Capillary Blood GSH Level Monitoring, Using an Electrochemical Method Adapted for Micro Volumes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA IP_2017/067
Internal grant agency
CEITEC 2020 (LQ1601)
Central European Institute of Technology
PubMed
30274319
PubMed Central
PMC6222753
DOI
10.3390/molecules23102504
PII: molecules23102504
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant molecules, blood drop analysis, electrochemical analysis, nutritional study, sample pretreatment,
- MeSH
- čaj chemie MeSH
- dieta MeSH
- dospělí MeSH
- elektrochemické techniky MeSH
- glutathion krev MeSH
- glutathiondisulfid krev MeSH
- kapiláry MeSH
- lidé MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- čaj MeSH
- glutathion MeSH
- glutathiondisulfid MeSH
Glutathione (γ-glutamyl-cysteinyl-glycine; also known as GSH) is an endogenous antioxidant that plays a crucial role in cell defense mechanisms against oxidative stress. It is thus not surprising that this molecule can serve as a biomarker for oxidative stress monitoring. As capillary blood is a highly accessible target for biomarking, it is a valuable bodily fluid for diagnosing human GSH levels. This study focused on the optimization of GSH measurements from micro volumes of capillary blood prior to using electrochemical detection. The optimization of experimental parameters, including the sample volume and its stability, was performed and evaluated. Moreover, we tested the optimized method as part of a short-term study. The study consisted of examining 10 subjects within 96 h of their consumption of high amounts of antioxidants, attained from a daily dose of 2 g/150 mL of green tea. The subjects' capillary blood (5 μL) was taken at 0 h, 48 h, and 96 h for subsequent analysis. The short-term supplementation of diet with green tea showed an increase of GSH pool by approximately 38% (between 0 and 48 h) within all subjects.
Zobrazit více v PubMed
Leopoldini M., Russo N., Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011;125:288–306. doi: 10.1016/j.foodchem.2010.08.012. DOI
Jurikova T., Sochor J., Rop O., Mlcek J., Balla S., Szekeres L., Zitny R., Zitka O., Adam V., Kizek R. Evaluation of polyphenolic profile and nutritional value of non-traditional fruit species in the Czech Republic—A comparative study. Molecules. 2012;17:8968–8981. doi: 10.3390/molecules17088968. PubMed DOI PMC
Cartea M.E., Francisco M., Soengas P., Velasco P. Phenolic compounds in brassica vegetables. Molecules. 2011;16:251–280. doi: 10.3390/molecules16010251. PubMed DOI PMC
Basu A., Betts N.M., Mulugeta A., Tong C., Newman E., Lyons T.J. Green tea supplementation increases glutathione and plasma antioxidant capacity in adults with the metabolic syndrome. Nutr. Res. 2013;33:180–187. doi: 10.1016/j.nutres.2012.12.010. PubMed DOI PMC
Childs S., Haroune N., Williams L., Gronow M. Determination of cellular glutathione:Glutathione disulfide ratio in prostate cancer cells by high performance liquid chromatography with electrochemical detection. J. Chromatogr. A. 2016;1437:67–73. doi: 10.1016/j.chroma.2016.01.050. PubMed DOI
Squellerio I., Caruso D., Porro B., Veglia F., Tremoli E., Cavalca V. Direct glutathione quantification in human blood by LC-MS/MS: Comparison with HPLC with electrochemical detection. J. Pharm. Biomed. Anal. 2012;71:111–118. doi: 10.1016/j.jpba.2012.08.013. PubMed DOI
Carru C., Zinellu A., Sotgia S., Marongiu G., Farina M.G., Usai M.F., Pes G.M., Tadolini B., Deiana L. Optimization of the principal parameters for the ultrarapid electrophoretic separation of reduced and oxidized glutathione by capillary electrophoresis. J. Chromatogr. A. 2003;1017:233–238. doi: 10.1016/j.chroma.2003.08.020. PubMed DOI
Giustarini D., Dalle-Donne I., Milzani A., Rossi R. Detection of glutathione in whole blood after stabilization with n-ethylmaleimide. Anal. Biochem. 2011;415:81–83. doi: 10.1016/j.ab.2011.04.013. PubMed DOI
Chen S.S., Chang L.S., Chen H.W., Wei Y.H. Polymorphisms of glutathione s-transferase m1 and male infertility in taiwanese patients with varicocele. Hum. Reprod. 2002;17:718–725. doi: 10.1093/humrep/17.3.718. PubMed DOI
Sies H. Glutathione and its role in cellular functions. Free Radic. Biol. Med. 1999;27:916–921. doi: 10.1016/S0891-5849(99)00177-X. PubMed DOI
Townsend D.M., Tew K.D., Tapiero H. The importance of glutathione in human disease. Biomed. Pharmacother. 2003;57:145–155. doi: 10.1016/S0753-3322(03)00043-X. PubMed DOI PMC
Wu G.Y., Fang Y.Z., Yang S., Lupton J.R., Turner N.D. Glutathione metabolism and its implications for health. J. Nutr. 2004;134:489–492. doi: 10.1093/jn/134.3.489. PubMed DOI
Jowko E., Dlugolecka B., Makaruk B., Cieslinski I. The effect of green tea extract supplementation on exercise-induced oxidative stress parameters in male sprinters. Eur. J. Nutr. 2015;54:783–791. doi: 10.1007/s00394-014-0757-1. PubMed DOI PMC
Masarik M., Gumulec J., Hlavna M., Sztalmachova M., Babula P., Raudenska M., Pavkova-Goldbergova M., Cernei N., Sochor J., Zitka O., et al. Monitoring of the prostate tumour cells redox state and real-time proliferation by novel biophysical techniques and fluorescent staining. Integr. Biol. 2012;4:672–684. doi: 10.1039/c2ib00157h. PubMed DOI
Iwasaki Y., Saito Y., Nakano Y., Mochizuki K., Sakata O., Ito R., Saito K., Nakazawa H. Chromatographic and mass spectrometric analysis of glutathione in biological samples. J. Chromatogr. B. 2009;877:3309–3317. doi: 10.1016/j.jchromb.2009.07.001. PubMed DOI
Giustarini D., Dalle-Donne I., Milzani A., Fanti P., Rossi R. Analysis of gsh and gssg after derivatization with n-ethylmaleimide. Nat. Protoc. 2013;8:1660–1669. doi: 10.1038/nprot.2013.095. PubMed DOI
Allen J., Bradley R.D. Effects of oral glutathione supplementation on systemic oxidative stress biomarkers in human volunteers. J. Altern. Complement. Med. 2011;17:827–833. doi: 10.1089/acm.2010.0716. PubMed DOI PMC
Zhang Q., Song Q., Li J.L., Zou M.L., Zhang C.X. Alteration of the enantioselective toxicity of diclofop acid by nonylphenol: Effect on ascorbate-glutathione cycle in microcystis aeruginosa. Chirality. 2016;28:475–481. doi: 10.1002/chir.22602. PubMed DOI
Giustarini D., Galvagni F., Tesei A., Farolfi A., Zanoni M., Pignatta S., Milzani A., Marone I.M., Dalle-Donne I., Nassini R., et al. Glutathione, glutathione disulfide, and s-glutathionylated proteins in cell cultures. Free Radic. Biol. Med. 2015;89:972–981. doi: 10.1016/j.freeradbiomed.2015.10.410. PubMed DOI
Rossi R., Dalle-Donne I., Milzani A., Giustarini D. Oxidized forms of glutathione in peripheral blood as biomarkers of oxidative stress. Clin. Chem. 2006;52:1406–1414. doi: 10.1373/clinchem.2006.067793. PubMed DOI
Veskoukis A.S., Nikolaidis M.G., Kyparos A., Kouretas D. Blood reflects tissue oxidative stress depending on biomarker and tissue studied. Free Radic. Biol. Med. 2009;47:1371–1374. doi: 10.1016/j.freeradbiomed.2009.07.014. PubMed DOI
Zitka O., Skalickova S., Gumulec J., Masarik M., Adam V., Hubalek J., Trnkova L., Kruseova J., Eckschlager T., Kizek R. Redox status expressed as gsh:Gssg ratio as a marker for oxidative stress in paediatric tumour patients. Oncol. Lett. 2012;4:1247–1253. doi: 10.3892/ol.2012.931. PubMed DOI PMC
Sochor J., Zitka O., Skutkova H., Pavlik D., Babula P., Krska B., Horna A., Adam V., Provaznik I., Kizek R. Content of phenolic compounds and antioxidant capacity in fruits of apricot genotypes. Molecules. 2010;15:6285–6305. doi: 10.3390/molecules15096285. PubMed DOI PMC
Ling B.L., Baeyens W.R.G., Dewaele C., Delcastillo B. Packed capillary liquid-chromatography coupled to fluorescence detection: Application to human blood-samples for the determination of glutathione. J. Pharm. Biomed. Anal. 1992;10:985–988. doi: 10.1016/0731-7085(91)80108-L. PubMed DOI
Carru C., Deiana L., Sotgia S., Pes G.M., Zinellu A. Plasma thiols redox status by laser-induced fluorescence capillary electrophoresis. Electrophoresis. 2004;25:882–889. doi: 10.1002/elps.200305768. PubMed DOI
Ling Y.Y., Yin X.F., Fang Z.L. Simultaneous determination of glutathione and reactive oxygen species in individual cells by microchip electrophoresis. Electrophoresis. 2005;26:4759–4766. doi: 10.1002/elps.200500232. PubMed DOI
Carlucci F., Tabucchi A., Biagioli B., Sani G., Lisi G., Maccherini M., Rosi F., Marinello E. Capillary electrophoresis in the evaluation of ischemic injury: Simultaneous determination of purine compounds and glutathione. Electrophoresis. 2000;21:1552–1557. doi: 10.1002/(SICI)1522-2683(20000501)21:8<1552::AID-ELPS1552>3.0.CO;2-M. PubMed DOI
Sekkien A., Swilam N., Ebada S.S., Esmat A., El-Khatib A.H., Linscheid M., Singab A.N. Polyphenols from tamarix nilotica: LC-ESI-MSn profiling and in vivo antifibrotic activity. Molecules. 2018;23:1411. doi: 10.3390/molecules23061411. PubMed DOI PMC
Zhao L.Z., Zhao L., Miao Y.Q., Zhang C.X. Selective electrochemical determination of glutathione from the leakage of intracellular gsh contents in hela cells following doxorubicin-induced cell apoptosis. Electrochim. Acta. 2016;206:86–98. doi: 10.1016/j.electacta.2016.04.117. DOI
Karimi-Maleh H., Tahernejad-Javazmi F., Ensafi A.A., Moradi R., Mallakpour S., Beitollahi H. A high sensitive biosensor based on fept/cnts nanocomposite/n-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron. 2014;60:1–7. doi: 10.1016/j.bios.2014.03.055. PubMed DOI
Giustarini D., Fanti P., Matteucci E., Rossi R. Micro-method for the determination of glutathione in human blood. J. Chromatogr. B. 2014;964:191–194. doi: 10.1016/j.jchromb.2014.02.018. PubMed DOI PMC
Krleza J.L., Dorotic A., Grzunov A., Maradin M. Capillary blood sampling: National recommendations on behalf of the croatian society of medical biochemistry and laboratory medicine. Biochem. Med. 2015;25:335–358. doi: 10.11613/BM.2015.034. PubMed DOI PMC
Lin S.K., Tsai S.M., Huang J.C., Lee S.C., Wu S.H., Ma H., Lin J.T., Tsai L.Y. Effects of storage time and temperature on the stability of glutathione in deproteinized blood sample. J. Food Drug Anal. 2006;14:141–146.
Minelli C., Gogele M. The role of antioxidant gene polymorphisms in modifying the health effects of environmental exposures causing oxidative stress: A public health perspective. Free Radic. Biol. Med. 2011;51:925–930. doi: 10.1016/j.freeradbiomed.2011.02.012. PubMed DOI
Stempak D., Dallas S., Klein J., Bendayan R., Koren G., Baruchel S. Glutathione stability in whole blood: Effects of various deproteinizing acids. Ther. Drug Monit. 2001;23:542–549. doi: 10.1097/00007691-200110000-00008. PubMed DOI
Lee S.G., Yim J., Lim Y., Kim J.H. Validation of a liquid chromatography tandem mass spectrometry method to measure oxidized and reduced forms of glutathione in whole blood and verification in a mouse model as an indicator of oxidative stress. J. Chromatogr. B. 2016;1019:45–50. doi: 10.1016/j.jchromb.2015.10.041. PubMed DOI
Wurzinger S., Bratu M., Wonisch W., Wintersteiger R., Halwachs-Baumann G., Porta S. Interdependency of the oxidizability of lipoproteins and peroxidase activity with base excess, HCO3, pH and magnesium in human venous and capillary blood. Life Sci. 2006;78:1754–1759. doi: 10.1016/j.lfs.2005.08.010. PubMed DOI
Zunic G., Spasic S. Capillary electrophoresis method optimized with a factorial design for the determination of glutathione and amino acid status using human capillary blood. J. Chromatogr. B. 2008;873:70–76. doi: 10.1016/j.jchromb.2008.07.036. PubMed DOI
Kandar R., Stramova X., Drabkova P., Brandtnerova M. Determination of total glutathione in dried blood spot samples using a high-performance liquid chromatography. J. Chromatogr. Sci. 2015;53:879–885. doi: 10.1093/chromsci/bmu135. PubMed DOI
Zitka O., Krystofova O., Sobrova P., Adam V., Zehnalek J., Beklova M., Kizek R. Phytochelatin synthase activity as a marker of metal pollution. J. Hazard. Mater. 2011;192:794–800. doi: 10.1016/j.jhazmat.2011.05.088. PubMed DOI
Kandar R. Determination of glutathione and glutathione disulfide in biological samples. Chem. Listy. 2016;110:754–760.
Jiang Z.T., Liang Q.L., Luo G.A., Hu P., Li P., Wang Y.M. Hplc-electrospray tandem mass spectrometry for simultaneous quantitation of eight plasma aminothiols: Application to studies of diabetic nephropathy. Talanta. 2009;77:1279–1284. doi: 10.1016/j.talanta.2008.08.031. PubMed DOI
Khan A., Khan M.I., Iqbal Z., Shah Y., Ahmad L., Nazir S., Watson D.G., Khan J.A., Nasir F., Ismail A new hplc method for the simultaneous determination of ascorbic acid and aminothiols in human plasma and erythrocytes using electrochemical detection. Talanta. 2011;84:789–801. doi: 10.1016/j.talanta.2011.02.019. PubMed DOI
Thielecke F., Boschmann M. The potential role of green tea catechins in the prevention of the metabolic syndrome—A review. Phytochemistry. 2009;70:11–24. doi: 10.1016/j.phytochem.2008.11.011. PubMed DOI
Phung O.J., Baker W.L., Matthews L.J., Lanosa M., Thorne A., Coleman C.I. Effect of green tea catechins with or without caffeine on anthropometric measures: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2010;91:73–81. doi: 10.3945/ajcn.2009.28157. PubMed DOI
Jurado-Coronel J.C., Avila-Rodriguez M., Echeverria V., Hidalgo O.A., Gonzalez J., Aliev G., Barreto G.E. Implication of green tea as a possible therapeutic approach for parkinson disease. CNS Neurol. Disord. Drug Targets. 2016;15:292–300. doi: 10.2174/1871527315666160202125519. PubMed DOI
Di Lorenzo C., Dell’Agli M., Sangiovanni E., Dos Santos A., Uberti F., Moro E., Bosisio E., Restani P. Correlation between catechin content and NF-kappa b inhibition by infusions of green and black tea. Plant Food Hum. Nutr. 2013;68:149–154. doi: 10.1007/s11130-013-0354-0. PubMed DOI
Reuland D.J., Khademi S., Castle C.J., Irwin D.C., McCord J.M., Miller B.F., Hamilton K.L. Upregulation of phase ii enzymes through phytochemical activation of nrf2 protects cardiomyocytes against oxidant stress. Free Radic. Biol. Med. 2013;56:102–111. doi: 10.1016/j.freeradbiomed.2012.11.016. PubMed DOI
Ran Z.H., Xu Q., Tong J.L., Xiao S.D. Apoptotic effect of epigal locatechin-3-gallate on the human gastric cancer cell line mkn45 via activation of the mitochondrial pathway. World J. Gastroenterol. 2007;13:4255–4259. doi: 10.3748/wjg.v13.i31.4255. PubMed DOI PMC
Hsu Y.W., Tsai C.F., Ting H.C., Chen W.K., Yen C.C. Green tea supplementation in mice mitigates senescence-induced changes in brain antioxidant abilities. J. Funct. Food. 2014;7:471–478. doi: 10.1016/j.jff.2014.01.009. DOI
Chen L.J., Yang X.Q., Jiao H.L., Zhao B.L. Effect of tea catechins on the change of glutathione levels caused by pb++ in pc12 cells. Chem. Res. Toxicol. 2004;17:922–928. doi: 10.1021/tx0499315. PubMed DOI
Carlsen H., Myhrstad M.C.W., Thoresen M., Moskaug J.O., Blomhoff R. Berry intake increases the activity of the gamma-glutamylcysteine synthetase promoter in transgenic reporter mice. J. Nutr. 2003;133:2137–2140. doi: 10.1093/jn/133.7.2137. PubMed DOI
Giustarini D., Tsikas D., Colombo G., Milzani A., Dalle-Donne I., Fanti P., Rossi R. Pitfalls in the analysis of the physiological antioxidant glutathione (GSH) and its disulfide (GSSG) in biological samples: An elephant in the room. J. Chromatogr. B. 2016;1019:21–28. doi: 10.1016/j.jchromb.2016.02.015. PubMed DOI PMC
Khan H., Jan S.U., Hashmatullah, Khan M.F., Khan K.A., Rehman A.U., Wahab A. Effect of lithium metal on the chemical status of glutathione (GSH) present in whole blood (especially in plasma and cytosolic fraction in human blood) Pak. J. Pharm. Sci. 2010;23:188–193. PubMed
Giustarini D., Galvagni F., Colombo G., Dalle-Donne I., Milzani A., Aloisi A.M., Rossi R. Determination of protein thiolation index (PTI) as a biomarker of oxidative stress in human serum. Anal. Biochem. 2017;538:38–41. doi: 10.1016/j.ab.2017.09.010. PubMed DOI