhutia YD, Hung SW, Krentz M, Patel D, Lovin D, Manoharan R, et al. Differential Processing of Let-7a Precursors Influences RRM2 Expression and Chemosensitivity in Pancreatic Cancer: Role of LIN-28 and SET Oncoprotein. PLoS One (2013) 8:e53436. 10.1371/journal.pone.0053436 PubMed DOI PMC
Li XJ, Ren ZJ, Tang JH. MicroRNA-34a: a Potential Therapeutic Target in Human Cancer. Cell Death Dis (2014) 5:e1327. 10.1038/cddis.2014.270 PubMed DOI PMC
Iliopoulos D, Drakaki A. MicroRNA-gene Signaling Pathways in Pancreatic Cancer. Biomed J (2013) 36:200–8. 10.4103/2319-4170.119690 PubMed DOI
Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. microRNAs in Cancer Management. Lancet Oncol (2012) 13:e249–e258. 10.1016/S1470-2045(12)70073-6 PubMed DOI
Guo S, Fesler A, Wang H, Ju J. microRNA Based Prognostic Biomarkers in Pancreatic Cancer. Biomark Res (2018) 6:18. 10.1186/s40364-018-0131-1 PubMed DOI PMC
Tang Y, Tang Y, Cheng Y-s. miR-34a Inhibits Pancreatic Cancer Progression through Snail1-Mediated Epithelial-Mesenchymal Transition and the Notch Signaling Pathway. Sci Rep (2017) 7:38232. 10.1038/srep38232 PubMed DOI PMC
Hidalgo-Sastre A, Lubeseder-Martellato C, Engleitner T, Steiger K, Zhong S, Desztics J, et al. Mir34a Constrains Pancreatic Carcinogenesis. Sci Rep (2020) 10:9654. 10.1038/s41598-020-66561-1 PubMed DOI PMC
Lee K-H, Lotterman C, Karikari C, Omura N, Feldmann G, Habbe N, et al. Epigenetic Silencing of MicroRNA miR-107 Regulates Cyclin-dependent Kinase 6 Expression in Pancreatic Cancer. Pancreatology (2009) 9:293–301. 10.1159/000186051 PubMed DOI PMC
Xiong J, Wang D, Wei A, Lu H, Tan C, Li A, et al. Deregulated Expression of miR-107 Inhibits Metastasis of PDAC through Inhibition PI3K/Akt Signaling via Caveolin-1 and PTEN. Exp Cel Res (2017) 361:316–23. 10.1016/j.yexcr.2017.10.033 PubMed DOI
Huang W, Gu J, Tao T, Zhang J, Wang H, Fan Y. MiR-24-3p Inhibits the Progression of Pancreatic Ductal Adenocarcinoma through LAMB3 Downregulation. Front Oncol (2020) 9:1499. 10.3389/fonc.2019.01499 PubMed DOI PMC
Sun Y, Wang P, Zhang Q, Wu H. CDK14/β‐catenin/TCF4/miR‐26b Positive Feedback Regulation Modulating Pancreatic Cancer Cell Phenotypes In Vitro and Tumor Growth in Mice Model In Vivo . J Gene Med (2021) 24:e3343. 10.1002/jgm.3343 PubMed DOI
Tréhoux S, Lahdaoui F, Delpu Y, Renaud F, Leteurtre E, Torrisani J, et al. Micro-RNAs miR-29a and miR-330-5p Function as Tumor Suppressors by Targeting the MUC1 Mucin in Pancreatic Cancer Cells. Biochim Biophys Acta Mol Cel Res (2015) 1853:2392–403. 10.1016/j.bbamcr.2015.05.033 PubMed DOI
Dey S, Kwon JJ, Liu S, Hodge GA, Taleb S, Zimmers TA, et al. miR-29a is Repressed by MYC in Pancreatic Cancer and its Restoration Drives Tumor-Suppressive Effects via Downregulation of LOXL2. Mol Cancer Res (2020) 18:311–23. 10.1158/1541-7786.MCR-19-0594 PubMed DOI PMC
Sun X-J, Liu B-Y, Yan S, Jiang T-H, Cheng H-Q, Jiang H-S, et al. MicroRNA-29a Promotes Pancreatic Cancer Growth by Inhibiting Tristetraprolin. Cell Physiol Biochem (2015) 37:707–18. 10.1159/000430389 PubMed DOI
Wang T, Chen G, Ma X, Yang Y, Chen Y, Peng Y, et al. MiR-30a Regulates Cancer Cell Response to Chemotherapy through SNAI1/IRS1/AKT Pathway. Cel Death Dis (2019) 10:1–15. 10.1038/s41419-019-1326-6 PubMed DOI PMC
Xu Y-F, Hannafon BN, Ding W-Q. microRNA Regulation of Human Pancreatic Cancer Stem Cells. Stem Cel Investig. (2017) 4:5. 10.21037/sci.2017.01.01 PubMed DOI PMC
Lu Y, Lu J, Li X, Zhu H, Fan X, Zhu S, et al. MiR-200a Inhibits Epithelial-Mesenchymal Transition of Pancreatic Cancer Stem Cell. BMC Cancer (2014) 14:85. 10.1186/1471-2407-14-85 PubMed DOI PMC
Zhao G, Wang B, Liu Y, Zhang J-g., Deng S-c., Qin Q, et al. miRNA-141, Downregulated in Pancreatic Cancer, Inhibits Cell Proliferation and Invasion by Directly Targeting MAP4K4. Mol Cancer Ther (2013) 12:2569–80. 10.1158/1535-7163.MCT-13-0296 PubMed DOI
Hamada S, Satoh K, Fujibuchi W, Hirota M, Kanno A, Unno J, et al. MiR-126 Acts as a Tumor Suppressor in Pancreatic Cancer Cells via the Regulation of ADAM9. Mol Cancer Res (2012) 10:3–10. 10.1158/1541-7786.MCR-11-0272 PubMed DOI
Xu WX, Liu Z, Deng F, Wang DD, Li XW, Tian T, et al. MiR-145: a Potential Biomarker of Cancer Migration and Invasion. Am J Transl Res (2019) 11:6739–53. PubMed PMC
Khan S, Ebeling MC, Zaman MS, Sikander M, Yallapu MM, Chauhan N, et al. MicroRNA-145 Targets MUC13 and Suppresses Growth and Invasion of Pancreatic Cancer. Oncotarget (2014) 5:7599–609. 10.18632/oncotarget.2281 PubMed DOI PMC
Han T, Yi X-P, Liu B, Ke M-J, Li Y-X. MicroRNA-145 Suppresses Cell Proliferation, Invasion and Migration in Pancreatic Cancer Cells by Targeting NEDD9. Mol Med Rep (2015) 11:4115–20. 10.3892/mmr.2015.3294 PubMed DOI PMC
Deng S, Zhu S, Wang B, Li X, Liu Y, Qin Q, et al. Chronic Pancreatitis and Pancreatic Cancer Demonstrate Active Epithelial-Mesenchymal Transition Profile, Regulated by miR-217-SIRT1 Pathway. Cancer Lett (2014) 355:184–91. 10.1016/j.canlet.2014.08.007 PubMed DOI
Yang Y, Tao X, Li C-B, Wang C-M. MicroRNA-494 Acts as a Tumor Suppressor in Pancreatic Cancer, Inhibiting Epithelial-Mesenchymal Transition, Migration and Invasion by Binding to SDC1. Int J Oncol (2018) 53:1204–14. 10.3892/ijo.2018.4445 PubMed DOI
Chen G, Shi Y, Zhang Y, Sun J. CircRNA_100782 Regulates Pancreatic Carcinoma Proliferation through the IL6-STAT3 Pathway. OncoTargets Ther (2017) 10:5783–94. 10.2147/OTT.S150678 PubMed DOI PMC
Wu D-H, Liang H, Lu S-N, Wang H, Su Z-L, Zhang L, et al. miR-124 Suppresses Pancreatic Ductal Adenocarcinoma Growth by Regulating Monocarboxylate Transporter 1-Mediated Cancer Lactate Metabolism. Cel Physiol Biochem (2018) 50:924–35. 10.1159/000494477 PubMed DOI
Gao L, Yang Y, Xu H, Liu R, Li D, Hong H, et al. MiR-335 Functions as a Tumor Suppressor in Pancreatic Cancer by Targeting OCT4. Tumor Biol (2014) 35:8309–18. 10.1007/s13277-014-2092-9 PubMed DOI
Neault M, Mallette FA, Richard S. miR-137 Modulates a Tumor Suppressor Network-Inducing Senescence in Pancreatic Cancer Cells. Cel Rep (2016) 14:1966–78. 10.1016/j.celrep.2016.01.068 PubMed DOI
Li Y, VandenBoom TG, Wang Z, Kong D, Ali S, Philip PA, et al. miR-146a Suppresses Invasion of Pancreatic Cancer Cells. Cancer Res (2010) 70:1486–95. 10.1158/0008-5472.CAN-09-2792 PubMed DOI PMC
Delpu Y, Lulka H, Sicard F, Saint-Laurent N, Lopez F, Hanoun N, et al. The rescue of miR-148a Expression in Pancreatic Cancer: an Inappropriate Therapeutic Tool. PLoS One (2013) 8:e55513. 10.1371/journal.pone.0055513 PubMed DOI PMC
Zhao W-G, Yu S-N, Lu Z-H, Ma Y-H, Gu Y-M, Chen J. The miR-217 microRNA Functions as a Potential Tumor Suppressor in Pancreatic Ductal Adenocarcinoma by Targeting KRAS. Carcinogenesis (2010) 31:1726–33. 10.1093/carcin/bgq160 PubMed DOI
Wang B, Du R, Xiao X, Deng Z-L, Jian D, Xie H-F, et al. Microrna-217 Modulates Human Skin Fibroblast Senescence by Directly Targeting DNA Methyltransferase 1. Oncotarget (2017) 8:33475–86. 10.18632/oncotarget.16509 PubMed DOI PMC
Tesfaye AA, Azmi AS, Philip PA. miRNA and Gene Expression in Pancreatic Ductal Adenocarcinoma. Am J Pathol (2019) 189:58–70. 10.1016/j.ajpath.2018.10.005 PubMed DOI PMC
Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most Mammalian mRNAs Are Conserved Targets of microRNAs. Genome Res (2009) 19:92–105. 10.1101/gr.082701.108 PubMed DOI PMC
Zhang Y, Li M, Wang H, Fisher WE, Lin PH, Yao Q, et al. Profiling of 95 MicroRNAs in Pancreatic Cancer Cell Lines and Surgical Specimens by Real-Time PCR Analysis. World J Surg (2009) 33:698–709. 10.1007/s00268-008-9833-0 PubMed DOI PMC
Hong TH, Park IY. MicroRNA Expression Profiling of Diagnostic Needle Aspirates from Surgical Pancreatic Cancer Specimens. Ann Surg Treat Res (2014) 87:290. 10.4174/astr.2014.87.6.290 PubMed DOI PMC
Lee LS, Szafranska-Schwarzbach AE, Wylie D, Doyle LA, Bellizzi AM, Kadiyala V, et al. Investigating MicroRNA Expression Profiles in Pancreatic Cystic Neoplasms. Clin Transl Gastroenterol (2014) 5:e47. 10.1038/ctg.2013.18 PubMed DOI PMC
Szafranska-Schwarzbach AE, Adai AT, Lee LS, Conwell DL, Andruss BF. Development of a miRNA-Based Diagnostic Assay for Pancreatic Ductal Adenocarcinoma. Expert Rev Mol Diagn (2011) 11:249–57. 10.1586/erm.11.10 PubMed DOI
Vila-Navarro E, Duran-Sanchon S, Vila-Casadesús M, Moreira L, Ginès À, Cuatrecasas M, et al. Novel Circulating miRNA Signatures for Early Detection of Pancreatic Neoplasia. Clin Transl Gastroenterol (2019) 10:e00029. 10.14309/ctg.0000000000000029 PubMed DOI PMC
Wei L, Yao K, Gan S, Suo Z. Clinical Utilization of Serum- or Plasma-Based miRNAs as Early Detection Biomarkers for Pancreatic Cancer. Medicine (Baltimore) (2018) 97:e12132. 10.1097/MD.0000000000012132 PubMed DOI PMC
Peng C, Wang J, Gao W, Huang L, Liu Y, Li X, et al. Meta-analysis of the Diagnostic Performance of Circulating MicroRNAs for Pancreatic Cancer. Int J Med Sci (2021) 18:660–71. 10.7150/ijms.52706 PubMed DOI PMC
Alemar B, Izetti P, Gregório C, Macedo GS, Castro MAA, Osvaldt AB, et al. miRNA-21 and miRNA-34a Are Potential Minimally Invasive Biomarkers for the Diagnosis of Pancreatic Ductal Adenocarcinoma. Pancreas (2016) 45:84–92. 10.1097/MPA.0000000000000383 PubMed DOI
Sun B, Liu X, Gao Y, Li L, Dong Z. Downregulation of miR-124 Predicts Poor Prognosis in Pancreatic Ductal Adenocarcinoma Patients. Br J Biomed Sci (2016) 73:152–7. 10.1080/09674845.2016.1220706 PubMed DOI
Wald P, Liu XS, Pettit C, Dillhoff M, Manilchuk A, Schmidt C, et al. Prognostic Value of microRNA Expression Levels in Pancreatic Adenocarcinoma: a Review of the Literature. Oncotarget (2017) 8:73345–61. 10.18632/oncotarget.20277 PubMed DOI PMC
Frampton AE, Krell J, Jamieson NB, Gall TMH, Giovannetti E, Funel N, et al. microRNAs with Prognostic Significance in Pancreatic Ductal Adenocarcinoma: A Meta-Analysis. Eur J Cancer (2015) 51:1389–404. 10.1016/j.ejca.2015.04.006 PubMed DOI
Papaconstantinou IG, Manta A, Gazouli M, Lyberopoulou A, Lykoudis PM, Polymeneas G, et al. Expression of microRNAs in Patients with Pancreatic Cancer and its Prognostic Significance. Pancreas (2013) 42:67–71. 10.1097/MPA.0b013e3182592ba7 PubMed DOI
Mikamori M, Yamada D, Eguchi H, Hasegawa S, Kishimoto T, Tomimaru Y, et al. MicroRNA-155 Controls Exosome Synthesis and Promotes Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Sci Rep (2017) 7:42339. 10.1038/srep42339 PubMed DOI PMC
Yu Q, Xu C, Yuan W, Wang C, Zhao P, Chen L, et al. Evaluation of Plasma MicroRNAs as Diagnostic and Prognostic Biomarkers in Pancreatic Adenocarcinoma: miR-196a and miR-210 Could Be Negative and Positive Prognostic Markers, Respectively. Biomed Res Int (2017) 2017:1–10. 10.1155/2017/6495867 PubMed DOI PMC
Greither T, Grochola LF, Udelnow A, Lautenschläger C, Würl P, Taubert H. Elevated Expression of microRNAs 155, 203, 210 and 222 in Pancreatic Tumors is Associated with Poorer Survival. Int J Cancer (2010) 126:73–80. 10.1002/ijc.24687 PubMed DOI
Bader AG, Brown D, Stoudemire J, Lammers P. Developing Therapeutic microRNAs for Cancer. Gene Ther (2011) 18:1121–6. 10.1038/gt.2011.79 PubMed DOI PMC
Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs In Vivo with 'antagomirs'. Nature (2005) 438:685–9. 10.1038/nature04303 PubMed DOI
Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C, et al. MicroRNA Silencing for Cancer Therapy Targeted to the Tumour Microenvironment. Nature (2015) 518:107–10. 10.1038/nature13905 PubMed DOI PMC
Ebert MS, Sharp PA. MicroRNA Sponges: Progress and Possibilities. RNA (2010) 16:2043–50. 10.1261/rna.2414110 PubMed DOI PMC
Tay FC, Lim JK, Zhu H, Hin LC, Wang S. Using Artificial microRNA Sponges to Achieve microRNA Loss-Of-Function in Cancer Cells. Adv Drug Deliv Rev (2015) 81:117–27. 10.1016/j.addr.2014.05.010 PubMed DOI
Ben-Shushan D, Markovsky E, Gibori H, Tiram G, Scomparin A, Satchi-Fainaro R. Overcoming Obstacles in microRNA Delivery towards Improved Cancer Therapy. Drug Deliv Transl Res (2014) 4:38–49. 10.1007/s13346-013-0160-0 PubMed DOI
Pramanik D, Campbell NR, Karikari C, Chivukula R, Kent OA, Mendell JT, et al. Restitution of Tumor Suppressor microRNAs Using a Systemic Nanovector Inhibits Pancreatic Cancer Growth in Mice. Mol Cancer Ther (2011) 10:1470–80. 10.1158/1535-7163.MCT-11-0152 PubMed DOI PMC
Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, et al. Systemic Delivery of Tumor Suppressor microRNA Mimics Using a Neutral Lipid Emulsion Inhibits Lung Tumors in Mice. Mol Ther (2011) 19:1116–22. 10.1038/mt.2011.48 PubMed DOI PMC
Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang H-W, et al. Therapeutic microRNA Delivery Suppresses Tumorigenesis in a Murine Liver Cancer Model. Cell (2009) 137:1005–17. 10.1016/j.cell.2009.04.021 PubMed DOI PMC
Li L, Xie X, Luo J, Liu M, Xi S, Guo J, et al. Targeted Expression of miR-34a Using the T-VISA System Suppresses Breast Cancer Cell Growth and Invasion. Mol Ther (2012) 20:2326–34. 10.1038/mt.2012.201 PubMed DOI PMC
Pai P, Rachagani S, Are C, Batra S. Prospects of miRNA-Based Therapy for Pancreatic Cancer. Cdt (2013) 14:1101–9. 10.2174/13894501113149990181 PubMed DOI PMC
Lindow M, Kauppinen S. Discovering the First microRNA-Targeted Drug. J Cel Biol (2012) 199:407–12. 10.1083/jcb.201208082 PubMed DOI PMC
Gurbuz N, Ozpolat B. MicroRNA-based Targeted Therapeutics in Pancreatic Cancer. Anticancer Res (2019) 39:529–32. 10.21873/anticanres.13144 PubMed DOI
Passadouro M, Faneca H. Managing Pancreatic Adenocarcinoma: A Special Focus in MicroRNA Gene Therapy. Int J Mol Sci (2016) 17:718. 10.3390/ijms17050718 PubMed DOI PMC
Hu QL, Jiang QY, Jin X, Shen J, Wang K, Li YB, et al. Cationic microRNA-Delivering Nanovectors with Bifunctional Peptides for Efficient Treatment of PANC-1 Xenograft Model. Biomaterials (2013) 34:2265–76. 10.1016/j.biomaterials.2012.12.016 PubMed DOI
Idichi T, Seki N, Kurahara H, Fukuhisa H, Toda H, Shimonosono M, et al. Molecular Pathogenesis of Pancreatic Ductal Adenocarcinoma: Impact of Passenger Strand of Pre-miR-148aon Gene Regulation. Cancer Sci (2018) 109:2013–26. 10.1111/cas.13610 PubMed DOI PMC