Altitudinal impacts on phytochemical composition and mycorrhizal diversity of Reinwardtia indica Dumort, a medicinally valuable herb
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RSP2025R134
Researchers Supporting Project Number (RSP2025R134), King Saud University, Riyadh, Saudi Arabia
RSP2025R134
Researchers Supporting Project Number (RSP2025R134), King Saud University, Riyadh, Saudi Arabia
RSP2025R134
Researchers Supporting Project Number (RSP2025R134), King Saud University, Riyadh, Saudi Arabia
PubMed
40059155
PubMed Central
PMC11892241
DOI
10.1186/s12870-025-06290-7
PII: 10.1186/s12870-025-06290-7
Knihovny.cz E-zdroje
- Klíčová slova
- Reinwardtia indica, Altitude, GC-MS, HPLC, Mycorrhiza, Phytochemicals, Soil properties,
- MeSH
- biodiverzita MeSH
- fytonutrienty * analýza chemie MeSH
- léčivé rostliny * chemie mikrobiologie MeSH
- mykorhiza * fyziologie MeSH
- nadmořská výška * MeSH
- půda chemie MeSH
- taniny analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fytonutrienty * MeSH
- půda MeSH
- taniny MeSH
BACKGROUND: Reinwardtia indica, a highly valued ethnomedicinal plant, has been traditionally used to treat various ailments due to its rich phytochemical composition. However, the impact of environmental factors, particularly altitude, on its medicinal properties remains unexplored. This study investigates the effects of altitudinal variation on phytochemicals, mycorrhizal diversity, and soil physico-chemical parameters of R. indica. RESULTS: The phytochemical study of R. indica revealed significant variations in phytochemical content across different altitudes. The methanol extract from the high-altitude site (i.e. Chail, 2000 m) exhibited the highest levels of phenol (142.63 ± 1.88 mg/g GAE), tannins (146.11 ± 1.73 mg/g GAE), flavonoid (51.59 ± 2.20 mg/g RUT), carbohydrate content (485.00 ± 1.52 mg/g GLU), and protein (12.95 ± 0.35 mg/g GAE). GC-MS analysis identified different bioactive compounds with antioxidant, antimicrobial, and antitumor properties. HPLC analysis showed varying rutin content across altitudes, with the highest amount at higher altitude. The plant's association with arbuscular mycorrhizal fungi decreased with increasing altitude, as evidenced by reduced mycorrhizal spore diversity and root colonization. Soil physico-chemical properties like soil pH, organic carbon, phosphorus and nitrogen also increased with the altitude. CONCLUSION: This study demonstrates that altitudinal variation significantly influences the phytochemical composition, mycorrhizal diversity, and soil properties of R. indica. High-altitude sites exhibited increased phytochemical content, particularly phenols, flavonoids, and tannins, suggesting enhanced medicinal value. Conversely, mycorrhizal association decreased with altitude, potentially due to environmental and soil property changes. These findings have implications for optimizing cultivation and conservation strategies for R. indica, highlighting the importance of altitude considerations in harnessing its medicinal potential.
Zobrazit více v PubMed
Bargali SS, Shrivastava SK, Dixit VK, Bargali K. Some less known ethnomedicinal plants of Jagdalpur district of Chattisgarh state. Bot. 2003;53:192–7.
Padalia K, Bargali K, Bargali SS. How does traditional home-gardens support ethnomedicinal values in Kumaun Himalayan Bhabhar belt, India? Afr J Tradit Complement Altern Med. 2015;12(6):100–12.
Vibhuti BK, Bargali SS. Changing pattern of plant species utilization in relation to altitude and their relative prevalence in homegardens of Kumaun himalaya India. Nat Res Hum Health. 2022.
Gupta SK, editor. Pharmacology and therapeutics in the new millennium. Springer Science & Business Media; 2001.
Parihaar RS, Bargali K, Bargali SS. Diversity and uses of Ethno-medicinal plants associated with traditional agroforestry systems in Kumaun himalaya. Indian J Agric Sci. 2014;84(12):1470–6.
Padalia KI, Bargali K, Bargali SS. Present scenario of agriculture and its allied occupation in a typical hill village of central Himalaya, India. Indian J Agric Sci. 2017;87(1):132–41.
Bargali SS, Shrivastava SK. Exploration of valuable medicinal vegetal wealth from the tribal belt of Bastar district in Chhattisgarh. Bot. 2002;52:75–82.
Pathak DK, Bargali K, Khatri K, Bargali SS. Distribution pattern, ecological status and ethnomedicinal uses of medicinal plants along an altitudinal gradient among Jaunsar tribes of Western himalaya. J Herbs Spices Med Plants. 2025;31(1):1–25.
Hanazaki N, Tamashiro JY, Leitão-Filho HF, Begossi A. Diversity of plant uses in two Caiçara communities from the Atlantic forest Coast, Brazil. Biodivers Conserv. 2000;9:597–615.
Vibhuti BK, Bargali SS. Species composition, diversity and traditional uses of homegarden in Kumaun Himalaya, India. Indian J Agric Sci. 2019;89(9):1415–8.
Herrmann TM. Indigenous knowledge and management of Araucaria araucana forest in the Chilean Andes: implications for native forest conservation. Biodivers Conserv. 2006;15:647–62.
Awasthi P, Bargali K, Bargali SS. Relative performance of Woody vegetation in response to facilitation by Coriaria Nepalensis in central Himalaya, India. Russ J Ecol. 2022;53(3):191–203.
Upadhyay P, Shukla R, Tiwari KN, Dubey GP, Mishra SK. Toxicity assessment of the alcoholic leaves extract of Reinwardtia indica. Braz J Pharm Sci. 2019;55:1–8.
Mehta S, Singh RP, Pooja S. Phytochemical screening and TLC profiling of various extracts of Reinwardtia indica. Int J Pharmacogn Phytochem Res. 2017;9:523–7.
Upadhyay P, Mishra SK, Mishra AK, Kumar P, Pandey N, Tiwari KN, Tilak R, Purohit S, Dubey GP. Evaluation of antioxidant and antimicrobial potential of a novel Himalayan plant Reinwardtia indica Dumort: scientifically unexplored. Microb Pathog. 2019;127:326–34. PubMed
Shukla A, Vats S, Shukla RK, Painuly D, Porval A, Singh J. Evaluation of in vitro antimicrobial activity, qualitative and quantitative phytochemical, proximate composition of leaf and stem of Reinwardtia indica Dumort: A comparative study. Indian J Nat Prod Resour. 2017;8:248–53.
Seyis F, Yurteri E, Özcan A, Cirak C. Altitudinal impacts on chemical content and composition of Hypericum perforatum, a prominent medicinal herb. S Afr J Bot. 2020;135:391–403.
Charan G, Bharti VK, Jadhav SE, Kumar S, Acharya S, Kumar P, Gogoi D, Srivastava RB. Altitudinal variations in soil physico-chemical properties at cold desert high altitude. J Soil Sci Plant Nutr. 2013;13:267–77.
Bargali SS, Padalia K, Bargali K. Effects of tree fostering on soil health and microbial biomass under different land use systems in the central Himalayas. Land Degrad Dev. 2019;30(16):1984–98.
Karki H, Bargali K, Bargali SS. Spatial and Temporal trends in soil N-mineralization rates under the agroforestry systems in Bhabhar belt of Kumaun Himalaya, India. Agrofor Syst. 2021;95(8):1603–17.
Smith SE, Read D. Mycorrhizal symbiosis. 3rd ed. San Diego: Academic; 2008.
Duan HX, Luo CL, Zhu Y, Zhao L, Wang J, Wang W, Xiong YC. Arbuscular mycorrhizal fungus activates wheat physiology for higher reproductive allocation under drought stress in primitive and modern wheat. Eur J Agron. 2024;161:127376.
Duan HX, Luo CL, Zhou R, Zhao L, Zhu SG, Chen Y, Zhu Y, Xiong YC. AM fungus promotes wheat grain filling via improving rhizospheric water & nutrient availability under drought and low density. Appl Soil Ecol. 2024;193:105159.
Oliveira MS, Campos MA, Albuquerque UP, Silva FS. Arbuscular mycorrhizal Fungi (AMF) affects biomolecules content in Myracrodruon Urundeuva seedlings. Ind Crops Prod. 2013;8:244–7.
Zitter-Eglseer K, Nell M, Lamien-Meda A, Steinkellner S, Wawrosh C, Kopp B, Zitterl W, Vierheilig H, Novak J. Effects of root colonization by symbiotic arbuscular mycorrhizal fungi on the yield of Pharmacologically active compounds in Angelica archangelica L. Acta physiol. Plant. 2015;37:2–11.
Verma R, Kumar D, Nagraik R, Sharma A, Tapwal A, Puri S, Kumar H, Kumari A, Nepovimova E, Kuca K. Mycorrhizal inoculation impact on Acorus calamus L.-An ethnomedicinal plant of Western himalaya and its in Silico studies for anti-inflammatory potential. J Ethnopharmacol. 2021;265:1–10. PubMed
Dhalaria R, Verma R, Kumar D, Upadhyay NK, Alomar S, Kuca K. Impact assessment of beneficial mycorrhizal fungi on phytochemical constituents and nutrient uptake in Gomphrena globosa. Sci Hortic. 2024;325:112646.
Chaudhari KG. Studies of the physicochemical parameters of soil samples. Adv Appl Sci Res. 2013;4:246–8.
Fall AF, Nakabonge G, Ssekandi J, Founoune-Mboup H, Apori SO, Ndiaye A, Badji A, Ngom K. Roles of arbuscular mycorrhizal fungi on soil fertility: contribution in the improvement of physical, chemical, and biological properties of the soil. Front Fungal Biol. 2022;3:1–11. PubMed PMC
Auge RM, Stodola AJ, Tims JE, Saxton AM. Moisture retention properties of a mycorrhizal soil. Plant Soil. 2001;230:87–97.
Sharma B. Study on impact assessment of climate change on the social and economic status of farmers in Dharampur block of district Solan of Himachal Pradesh. Int J Glob Environ Issues. 2016;15:269–79.
Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc. 1970;55:158–61.
Gerdemann JW, Nicolson TH. Spores of mycorrhizal Endogone species extracted from soil by wet Sieving and decanting. Trans Brit Mycol Soc. 1963;46:235–44.
Mukerji KG. Taxonomy of endomycorrhizal fungi. Advances in Botany. 1996. pp. 211–221.
Morton JB, Benny GL. Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, glomales, two new suborders, glomineae and gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon. 1990;37:471–91.
Walker C. Taxonomic concepts in the endogonaceae: spore wall characteristics in species descriptions. Mycotaxon. 1983;18:443–55.
Trappe JM. Synoptic keys to the genera and species of zygomycetous mycorrhizal fungi. Phytopathology. 1982;72:1102–8.
Bouyoucos GJ. Hydrometer method improved for making particle size analyses of soils1. Agron. J. 1962;54:464–5.
Chauhan PK, Singh V, Dhatwalia VK. Physiochemical and microbial activity of soil under conventional and organic agricultural systems. J Chem Pharm Res. 2011;3:799–804.
Anderson JM, Ingram JSI. Soil organic matter and organic carbon. In: Anderson JM, Ingram JSI, editors. Tropical soil biology and fertility: A handbook of methods. Wallingford: CAB International; 1993. pp. 62–8.
Tandon HLS. Methods of analysis of soil, plants, water and fertilizers. Fertiliser development and consultation organisation. New Delhi; 1993. p. 143.
Walkley A, Black CA. An examination of different methods for determining soil organic matter and proposed modifications of the chromic acid Titration method. Soil Sci. 1934;37:29–38.
Olsen S, Cole C, Watanebe F, Dean L. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA. Circular 939. Washington (DC): U.S. Government Printing Office; 1954.
Chapman HD, Pratt PF. Methods of analysis for soils, plants and water. Berkeley, CA, USA: University of California; 1961.
Jackson ML, Villiers JM. Aluminous chlorite origin of pH- dependent cation exchange capacity variations. Soil Sci Soc Am J. 1967;31:614–9.
Behera S, Babu SM, Ramani YR, Choudhury PK, Panigrahi R. Phytochemical investigation and study on antioxidant properties of Ocimum canum hydro-alcoholic leaf extracts. J Drug Deliv Ther. 2012;2:122–8.
Slinkard K, Singleton VL. Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic. 1977;28:49–55.
Tambe VD, Bhambar RS. Estimation of total phenol, tannin, alkaloid and flavonoid in Hibiscus tiliaceus Linn. Wood extracts. J Pharmacogn Phytochem. 2014;2:41–7.
Sulaiman CT, Balachandran I. Total phenolics and total flavonoids in selected Indian medicinal plants. Indian J Pharm Sci. 2012;74:258–60. PubMed PMC
Nielsen SS. Phenol-sulfuric acid method for total carbohydrates. In: Nielsen SS, editor. Food analysis laboratory manual. Boston, MA: Springer; 2010.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–725. PubMed
Kanthal LK, Dey A, Satyavathi K, Bhojaraju P. GC-MS analysis of bio- active compounds in methanolic extract of Lactuca runcinata DC. Pharmacogn. Res. 2014;6:58–61. PubMed PMC
Jaafar HZ, Karimi E, Ibrahim MH, Ghasemzadeh A. Phytochemical screening and antioxidant activity assessment of the leaf stem and root of (Labisia paucifolia). Aust J Crop Sci. 2013;7:276–80.
Karthika S, Ravishankar M, Mariajancyrani J, Chandramohan G. Study on phytoconstituents from Moringa oleifera leaves. Asian J Plant Sci Res. 2013;3:63–9.
Rajeswari G, Murugan M, Mohan VR. GC-MS analysis of bioactive components of Hugonia mystax L. (Linaceae). Res J Pharm Biol Chem Sci. 2012;3:301–8.
Akpuaka A, Ekwenchi MM, Dashak DA, Dildar A. Biological activities of characterized isolates of n-hexane extract of Azadirachta indica A. Juss (Neem) leaves. Nat Sci. 2013;11:141–7.
Belakhdar G, Benjouad A, Abdennebi EH. Determination of some bioactive chemical constituents from Thesium humile Vahl. J Mater Environ Sci. 2015;6:2778–83.
Tyagi T, Agarwal M. Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) Solms. J Pharmacogn Phytochem. 2017;6:195–206.
Dhalaria R, Verma R, Sharma R, Jomova K, Nepovimova E, Kumar H, Kuca K. Assessing the potential role of arbuscular mycorrhizal fungi in improving the phytochemical content and antioxidant properties in Gomphrena globosa. Sci Rep. 2024;14(1):22830. PubMed PMC
Patel J. Gas chromatography and mass spectroscopy analysis of bioactive components on the leaf extract of Terminalia coriacea: A potential folklore medicinal plant. Int J Green Pharm. 2017;11:140–3.
Kavitha R, Uduman MA. Identification of bioactive components and its biological activities of Abelmoschas moschatus flower extract a gc-ms study. J Appl Chem. 2017;10:19–22.
Casazza G, Lumini E, Ercole E, Dovana F, Guerrina M, Arnulfo A, Minuto L, Fusconi A, Mucciarelli M. The abundance and diversity of arbuscular mycorrhizal fungi are linked to the soil chemistry of screes and to slope in the Alpic paleo-endemic Berardia Subacaulis. PLoS ONE. 2017;12:1–18. PubMed PMC
Lugo MA, Ferrero M, Menoyo E, Estévez MC, Siñeriz F, Antón A. Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in South American Puna grassland. Microb Ecol. 2008;55:705–13. PubMed
Paudel S, Sah JP. Physiochemical characteristics of soil in tropical Sal (Shorea robusta Gaertn.) forests in Eastern Nepal. Himal J Sci. 2003;1(2):107–10.
Manral V, Bargali K, Bargali SS, Karki H, Chaturvedi RK. Seasonal dynamics of soil microbial biomass C, N and P along an altitudinal gradient in central Himalaya, India. Sustainability. 2023;15(2):1651.
Pandey R, Bargali SS, Bargali K, Karki H, Chaturvedi RK. Dynamics of nitrogen mineralization and F.ne root decomposition in sub-tropical Shorea robusta Gaertner F. F.rests of central Himalaya, India. Sci Total Environ. 2024;921:170896. PubMed
McDonald M, Nepal. An introduction to the natural history, ecology and human environment in the Himalayas. Mt Res Dev. 2016;36(4):563–4.
Manral V, Bargali K, Bargali SS, Jhariya MK, Padalia K. Relationships between soil and microbial biomass properties and annual flux of nutrients in central himalaya forests, India. Land Degrad Dev. 2022;33(12):2014–25.
Wilcke W, Yasin S, Schmitt A, Valarezo C, Zech W. Soils along the altitudinal transect and in catchments. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R, editors. Gradients in a tropical mountain ecosystem of Ecuador. Berlin, Heidelberg: Springer; 2008. pp. 75–85.
Coutinho ES, Fernandes GW, Berbara RLL, Valério HM, Goto BT. Variation of arbuscular mycorrhizal fungal communities along an altitudinal gradient in rupestrian grasslands in Brazil. Mycorrhiza. 2015;25:627–38. PubMed
Bruckner MZ. Water and soil characterization-pH and electrical conductivity, microbial life educational resources. Montana State University Bozeman; 2012.
Qasba S, Masoodi TH, Bhat SJA, Paray PA, Bhat A, Khanday MUD. Effect of altitude and aspect on soil physico-chemical characteristics in Shankaracharya reserved forest. Int J Pure Appl Biosci. 2017;5:585–96.
Chauhan S, Dhalaria R, Ghoshal S, Kanwal KS, Verma R. Altitudinal impact on phytochemical composition and mycorrhizal diversity of Taxus contorta Griff in the temperate forest of Shimla district. J Basic Microbiol. 2024;64(8):e2400016. PubMed
Gunduz K, Ozbay H. The effects of genotype and altitude of the growing location on physical, chemical, and phytochemical properties of strawberry. Turk J Agric for. 2018;42:145–53.
Hashim AM, Alharbi BM, Abdulmajeed AM, Elkelish A, Hozzein WN, Hassan HM. Oxidative stress responses of some endemic plants to high altitudes by intensifying antioxidants and secondary metabolites content. Plants. 2020;9(7):869. PubMed PMC
Upadhyay P, Shukla R, Tiwari KN, Dubey GP, Mishra SK. Neuroprotective effect of Reinwardtia indica against scopolamine induced memory impairment in rat by attenuating oxidative stress. Metab Brain Dis. 2020;35:709–25. PubMed
Drazic S, Glamoclija D, Ristic M, Dolijanovic Z, Drazic M, Pavlovic S, Jaramaz M, Jaramaz D. Effect of environment of the Rutin content in leaves of Fagopyrum esculentum Moench. Plant Soil Environ. 2016;62:261–5.
Guo XD, Ma YJ, Parry J, Gao JM, Yu LL, Wang M. Phenolics content and antioxidant activity of Tartary buckwheat from different locations. Molecules. 2011;16:9850–67. PubMed PMC