Assessing the potential role of arbuscular mycorrhizal fungi in improving the phytochemical content and antioxidant properties in Gomphrena globosa

. 2024 Oct 01 ; 14 (1) : 22830. [epub] 20241001

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39354027

Grantová podpora
VEGA Project 1/0542/24 Scientific Grant Agency
APVV-15-0079 Research and Development Support Agency
Excellence project PrF UHK 2016/2023-2024 UHK CEP - Centrální evidence projektů

Odkazy

PubMed 39354027
PubMed Central PMC11445267
DOI 10.1038/s41598-024-73479-5
PII: 10.1038/s41598-024-73479-5
Knihovny.cz E-zdroje

Strategies to increase the secondary metabolite production, obtained from medicinal plants has been the topic of research in recent years. The symbiotic interaction between arbuscular mycorrhizal fungi and plants allows host-fungus pairings to enhance secondary metabolite synthesis. Therefore, the current study investigated the effect of inoculating two distinct AMF species discretely as well as in conjunction on the flower-derived secondary metabolites in Gomphrena globosa. The findings showed that the plants inoculated with combined treatment exhibited higher total phenolic (50.11 mg GAE/g DW), flavonoids (29.67 mg QE/g DW), saponins (122.55 mg DE/g DW), tannins (165.71 TAE/g DW) and terpenoid (8.24 mg LE/g DW) content in the methanolic extract. HPTLC examination showed the existence of kaempferol and benzoic acid with the highest amount (0.90% and 5.83% respectively) observed in the same treatment. FTIR analysis revealed functional group peaks with increased peak intensity in the combination treatment. Higher antioxidant activities such as DPPH (IC50: 401.39 µg/mL), ABTS (IC50: 71.18 µg/mL) and FRAP (8774.73 µM Fe (II) equivalent) were observed in the methanolic extract of combined treatment. To our knowledge, this is the first study on the impact of AMF inoculation on bioactive compounds and antioxidant activities in G. globosa flowers. Moreover, this study could lead to the development of novel pharmaceuticals and herbal remedies for various diseases.

Zobrazit více v PubMed

Lone, R. et al. Mycorrhizal influence on metabolites, indigestible oligosaccharides, mineral nutrition and phytochemical constituents in onion (Allium cepa L.) plant. Sci. Hortic.193, 55–61 (2015).

Latef, A. A. H. A. et al. Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. J. Plant. Biol.59, 407–426 (2016).

Ran, Z. et al. Arbuscular mycorrhizal fungi: effects on secondary metabolite accumulation of traditional Chinese medicines. Plant. Biol.24, 932–938 (2022). PubMed

Oliveira, M. D. S. et al. Arbuscular mycorrhizal fungi (AMF) affects biomolecules content in Myracrodruon urundeuva seedlings. Ind. Crops Prod.50, 244–247 (2013).

Pistelli, L. et al. Arbuscular mycorrhizal fungi alter the content and composition of secondary metabolites in Bituminaria bituminosa L. Plant Biol.19, 926–933 (2017). PubMed

Johny, L., Cahill, D. M. & Adholeya, A. AMF enhance secondary metabolite production in ashwagandha, licorice, and marigold in a fungi-host specific manner. Rhizosphere17, 1–11 (2021).

Andrade, S. A. L., Malik, S., Sawaya, A. C. H. F., Bottcher, A. & Mazzafera, P. Association with arbuscular mycorrhizal fungi influences alkaloid synthesis and accumulation in Catharanthus roseus and Nicotiana tabacum plants. Acta Physiol. Plant35, 867–880 (2013).

Pedone-Bonfim, M. V. et al. Mycorrhizal technology and phosphorus in the production of primary and secondary metabolites in cebil (Anadenanthera colubrina (Vell.) Brenan) seedlings. J. Sci. Food Agric.93, 1479–1484 (2013). PubMed

Silva, F. A., Silva, F. S. & Maia, L. C. Biotechnical application of arbuscular mycorrhizal fungi used in the production of foliar biomolecules in ironwood seedlings [Libidibia Ferrea (Mart. Ex Tul.) LP Queiroz var. Ferrea]. J. Med. Plant Res.8, 814–819 (2014).

Domokos, E. et al. Increase in Artemisia annua plant biomass artemisinin content and guaiacol peroxidase activity using the arbuscular mycorrhizal fungus Rhizophagus Irregularis. Front. Plant. Sci.9, 1–9 (2018). PubMed PMC

Hassane, A. M., Taha, T. M., Awad, M. F., Mohamed, H. & Melebari, M. Radical scavenging potency, HPLC profiling and phylogenetic analysis of endophytic fungi isolated from selected medicinal plants of Saudi Arabia. Electron. J. Biotechnol.58, 37–45 (2022).

Ujvári, G., Turrini, A., Avio, L. & Agnolucci, M. Possible role of arbuscular mycorrhizal fungi and associated bacteria in the recruitment of endophytic bacterial communities by plant roots. Mycorrhiza31, 527–544 (2021). PubMed PMC

Hassane, A. M. et al. In vitro and in silico antioxidant efficiency of bio-potent secondary metabolites from different taxa of black seed-producing plants and their derived mycoendophytes. Front. Bioeng. Biotechnol.10, 1–16 (2022). PubMed PMC

Abdelrahem, M. M. M., Hassane, A. M., Abouelela, M. E. & Abo-Dahab, N. F. Comparative bioactivity and metabolites produced by fungal co-culture system against myco-phytopathogens. J. Environ. Stud.31, 1–15 (2023).

Campos, C., Carvalho, M., Brígido, C., Goss, M. J. & Nobre, T. Symbiosis specificity of the preceding host plant can dominate but not obliterate the association between wheat and its arbuscular mycorrhizal fungal partners. Front. Microbiol.9, 1–14 (2018). PubMed PMC

Zeng, Y. et al. Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza23, 253–265 (2013). PubMed

Battini, F., Bernardi, R., Turrini, A., Agnolucci, M. & Giovannetti, M. Rhizophagus intraradices or its associated bacteria affect gene expression of key enzymes involved in the rosmarinic acid biosynthetic pathway of basil. Mycorrhiza26, 699–707 (2016). PubMed

Tang, S. R. et al. Phenolic compounds from Gomphrena globosa L.: phytochemical analysis, antioxidant, antimicrobial, and enzyme inhibitory activities in vitro. CyTA-J Food20, 218–227 (2022).

Silva, L. R. et al. Phytochemical investigations and biological potential screening with cellular and non-cellular models of globe amaranth (Gomphrena globosa L.) inflorescences. Food Chem.135, 756–763 (2012). PubMed

Esmat, A. U., Mittapally, S. & Begum, S. GC-MS analysis of bioactive compounds and phytochemical evaluation of the ethanolic extract of Gomphrena globosa L. flowers. J. Drug Deliv. Ther.10, 53–58 (2020).

Ferreres, F., Gil-Izquierdo, A., Valentão, P. & Andrade, P. B. Structural characterization of phenolics and betacyanins in Gomphrena globosa by high‐performance liquid chromatography‐diode array detection/electrospray ionization multi‐stage mass spectrometry. Rapid Commun. Mass Spectrom.25, 3441–3446 (2011). PubMed

Farzaneh, M., Vierheilig, H., Lössl, A. & Kaul, H. P. Arbuscular mycorrhiza enhances nutrient uptake in chickpea. Plant Soil Environ.57, 465–470 (2011).

Karandashov, V. & Bucher, M. Structure–function model of Pht1 transporters. Trends Plant. Sci.1, 22–29 (2005). PubMed

Javot, H., Penmetsa, R. V., Terzaghi, N., Cook, D. R. & Harrison, M. J. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci.104, 1720–1725 (2007). PubMed PMC

Senguttuvan, J., Paulsamy, S. & Karthika, K. Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pac. J. Trop. Biomed.4, S359–S367 (2014). PubMed PMC

Chigayo, K., Mojapelo, P. E. L., Mnyakeni-Moleele, S. & Misihairabgwi, J. M. Phytochemical and antioxidant properties of different solvent extracts of Kirkia Wilmsii tubers. Asian Pac. J. Trop. Biomed.6, 1037–1043 (2016).

Ceccarelli, N. et al. Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil335, 311–323 (2010).

Mandal, S., Evelin, H., Giri, B., Singh, V. P. & Kapoor, R. Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms. Appl. Soil Ecol.72, 187–194 (2013).

Zubek, S., Rola, K., Szewczyk, A., Majewska, M. L. & Turnau, K. Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi. Plant Soil390, 129–142 (2015).

Pedone-Bonfim, M. V. L. et al. Mycorrhizal inoculation as an alternative for the sustainable production of Mimosa tenuiflora seedlings with improved growth and secondary compounds content. Fungal Biol.122, 918–927 (2018). PubMed

Lima, C. S., Santos, H. R. S., de Albuquerque, U. P. & da Silva, F. S. B. Mycorrhizal symbiosis increase the level of total foliar phenols and tannins in Commiphora leptophloeos (Mart.) JB Gillett seedlings. Ind. Crops Prod.104, 28–32 (2017).

Belakhdar, G., Benjouad, A. & Abdennebi, E. H. Determination of some bioactive chemical constituents from Thesium Humile Vahl. J. Mater. Environ. Sci.6, 2778–2783 (2015).

Reza, A. A. et al. Antiproliferative and antioxidant potentials of bioactive edible vegetable fraction of Achyranthes Ferruginea Roxb. In cancer cell line. Food Sci. Nutr.9, 3777–3805 (2021). PubMed PMC

Begum, I. F., Mohankumar, R., Jeevan, M. & Ramani, K. GC–MS analysis of bio-active molecules derived from Paracoccus pantotrophus FMR19 and the antimicrobial activity against bacterial pathogens and MDROs. Indian J. Microbiol.56, 426–432 (2016). PubMed PMC

Ibnouf, E. O., Aldawsari, M. F. & Waggiallah, H. A. Isolation and extraction of some compounds that act as antimicrobials from actinomycetes. Saudi J. Biol. Sci.29, 1–7 (2022). PubMed PMC

Song, Y. W., Lim, Y. & Cho, S. K. 2, 4–Di–tert–butylphenol, a potential HDAC6 inhibitor, induces senescence and mitotic catastrophe in human gastric adenocarcinoma AGS cells. Biochim. Biophys. Acta (BBA)-Mol. Cell Res.1865, 675–683 (2018). PubMed

Sansenya, S., Payaka, A. & Mansalai, P. Biological activity and inhibition potential against α-glucosidase and α-amylase of 2, 4-di-tert-butylphenol from bamboo shoot extract by in vitro and in silico studies. Process Biochem.126, 15–22 (2023).

Krishnamoorthy, K. & Subramaniam, P. Phytochemical profiling of leaf, stem, and tuber parts of Solena Amplexicaulis (Lam.) Gandhi using GC-MS. Int. Sch. Res. Not.2014, 1–14 (2014). PubMed PMC

Elaiyaraja, A. & Chandramohan, G. Comparative phytochemical profile of crinum defixum ker-gawler leaves using GC-MS. J. Drug Deliv. Ther.8, 365–380 (2018).

Singh, S. K. & Patra, A. Evaluation of phenolic composition, antioxidant, anti-inflammatory and anticancer activities of Polygonatum Verticillatum (L). J. Integr. Med.16, 273–282 (2018). PubMed

Meher, A., Behera, B. & Nanda, B. K. GC–MS investigation of phytocomponents present in ethanolic extract of plant Ichnocarpus frutescens (L.) W. T. Aiton aerial part. Int. J. Pharm. Sci. Res.11, 4711–4716 (2019).

Vanitha, V. et al. Heneicosane—A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Ind. Crops Prod.154, 1–8 (2020).

Alqahtani, S. S., Makeen, H. A., Menachery, S. J. & Moni, S. S. Documentation of bioactive principles of the flower from Caralluma retrospiciens (Ehrenb) and in vitro antibacterial activity–part B. Arab. J. Chem.13, 7370–7377 (2020).

Mazumder, K., Nabila, A., Aktar, A. & Farahnaky, A. Bioactive variability and in vitro and in vivo antioxidant activity of unprocessed and processed flour of nine cultivars of Australian lupin species: a comprehensive substantiation. Antioxidants9, 1–23 (2020). PubMed PMC

Begum, S. F. M., Priya, S., Sundararajan, R. & Hemalatha, S. Novel anticancerous compounds from Sargassum Wightii: in silico and in vitro approaches to test the antiproliferative efficacy. J. Adv. Pharm. Educ. Res.7, 272–277 (2017).

Salvamani, S., Gunasekaran, B., Shukor, M. Y., Bakar, M. Z. A. & Ahmad, S. A. Phytochemical investigation, hypocholesterolemic and anti-atherosclerotic effects of Amaranthus viridis leaf extract in hypercholesterolemia-induced rabbits. RSC Adv.6, 32685–32696 (2016).

Ayoola, A. A., Ekunseitan, D. A., Muhammad, S. B., Oguntoye, M. A. & Adejola, Y. A. Phytochemicals analysis and GC-MS determination of ethanolic extracts of Azadirachta indica and Mangifera indica stem bark and their biological potentials. Pac. J. Sci. Technol.21, 219–229 (2020).

Amudha, P., Jayalakshmi, M., Pushpabharathi, N. & Vanitha, V. Identification of bioactive components in Enhalus acoroides seagrass extract by gas chromatography-mass spectrometry. Asian J. Pharm. Clin. Res.11, 313–315 (2018).

Dulara, B. K., Godara, P. & Barwer, N. In-vivo and In-vitro phytochemical GC-MS analysis of volatile constituents of Andrographis paniculata (burm. f.) nees. Pharma Innov. J.8, 255–261 (2019).

Ogunlesi, M., Okiei, W., Ofor, E. & Osibote, A. E. Analysis of the essential oil from the dried leaves of Euphorbia hirta Linn (Euphorbiaceae), a potential medication for asthma. Afr. J. Biotechnol.8, 7042–7050 (2009).

Addai, Z. R., Abood, M. S. & Hlail, S. H. GC-MS profiling, antioxidants and antimicrobial activity of prickly pear (Opuntiaficus-indica) pulp extract. Pharmacogn. J.14, 262–267 (2022).

Arthi, V. & Prasanna, G. Hptlc finger print profile and in vitro antioxidant activity of Gomphrena globosa L. flowers. Int. J. Pharm. Sci. Rev. Res.39, 208–215 (2016).

Crisan, I. et al. Screening for changes on Iris germanica L. rhizomes following inoculation with arbuscular mycorrhiza using Fourier transform infrared spectroscopy. Agronomy9, 1–12 (2019).

Dhalaria, R. et al. Bioactive compounds of edible fruits with their anti-aging properties: a comprehensive review to prolong human life. Antioxidants9, 1–38 (2020). PubMed PMC

Ralte, L., Khiangte, L., Thangjam, N. M., Kumar, A. & Singh, Y. T. GC–MS and molecular docking analyses of phytochemicals from the underutilized plant, Parkia timoriana revealed candidate anti-cancerous and anti-inflammatory agents. Sci. Rep.12, 1–21 (2022). PubMed PMC

Nonglang, F. P., Khale, A. & Bhan, S. Phytochemical characterization of the ethanolic extract of Kaempferia galanga rhizome for anti-oxidant activities by HPTLC and GCMS. Future J. Pharm. Sci.8, 1–12 (2022).

Payne, A. C., Mazzer, A., Clarkson, G. J. & Taylor, G. Antioxidant assays–consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves. Food Sci. Nutr.1, 439–444 (2013). PubMed PMC

Abdelhalim, T. S. et al. Exploring the potential of arbuscular mycorrhizal fungi (AMF) for improving health-promoting phytochemicals in sorghum. Rhizosphere24, 1–9 (2022).

Avio, L., Sbrana, C., Giovannetti, M. & Frassinetti, S. Arbuscular mycorrhizal fungi affect total phenolics content and antioxidant activity in leaves of oak leaf lettuce varieties. Sci. Hortic.224, 265–271 (2017).

Rashidi, S., Yousefi, A. R., Pouryousef, M. & Goicoechea, N. Effect of arbuscular mycorrhizal fungi on the accumulation of secondary metabolites in roots and reproductive organs of Solanum nigrum, Digitaria sanguinalis and Ipomoea purpurea. Chem. Biol. Technol. Agric.9, 1–11 (2022).

Chen, S. et al. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front. Microbiol.8, 1–11 (2017). PubMed PMC

Verma, R. et al. Mycorrhizal inoculation impact on Acorus calamus L.-An ethnomedicinal plant of western Himalaya and its in silico studies for anti-inflammatory potential. J. Ethnopharmacol.265, 1–10 (2021). PubMed

Phillips, J. M. & Hayman, D. S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc.55, 158–IN18 (1970).

Das, M. et al. Co-composting of physic nut (Jatropha curcas) deoiled cake with rice straw and different animal dung. Bioresour Technol.102, 6541–6546 (2011). PubMed

Dhalaria, R. et al. Impact assessment of beneficial mycorrhizal fungi on phytochemical constituents and nutrient uptake in Gomphrena globosa. Sci. Hortic.325, 1–12 (2024).

Subashini, R. & Rakshitha, S. U. Phytochemical screening, antimicrobial activity and in vitro antioxidant investigation of methanolic extract of seeds from Helianthus annuus L. Chem. Sci. Rev. Lett.1, 30–34 (2012).

Gonfa, T., Teketle, S. & Kiros, T. Effect of extraction solvent on qualitative and quantitative analysis of major phyto-constituents and in-vitro antioxidant activity evaluation of Cadaba Rotundifolia Forssk leaf extracts. Cogent Food Agric.6, 1–12 (2020).

Maizura, M., Aminah, A. & Wan Aida, W. M. Total phenolic content and antioxidant activity of kesum (Polygonum minus), ginger (Zingiber officinale) and turmeric (Curcuma longa) extract. Int. Food Res. J.18, 45–50 (2011).

Chang, C. C., Yang, M. H., Wen, H. M. & Chern, J. C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal.10, 178–182 (2002).

Hiai, S., Oura, H. & Nakajima, T. Color reaction of some sapogenins and saponins with vanillin and sulfur1c acid. Planta Med.29, 116–122 (1976). PubMed

John, B. I. J. U., Sulaiman, C. T., George, S. & Reddy, V. R. K. Spectrophotometric estimation of total alkaloids in selected Justicia species. Int. J. Pharm. Pharm. Sci.6, 647–648 (2014).

Morsy, N. Phytochemical analysis of biologically active constituents of medicinal plants. Main Group Chem.13, 7–21 (2014).

Truong, D. H. et al. Effects of solvent—solvent fractionation on the total terpenoid content and in vitro anti-inflammatory activity of Serevenia buxifolia bark extract. Food Sci. Nutr.9, 1720–1735 (2021). PubMed PMC

Dinakaran, S. K., Chelle, S. & Avasarala, H. Profiling and determination of phenolic compounds in poly herbal formulations and their comparative evaluation. J. Tradit. Complement. Med.9, 319–327 (2019). PubMed PMC

Nikalje, G. C., Kumar, J., Nikam, T. D. & Suprasanna, P. FT-IR profiling reveals differential response of roots and leaves to salt stress in a halophyte Sesuvium portulacastrum (L.) L. Biotechnol. Rep.23, 1–5 (2019). PubMed PMC

Jain, A. et al. Antioxidant and hepatoprotective activity of ethanolic and aqueous extracts of Momordica dioica Roxb. Leaves. J. Ethnopharmacol.115, 61–66 (2008). PubMed

Noreen, H., Semmar, N., Farman, M. & McCullagh, J. S. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pac. J. Trop. Med.10, 792–801 (2017). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...