Expression of Selected miRNAs in Normal and Cancer-Associated Fibroblasts and in BxPc3 and MIA PaCa-2 Cell Lines of Pancreatic Ductal Adenocarcinoma

. 2023 Feb 10 ; 24 (4) : . [epub] 20230210

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36835029

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000785 Ministry of Education Youth and Sports
LX22NPO5102 Ministry of Education Youth and Sports
Cooperatio ONCO Charles University

Therapy for pancreatic ductal adenocarcinoma remains challenging, and the chances of a complete cure are very limited. As in other types of cancer, the expression and role of miRNAs in controlling the biological properties of this type of tumor have been extensively studied. A better insight into miRNA biology seems critical to refining diagnostics and improving their therapeutic potential. In this study, we focused on the expression of miR-21, -96, -196a, -210, and -217 in normal fibroblasts, cancer-associated fibroblasts prepared from a ductal adenocarcinoma of the pancreas, and pancreatic carcinoma cell lines. We compared these data with miRNAs in homogenates of paraffin-embedded sections from normal pancreatic tissues. In cancer-associated fibroblasts and cancer cell lines, miRNAs differed significantly from the normal tissue. In detail, miR-21 and -210 were significantly upregulated, while miR-217 was downregulated. Similar transcription profiles were earlier reported in cancer-associated fibroblasts exposed to hypoxia. However, the cells in our study were cultured under normoxic conditions. We also noted a relation to IL-6 production. In conclusion, cultured cancer-associated fibroblasts and carcinoma cells reflect miR-21 and -210 expression similarly to the cancer tissue samples harvested from the patients.

Zobrazit více v PubMed

Park W., Chawla A., O’Reilly E.M. Pancreatic Cancer: A Review. JAMA. 2021;326:851–862. doi: 10.1001/jama.2021.13027. PubMed DOI PMC

Kuznetsova A., Popova O., Panchenkov D., Dyuzheva T., Ivanov A. Pancreatic ductal adenocarcinoma: Tumor microenvironment and problems in the development of novel therapeutic strategies. Clin. Exp. Med. 2022 doi: 10.1007/s10238-022-00886-1. PubMed DOI

Vokurka M., Lacina L., Brabek J., Kolar M., Ng Y.Z., Smetana K., Jr. Cancer-Associated Fibroblasts Influence the Biological Properties of Malignant Tumours via Paracrine Secretion and Exosome Production. Int. J. Mol. Sci. 2022;23:964. doi: 10.3390/ijms23020964. PubMed DOI PMC

Podzolkov V.I., Pokrovskaya A.E., Vargina T.S., Ponomarev A.B., Kogan Y.A., Lerner J.V. Anaplastic Carcinoma of the Pancreas: Clinical and Morphological Characteristics. Case Rep. Gastroenterol. 2020;14:624–631. doi: 10.1159/000511037. PubMed DOI PMC

Novak S., Kolar M., Szabo A., Vernerova Z., Lacina L., Strnad H., Sachova J., Hradilova M., Havranek J., Spanko M., et al. Desmoplastic Crosstalk in Pancreatic Ductal Adenocarcinoma Is Reflected by Different Responses of Panc-1, MIAPaCa-2, PaTu-8902, and CAPAN-2 Cell Lines to Cancer-associated/Normal Fibroblasts. Cancer Genom. Proteom. 2021;18:221–243. doi: 10.21873/cgp.20254. PubMed DOI PMC

Chu X., Yang Y., Tian X. Crosstalk between Pancreatic Cancer Cells and Cancer-Associated Fibroblasts in the Tumor Microenvironment Mediated by Exosomal MicroRNAs. Int. J. Mol. Sci. 2022;23:9512. doi: 10.3390/ijms23179512. PubMed DOI PMC

LaRue M.M., Parker S., Puccini J., Cammer M., Kimmelman A.C., Bar-Sagi D. Metabolic reprogramming of tumor-associated macrophages by collagen turnover promotes fibrosis in pancreatic cancer. Proc. Natl. Acad. Sci. USA. 2022;119:e2119168119. doi: 10.1073/pnas.2119168119. PubMed DOI PMC

Dvorankova B., Szabo P., Lacina L., Kodet O., Matouskova E., Smetana K., Jr. Fibroblasts prepared from different types of malignant tumors stimulate expression of luminal marker keratin 8 in the EM-G3 breast cancer cell line. Histochem. Cell Biol. 2012;137:679–685. doi: 10.1007/s00418-012-0918-3. PubMed DOI

Kodet O., Kucera J., Strnadova K., Dvorankova B., Stork J., Lacina L., Smetana K., Jr. Cutaneous melanoma dissemination is dependent on the malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review) Int. J. Oncol. 2020;57:619–630. doi: 10.3892/ijo.2020.5090. PubMed DOI PMC

Strnadova K., Pfeiferova L., Prikryl P., Dvorankova B., Vlcak E., Frydlova J., Vokurka M., Novotny J., Sachova J., Hradilova M., et al. Exosomes produced by melanoma cells significantly influence the biological properties of normal and cancer-associated fibroblasts. Histochem. Cell Biol. 2022;157:153–172. doi: 10.1007/s00418-021-02052-2. PubMed DOI PMC

Carthew R.W., Sontheimer E.J. Origins and Mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–655. doi: 10.1016/j.cell.2009.01.035. PubMed DOI PMC

Menon A., Abd-Aziz N., Khalid K., Poh C.L., Naidu R. miRNA: A Promising Therapeutic Target in Cancer. Int. J. Mol. Sci. 2022;23:11502. doi: 10.3390/ijms231911502. PubMed DOI PMC

Cheung P.Y., Szafranska-Schwarzbach A.E., Schlageter A.M., Andruss B.F., Weiss G.J. No miR quirk: Dysregulation of microRNAs in pancreatic ductal adenocarcinoma. Microrna. 2012;1:49–58. doi: 10.2174/2211536611201010049. PubMed DOI

Szabo A., Gurlich R., Liberko M., Soumarova R., Vernerova Z., Mandys V., Popov A. Expression of selected microRNAs in pancreatic ductal adenocarcinoma: Is there a relation to tumor morphology, progression and patient’s outcome? Neoplasma. 2020;67:1170–1181. doi: 10.4149/neo_2020_200123N87. PubMed DOI

Popov A., Mandys V. Senescence-Associated miRNAs and Their Role in Pancreatic Cancer. Pathol. Oncol. Res. 2022;28:1610156. doi: 10.3389/pore.2022.1610156. PubMed DOI PMC

Greither T., Grochola L.F., Udelnow A., Lautenschlager C., Wurl P., Taubert H. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int. J. Cancer. 2010;126:73–80. doi: 10.1002/ijc.24687. PubMed DOI

Negoi I., Hostiuc S., Sartelli M., Negoi R.I., Beuran M. MicroRNA-21 as a prognostic biomarker in patients with pancreatic cancer—A systematic review and meta-analysis. Am. J. Surg. 2017;214:515–524. doi: 10.1016/j.amjsurg.2017.03.049. PubMed DOI

Tomasek J.J., Gabbiani G., Hinz B., Chaponnier C., Brown R.A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 2002;3:349–363. doi: 10.1038/nrm809. PubMed DOI

Zhao B., Baloch Z., Ma Y., Wan Z., Huo Y., Li F., Zhao Y. Identification of Potential Key Genes and Pathways in Early-Onset Colorectal Cancer Through Bioinformatics Analysis. Cancer Control. 2019;26:1073274819831260. doi: 10.1177/1073274819831260. PubMed DOI PMC

Creuzet S., Couly G., Le Douarin N.M. Patterning the neural crest derivatives during development of the vertebrate head: Insights from avian studies. J. Anat. 2005;207:447–459. doi: 10.1111/j.1469-7580.2005.00485.x. PubMed DOI PMC

LeBleu V.S., Neilson E.G. Origin and functional heterogeneity of fibroblasts. FASEB J. 2020;34:3519–3536. doi: 10.1096/fj.201903188R. PubMed DOI

Forte E., Ramialison M., Nim H.T., Mara M., Li J.Y., Cohn R., Daigle S.L., Boyd S., Stanley E.G., Elefanty A.G., et al. Adult mouse fibroblasts retain organ-specific transcriptomic identity. Elife. 2022;11:e71008. doi: 10.7554/eLife.71008. PubMed DOI PMC

Bera A., VenkataSubbaRao K., Manoharan M.S., Hill P., Freeman J.W. A miRNA signature of chemoresistant mesenchymal phenotype identifies novel molecular targets associated with advanced pancreatic cancer. PLoS ONE. 2014;9:e106343. doi: 10.1371/journal.pone.0106343. PubMed DOI PMC

Bao B., Ali S., Ahmad A., Azmi A.S., Li Y., Banerjee S., Kong D., Sethi S., Aboukameel A., Padhye S.B., et al. Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PLoS ONE. 2012;7:e50165. doi: 10.1371/journal.pone.0050165. PubMed DOI PMC

Bavelloni A., Ramazzotti G., Poli A., Piazzi M., Focaccia E., Blalock W., Faenza I. MiRNA-210: A Current Overview. Anticancer Res. 2017;37:6511–6521. doi: 10.21873/anticanres.12107. PubMed DOI

Geismann C., Arlt A. Coming in the Air: Hypoxia Meets Epigenetics in Pancreatic Cancer. Cells. 2020;9:2353. doi: 10.3390/cells9112353. PubMed DOI PMC

Narayanan S., Eliasson Angelstig S., Xu C., Grunler J., Zhao A., Zhu W., Xu Landen N., Stahle M., Zhang J., Ivan M., et al. HypoxamiR-210 accelerates wound healing in diabetic mice by improving cellular metabolism. Commun. Biol. 2020;3:768. doi: 10.1038/s42003-020-01495-y. PubMed DOI PMC

Chen X., Peng Y., Xue H., Liu G., Wang N., Shao Z. MiR-21 regulating PVT1/PTEN/IL-17 axis towards the treatment of infectious diabetic wound healing by modified GO-derived biomaterial in mouse models. J. Nanobiotechnol. 2022;20:309. doi: 10.1186/s12951-022-01516-4. PubMed DOI PMC

Ali S., Suresh R., Banerjee S., Bao B., Xu Z., Wilson J., Philip P.A., Apte M., Sarkar F.H. Contribution of microRNAs in understanding the pancreatic tumor microenvironment involving cancer associated stellate and fibroblast cells. Am. J. Cancer Res. 2015;5:1251–1264. PubMed PMC

Xie J., Wu W., Zheng L., Lin X., Tai Y., Wang Y., Wang L. Roles of MicroRNA-21 in Skin Wound Healing: A Comprehensive Review. Front. Pharmacol. 2022;13:828627. doi: 10.3389/fphar.2022.828627. PubMed DOI PMC

Gal P., Varinska L., Faber L., Novak S., Szabo P., Mitrengova P., Mirossay A., Mucaji P., Smetana K. How Signaling Molecules Regulate Tumor Microenvironment: Parallels to Wound Repair. Molecules. 2017;22:1818. doi: 10.3390/molecules22111818. PubMed DOI PMC

Gal P., Brabek J., Holub M., Jakubek M., Sedo A., Lacina L., Strnadova K., Dubovy P., Hornychova H., Ryska A., et al. Autoimmunity, cancer and COVID-19 abnormally activate wound healing pathways: Critical role of inflammation. Histochem. Cell Biol. 2022;158:415–434. doi: 10.1007/s00418-022-02140-x. PubMed DOI PMC

Wang B., Du R., Xiao X., Deng Z.L., Jian D., Xie H.F., Li J. Microrna-217 modulates human skin fibroblast senescence by directly targeting DNA methyltransferase 1. Oncotarget. 2017;8:33475–33486. doi: 10.18632/oncotarget.16509. PubMed DOI PMC

Chang X., Yu C., Li J., Yu S., Chen J. hsa-miR-96 and hsa-miR-217 Expression Down-Regulates with Increasing Dysplasia in Pancreatic Intraepithelial Neoplasias and Intraductal Papillary Mucinous Neoplasms. Int. J. Med. Sci. 2017;14:412–418. doi: 10.7150/ijms.18641. PubMed DOI PMC

Zhao W.G., Yu S.N., Lu Z.H., Ma Y.H., Gu Y.M., Chen J. The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis. 2010;31:1726–1733. doi: 10.1093/carcin/bgq160. PubMed DOI

Prinz C., Fehring L., Frese R. MicroRNAs as Indicators of Malignancy in Pancreatic Ductal Adenocarcinoma (PDAC) and Cystic Pancreatic Lesions. Cells. 2022;11:2374. doi: 10.3390/cells11152374. PubMed DOI PMC

Rahimi H.R., Mojarrad M., Moghbeli M. MicroRNA-96: A therapeutic and diagnostic tumor marker. Iran J. Basic Med. Sci. 2022;25:3–13. doi: 10.22038/IJBMS.2021.59604.13226. PubMed DOI PMC

Cui X., Churchill G.A. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol. 2003;4:210. doi: 10.1186/gb-2003-4-4-210. PubMed DOI PMC

Paczkowska J., Giefing M. MicroRNA signature in classical Hodgkin lymphoma. J. Appl. Genet. 2021;62:281–288. doi: 10.1007/s13353-021-00614-7. PubMed DOI PMC

Chen Z.Y., Chen X., Wang Z.X. The role of microRNA-196a in tumorigenesis, tumor progression, and prognosis. Tumour Biol. 2016 doi: 10.1007/s13277-016-5430-2. PubMed DOI

Chen W.Y., Liu W.J., Zhao Y.P., Zhou L., Zhang T.P., Chen G., Shu H. Induction, modulation and potential targets of miR-210 in pancreatic cancer cells. Hepatobiliary Pancreat. Dis. Int. 2012;11:319–324. doi: 10.1016/S1499-3872(12)60168-4. PubMed DOI

Sabry D., El-Deek S.E.M., Maher M., El-Baz M.A.H., El-Bader H.M., Amer E., Hassan E.A., Fathy W., El-Deek H.E.M. Role of miRNA-210, miRNA-21 and miRNA-126 as diagnostic biomarkers in colorectal carcinoma: Impact of HIF-1alpha-VEGF signaling pathway. Mol. Cell Biochem. 2019;454:177–189. doi: 10.1007/s11010-018-3462-1. PubMed DOI

Sun X., Zhang Y., Li B., Yang H. MTA1 promotes the invasion and migration of pancreatic cancer cells potentially through the HIF-alpha/VEGF pathway. J. Recept. Signal Transduct. Res. 2018;38:352–358. doi: 10.1080/10799893.2018.1531887. PubMed DOI

Juhasz M., Chen J., Lendeckel U., Kellner U., Kasper H.U., Tulassay Z., Pastorekova S., Malfertheiner P., Ebert M.P. Expression of carbonic anhydrase IX in human pancreatic cancer. Aliment. Pharmacol. Ther. 2003;18:837–846. doi: 10.1046/j.1365-2036.2003.01738.x. PubMed DOI

Neal C.S., Michael M.Z., Rawlings L.H., Van der Hoek M.B., Gleadle J.M. The VHL-dependent regulation of microRNAs in renal cancer. BMC Med. 2010;8:64. doi: 10.1186/1741-7015-8-64. PubMed DOI PMC

Nijsten T., Colpaert C.G., Vermeulen P.B., Harris A.L., Van Marck E., Lambert J. Cyclooxygenase-2 expression and angiogenesis in squamous cell carcinoma of the skin and its precursors: A paired immunohistochemical study of 35 cases. Br. J. Dermatol. 2004;151:837–845. doi: 10.1111/j.1365-2133.2004.06214.x. PubMed DOI

Lee S., Jiang X. Modeling miRNA-mRNA interactions that cause phenotypic abnormality in breast cancer patients. PLoS ONE. 2017;12:e0182666. doi: 10.1371/journal.pone.0182666. PubMed DOI PMC

Noman M.Z., Buart S., Romero P., Ketari S., Janji B., Mari B., Mami-Chouaib F., Chouaib S. Hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells. Cancer Res. 2012;72:4629–4641. doi: 10.1158/0008-5472.CAN-12-1383. PubMed DOI

Luan Y., Zhang X., Zhang Y., Dong Y. MicroRNA-210 Protects PC-12 Cells Against Hypoxia-Induced Injury by Targeting BNIP3. Front. Cell Neurosci. 2017;11:285. doi: 10.3389/fncel.2017.00285. PubMed DOI PMC

Chen Q., Xie X. Association of Exosomal miR-210 with Signaling Pathways Implicated in Lung Cancer. Genes. 2021;12:1248. doi: 10.3390/genes12081248. PubMed DOI PMC

Tarhini A.A., Lin Y., Yeku O., LaFramboise W.A., Ashraf M., Sander C., Lee S., Kirkwood J.M. A four-marker signature of TNF-RII, TGF-alpha, TIMP-1 and CRP is prognostic of worse survival in high-risk surgically resected melanoma. J. Transl. Med. 2014;12:19. doi: 10.1186/1479-5876-12-19. PubMed DOI PMC

Yang C.H., Yue J., Pfeffer S.R., Fan M., Paulus E., Hosni-Ahmed A., Sims M., Qayyum S., Davidoff A.M., Handorf C.R., et al. MicroRNA-21 promotes glioblastoma tumorigenesis by down-regulating insulin-like growth factor-binding protein-3 (IGFBP3) J. Biol. Chem. 2014;289:25079–25087. doi: 10.1074/jbc.M114.593863. PubMed DOI PMC

Lacina L., Kodet O., Dvorankova B., Szabo P., Smetana K., Jr. Ecology of melanoma cell. Histol. Histopathol. 2018;33:247–254. doi: 10.14670/HH-11-926. PubMed DOI

Cancer Genome Atlas Research Network Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell. 2017;32:185–203.e113. doi: 10.1016/j.ccell.2017.07.007. PubMed DOI PMC

Donahue T.R., Nguyen A.H., Moughan J., Li L., Tatishchev S., Toste P., Farrell J.J. Stromal microRNA-21 levels predict response to 5-fluorouracil in patients with pancreatic cancer. J. Surg. Oncol. 2014;110:952–959. doi: 10.1002/jso.23750. PubMed DOI PMC

Chen S., Chen X., Shan T., Ma J., Lin W., Li W., Kang Y. MiR-21-mediated Metabolic Alteration of Cancer-associated Fibroblasts and Its Effect on Pancreatic Cancer Cell Behavior. Int. J. Biol. Sci. 2018;14:100–110. doi: 10.7150/ijbs.22555. PubMed DOI PMC

Zhang L., Yao J., Li W., Zhang C. Micro-RNA-21 Regulates Cancer-Associated Fibroblast-Mediated Drug Resistance in Pancreatic Cancer. Oncol. Res. 2018;26:827–835. doi: 10.3727/096504017X14934840662335. PubMed DOI PMC

Savardashtaki A., Shabaninejad Z., Movahedpour A., Sahebnasagh R., Mirzaei H., Hamblin M.R. miRNAs derived from cancer-associated fibroblasts in colorectal cancer. Epigenomics. 2019;11:1627–1645. doi: 10.2217/epi-2019-0110. PubMed DOI PMC

Richards K.E., Xiao W., Hill R., On Behalf Of The Usc Pancreas Research T. Cancer-Associated Fibroblasts Confer Gemcitabine Resistance to Pancreatic Cancer Cells through PTEN-Targeting miRNAs in Exosomes. Cancers. 2022;14:2812. doi: 10.3390/cancers14112812. PubMed DOI PMC

Frampton A.E., Krell J., Jamieson N.B., Gall T.M., Giovannetti E., Funel N., Mato Prado M., Krell D., Habib N.A., Castellano L., et al. microRNAs with prognostic significance in pancreatic ductal adenocarcinoma: A meta-analysis. Eur. J. Cancer. 2015;51:1389–1404. doi: 10.1016/j.ejca.2015.04.006. PubMed DOI

Steele C.W., Oien K.A., McKay C.J., Jamieson N.B. Clinical potential of microRNAs in pancreatic ductal adenocarcinoma. Pancreas. 2011;40:1165–1171. doi: 10.1097/MPA.0b013e3182218ffb. PubMed DOI

Hernandez Y.G., Lucas A.L. MicroRNA in pancreatic ductal adenocarcinoma and its precursor lesions. World J. Gastrointest. Oncol. 2016;8:18–29. doi: 10.4251/wjgo.v8.i1.18. PubMed DOI PMC

Takikawa T., Masamune A., Hamada S., Nakano E., Yoshida N., Shimosegawa T. miR-210 regulates the interaction between pancreatic cancer cells and stellate cells. Biochem. Biophys. Res. Commun. 2013;437:433–439. doi: 10.1016/j.bbrc.2013.06.097. PubMed DOI

Nielsen B.S., Jorgensen S., Fog J.U., Sokilde R., Christensen I.J., Hansen U., Brunner N., Baker A., Moller S., Nielsen H.J. High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin. Exp. Metastasis. 2011;28:27–38. doi: 10.1007/s10585-010-9355-7. PubMed DOI PMC

Lee K.S., Nam S.K., Koh J., Kim D.W., Kang S.B., Choe G., Kim W.H., Lee H.S. Stromal Expression of MicroRNA-21 in Advanced Colorectal Cancer Patients with Distant Metastases. J. Pathol. Transl. Med. 2016;50:270–277. doi: 10.4132/jptm.2016.03.19. PubMed DOI PMC

Bhome R., Goh R.W., Bullock M.D., Pillar N., Thirdborough S.M., Mellone M., Mirnezami R., Galea D., Veselkov K., Gu Q., et al. Exosomal microRNAs derived from colorectal cancer-associated fibroblasts: Role in driving cancer progression. Aging. 2017;9:2666–2694. doi: 10.18632/aging.101355. PubMed DOI PMC

Yang Y., Gu J., Li X., Xue C., Ba L., Gao Y., Zhou J., Bai C., Sun Z., Zhao R.C. HIF-1alpha promotes the migration and invasion of cancer-associated fibroblasts by miR-210. Aging Dis. 2021;12:1794–1807. doi: 10.14336/AD.2021.0315. PubMed DOI PMC

Kunita A., Morita S., Irisa T.U., Goto A., Niki T., Takai D., Nakajima J., Fukayama M. MicroRNA-21 in cancer-associated fibroblasts supports lung adenocarcinoma progression. Sci. Rep. 2018;8:8838. doi: 10.1038/s41598-018-27128-3. PubMed DOI PMC

Marin I., Ofek E., Bar J., Prisant N., Perelman M., Avivi C., Lavy-Shahaf G., Onn A., Katz R., Barshack I. MiR-21, EGFR and PTEN in non-small cell lung cancer: An in situ hybridisation and immunohistochemistry study. J. Clin. Pathol. 2020;73:636–641. doi: 10.1136/jclinpath-2019-206420. PubMed DOI

Fan J., Xu G., Chang Z., Zhu L., Yao J. miR-210 transferred by lung cancer cell-derived exosomes may act as proangiogenic factor in cancer-associated fibroblasts by modulating JAK2/STAT3 pathway. Clin. Sci. 2020;134:807–825. doi: 10.1042/CS20200039. PubMed DOI

Yang F., Yan Y., Yang Y., Hong X., Wang M., Yang Z., Liu B., Ye L. MiR-210 in exosomes derived from CAFs promotes non-small cell lung cancer migration and invasion through PTEN/PI3K/AKT pathway. Cell Signal. 2020;73:109675. doi: 10.1016/j.cellsig.2020.109675. PubMed DOI

Rask L., Balslev E., Jorgensen S., Eriksen J., Flyger H., Moller S., Hogdall E., Litman T., Nielsen B.S. High expression of miR-21 in tumor stroma correlates with increased cancer cell proliferation in human breast cancer. APMIS. 2011;119:663–673. doi: 10.1111/j.1600-0463.2011.02782.x. PubMed DOI

Tejchman A., Lamerant-Fayel N., Jacquinet J.C., Bielawska-Pohl A., Mleczko-Sanecka K., Grillon C., Chouaib S., Ugorski M., Kieda C. Tumor hypoxia modulates podoplanin/CCL21 interactions in CCR7+ NK cell recruitment and CCR7+ tumor cell mobilization. Oncotarget. 2017;8:31876–31887. doi: 10.18632/oncotarget.16311. PubMed DOI PMC

Uozaki H., Morita S., Kumagai A., Aso T., Soejima Y., Takahashi Y., Fukusato T. Stromal miR-21 is more important than miR-21 of tumour cells for the progression of gastric cancer. Histopathology. 2014;65:775–783. doi: 10.1111/his.12491. PubMed DOI

Kumar B., Rosenberg A.Z., Choi S.M., Fox-Talbot K., De Marzo A.M., Nonn L., Brennen W.N., Marchionni L., Halushka M.K., Lupold S.E. Cell-type specific expression of oncogenic and tumor suppressive microRNAs in the human prostate and prostate cancer. Sci. Rep. 2018;8:7189. doi: 10.1038/s41598-018-25320-z. PubMed DOI PMC

Taddei M.L., Cavallini L., Comito G., Giannoni E., Folini M., Marini A., Gandellini P., Morandi A., Pintus G., Raspollini M.R., et al. Senescent stroma promotes prostate cancer progression: The role of miR-210. Mol. Oncol. 2014;8:1729–1746. doi: 10.1016/j.molonc.2014.07.009. PubMed DOI PMC

Andersen S., Richardsen E., Moi L., Donnem T., Nordby Y., Ness N., Holman M.E., Bremnes R.M., Busund L.T. Fibroblast miR-210 overexpression is independently associated with clinical failure in Prostate Cancer—A multicenter (in situ hybridisation) study. Sci. Rep. 2016;6:36573. doi: 10.1038/srep36573. PubMed DOI PMC

Aubert S., Berdelou A., Gnemmi V., Behal H., Caiazzo R., D’Herbomez M., Pigny P., Wemeau J.L., Carnaille B., Renaud F., et al. Large sporadic thyroid medullary carcinomas: Predictive factors for lymph node involvement. Virchows Arch. 2018;472:461–468. doi: 10.1007/s00428-018-2303-7. PubMed DOI

Wang C., Wang Y., Chang X., Ba X., Hu N., Liu Q., Fang L., Wang Z. Melanoma-Derived Exosomes Endow Fibroblasts with an Invasive Potential via miR-21 Target Signaling Pathway. Cancer Manag. Res. 2020;12:12965–12974. doi: 10.2147/CMAR.S273718. PubMed DOI PMC

Brabek J., Jakubek M., Vellieux F., Novotny J., Kolar M., Lacina L., Szabo P., Strnadova K., Rosel D., Dvorankova B., et al. Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19. Int. J. Mol. Sci. 2020;21:7937. doi: 10.3390/ijms21217937. PubMed DOI PMC

Spanko M., Strnadova K., Pavlicek A.J., Szabo P., Kodet O., Valach J., Dvorankova B., Smetana K., Jr., Lacina L. IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives. Int. J. Mol. Sci. 2021;22:11027. doi: 10.3390/ijms222011027. PubMed DOI PMC

Bumrungthai S., Ekalaksananan T., Evans M.F., Chopjitt P., Tangsiriwatthana T., Patarapadungkit N., Kleebkaow P., Luanratanakorn S., Kongyingyoes B., Worawichawong S., et al. Up-Regulation of miR-21 Is Associated with Cervicitis and Human Papillomavirus Infection in Cervical Tissues. PLoS ONE. 2015;10:e0127109. doi: 10.1371/journal.pone.0127109. PubMed DOI PMC

Waster P., Eriksson I., Vainikka L., Ollinger K. Extracellular vesicles released by melanocytes after UVA irradiation promote intercellular signaling via miR21. Pigment. Cell Melanoma Res. 2020;33:542–555. doi: 10.1111/pcmr.12860. PubMed DOI

Martinez-Gutierrez A., Carbajal-Lopez B., Bui T.M., Mendoza-Rodriguez M., Campos-Parra A.D., Calderillo-Ruiz G., Cantu-De Leon D., Madrigal-Santillan E.O., Sumagin R., Perez-Plasencia C., et al. A microRNA panel that regulates proinflammatory cytokines as diagnostic and prognosis biomarkers in colon cancer. Biochem. Biophys. Rep. 2022;30:101252. doi: 10.1016/j.bbrep.2022.101252. PubMed DOI PMC

Lages E., Guttin A., El Atifi M., Ramus C., Ipas H., Dupre I., Rolland D., Salon C., Godfraind C., de Fraipont F., et al. MicroRNA and target protein patterns reveal physiopathological features of glioma subtypes. PLoS ONE. 2011;6:e20600. doi: 10.1371/journal.pone.0020600. PubMed DOI PMC

Zhou X., Ren Y., Liu A., Han L., Zhang K., Li S., Li P., Li P., Kang C., Wang X., et al. STAT3 inhibitor WP1066 attenuates miRNA-21 to suppress human oral squamous cell carcinoma growth in vitro and in vivo. Oncol. Rep. 2014;31:2173–2180. doi: 10.3892/or.2014.3114. PubMed DOI

Ou H., Li Y., Kang M. Activation of miR-21 by STAT3 induces proliferation and suppresses apoptosis in nasopharyngeal carcinoma by targeting PTEN gene. PLoS ONE. 2014;9:e109929. doi: 10.1371/journal.pone.0109929. PubMed DOI PMC

Lu X., Luo F., Liu Y., Zhang A., Li J., Wang B., Xu W., Shi L., Liu X., Lu L., et al. The IL-6/STAT3 pathway via miR-21 is involved in the neoplastic and metastatic properties of arsenite-transformed human keratinocytes. Toxicol. Lett. 2015;237:191–199. doi: 10.1016/j.toxlet.2015.06.011. PubMed DOI

Lai C.Y., Yeh K.Y., Liu B.F., Chang T.M., Chang C.H., Liao Y.F., Liu Y.W., Her G.M. MicroRNA-21 Plays Multiple Oncometabolic Roles in Colitis-Associated Carcinoma and Colorectal Cancer via the PI3K/AKT, STAT3, and PDCD4/TNF-alpha Signaling Pathways in Zebrafish. Cancers. 2021;13:5565. doi: 10.3390/cancers13215565. PubMed DOI PMC

Zhao Q., Huang L., Qin G., Qiao Y., Ren F., Shen C., Wang S., Liu S., Lian J., Wang D., et al. Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma. Cancer Lett. 2021;518:35–48. doi: 10.1016/j.canlet.2021.06.009. PubMed DOI

Rose-John S. IL-6 trans-signaling via the soluble IL-6 receptor: Importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 2012;8:1237–1247. doi: 10.7150/ijbs.4989. PubMed DOI PMC

Kamohara H., Ogawa M., Ishiko T., Sakamoto K., Baba H. Leukemia inhibitory factor functions as a growth factor in pancreas carcinoma cells: Involvement of regulation of LIF and its receptor expression. Int. J. Oncol. 2007;30:977–983. doi: 10.3892/ijo.30.4.977. PubMed DOI

Di Giorgio C., Lupia A., Marchiano S., Bordoni M., Bellini R., Massa C., Urbani G., Roselli R., Moraca F., Sepe V., et al. Repositioning Mifepristone as a Leukaemia Inhibitory Factor Receptor Antagonist for the Treatment of Pancreatic Adenocarcinoma. Cells. 2022;11:3482. doi: 10.3390/cells11213482. PubMed DOI PMC

Yue X., Zhao Y., Zhang C., Li J., Liu Z., Liu J., Hu W. Leukemia inhibitory factor promotes EMT through STAT3-dependent miR-21 induction. Oncotarget. 2016;7:3777–3790. doi: 10.18632/oncotarget.6756. PubMed DOI PMC

Kuphal S., Wallner S., Bosserhoff A.K. Impact of LIF (leukemia inhibitory factor) expression in malignant melanoma. Exp. Mol. Pathol. 2013;95:156–165. doi: 10.1016/j.yexmp.2013.06.012. PubMed DOI

Vendrell-Flotats M., Garcia-Martinez T., Martinez-Rodero I., Lopez-Bejar M., LaMarre J., Yeste M., Mogas T. In vitro maturation in the presence of Leukemia Inhibitory Factor modulates gene and miRNA expression in bovine oocytes and embryos. Sci. Rep. 2020;10:17777. doi: 10.1038/s41598-020-74961-6. PubMed DOI PMC

Tscherner A., Brown A.C., Stalker L., Kao J., Dufort I., Sirard M.A., LaMarre J. STAT3 signaling stimulates miR-21 expression in bovine cumulus cells during in vitro oocyte maturation. Sci. Rep. 2018;8:11527. doi: 10.1038/s41598-018-29874-w. PubMed DOI PMC

Morales-Prieto D.M., Barth E., Murrieta-Coxca J.M., Favaro R.R., Gutierrez-Samudio R.N., Chaiwangyen W., Ospina-Prieto S., Gruhn B., Schleussner E., Marz M., et al. Identification of miRNAs and associated pathways regulated by Leukemia Inhibitory Factor in trophoblastic cell lines. Placenta. 2019;88:20–27. doi: 10.1016/j.placenta.2019.09.005. PubMed DOI

Hu B., Yang X.B., Sang X.T. Development and Verification of the Hypoxia-Related and Immune-Associated Prognosis Signature for Hepatocellular Carcinoma. J. Hepatocell. Carcinoma. 2020;7:315–330. doi: 10.2147/JHC.S272109. PubMed DOI PMC

Sun Y., Wang S., Zhang X., Wu Z., Li Z., Ding Z., Huang X., Chen S., Jing Y., Zhang X., et al. Identification and Validation of PLOD2 as an Adverse Prognostic Biomarker for Oral Squamous Cell Carcinoma. Biomolecules. 2021;11:1842. doi: 10.3390/biom11121842. PubMed DOI PMC

Sohrabi E., Rezaie E., Heiat M., Sefidi-Heris Y. An Integrated Data Analysis of mRNA, miRNA and Signaling Pathways in Pancreatic Cancer. Biochem. Genet. 2021;59:1326–1358. doi: 10.1007/s10528-021-10062-x. PubMed DOI

Bi L., Huang Y., Li J., Yang X., Hou G., Zhai P., Zhang Q., Alhaji A.A., Yang Y., Liu B. Pirfenidone Attenuates Renal Tubulointerstitial Fibrosis through Inhibiting miR-21. Nephron. 2022;146:110–120. doi: 10.1159/000519495. PubMed DOI

Wang Z., Zhou H., Cheng F., Zhang Z., Long S. MiR-21 regulates epithelial-mesenchymal transition in intestinal fibrosis of Crohn’s disease by targeting PTEN/mTOR. Dig. Liver Dis. 2022;54:1358–1366. doi: 10.1016/j.dld.2022.04.007. PubMed DOI

Zhu J., Tang Z., Ren J., Geng J., Guo F., Xu Z., Jia J., Chen L., Jia Y. Downregulation of microRNA-21 contributes to decreased collagen expression in venous malformations via transforming growth factor-beta/Smad3/microRNA-21 signaling feedback loop. J. Vasc. Surg. Venous Lymphat. Disord. 2022;10:469–481.e462. doi: 10.1016/j.jvsv.2021.08.020. PubMed DOI

Li Z., Meng D., Li G., Xu J., Tian K., Li Y. Overexpression of microRNA-210 promotes chondrocyte proliferation and extracellular matrix deposition by targeting HIF-3alpha in osteoarthritis. Mol. Med. Rep. 2016;13:2769–2776. doi: 10.3892/mmr.2016.4878. PubMed DOI

Morimoto C., Takedachi M., Kawasaki K., Shimomura J., Murata M., Hirai A., Kawakami K., Sawada K., Iwayama T., Murakami S. Hypoxia stimulates collagen hydroxylation in gingival fibroblasts and periodontal ligament cells. J. Periodontol. 2021;92:1635–1645. doi: 10.1002/JPER.20-0670. PubMed DOI

Yu Q., Xu C., Yuan W., Wang C., Zhao P., Chen L., Ma J. Evaluation of Plasma MicroRNAs as Diagnostic and Prognostic Biomarkers in Pancreatic Adenocarcinoma: miR-196a and miR-210 Could Be Negative and Positive Prognostic Markers, Respectively. Biomed. Res. Int. 2017;2017:6495867. doi: 10.1155/2017/6495867. PubMed DOI PMC

Vychytilova-Faltejskova P., Kiss I., Klusova S., Hlavsa J., Prochazka V., Kala Z., Mazanec J., Hausnerova J., Kren L., Hermanova M., et al. MiR-21, miR-34a, miR-198 and miR-217 as diagnostic and prognostic biomarkers for chronic pancreatitis and pancreatic ductal adenocarcinoma. Diagn Pathol. 2015;10:38. doi: 10.1186/s13000-015-0272-6. PubMed DOI PMC

Guz M., Jeleniewicz W., Cybulski M., Kozicka J., Kurzepa J., Madro A. Serum miR-210-3p can be used to differentiate between patients with pancreatic ductal adenocarcinoma and chronic pancreatitis. Biomed. Rep. 2021;14:10. doi: 10.3892/br.2020.1386. PubMed DOI PMC

Dvorankova B., Lacina L., Smetana K., Jr. Isolation of Normal Fibroblasts and Their Cancer-Associated Counterparts (CAFs) for Biomedical Research. Methods Mol. Biol. 2019;1879:393–406. doi: 10.1007/7651_2018_137. PubMed DOI

Shrestha B., Dunn L. The Declaration of Helsinki on Medical Research involving Human Subjects: A Review of Seventh Revision. J. Nepal. Health Res. Counc. 2020;17:548–552. doi: 10.33314/jnhrc.v17i4.1042. PubMed DOI

Mifkova A., Kodet O., Szabo P., Kucera J., Dvorankova B., Andre S., Koripelly G., Gabius H.J., Lehn J.M., Smetana K., Jr. Synthetic polyamine BPA-C8 inhibits TGF-beta1-mediated conversion of human dermal fibroblast to myofibroblasts and establishment of galectin-1-rich extracellular matrix in vitro. Chembiochem. 2014;15:1465–1470. doi: 10.1002/cbic.201402087. PubMed DOI

Szafranska A.E., Davison T.S., Shingara J., Doleshal M., Riggenbach J.A., Morrison C.D., Jewell S., Labourier E. Accurate molecular characterisation of formalin-fixed, paraffin-embedded tissues by microRNA expression profiling. J. Mol. Diagn. 2008;10:415–423. doi: 10.2353/jmoldx.2008.080018. PubMed DOI PMC

Doleshal M., Magotra A.A., Choudhury B., Cannon B.D., Labourier E., Szafranska A.E. Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 2008;10:203–211. doi: 10.2353/jmoldx.2008.070153. PubMed DOI PMC

Xi Y., Nakajima G., Gavin E., Morris C.G., Kudo K., Hayashi K., Ju J. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA. 2007;13:1668–1674. doi: 10.1261/rna.642907. PubMed DOI PMC

Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Carvalho B.S., Irizarry R.A. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26:2363–2367. doi: 10.1093/bioinformatics/btq431. PubMed DOI PMC

Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC

Gentleman R.C., Carey V.J., Bates D.M., Bolstad B., Dettling M., Dudoit S., Ellis B., Gautier L., Ge Y., Gentry J., et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80. doi: 10.1186/gb-2004-5-10-r80. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace