Glucose Tightly Controls Morphological and Functional Properties of Astrocytes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27148048
PubMed Central
PMC4834307
DOI
10.3389/fnagi.2016.00082
Knihovny.cz E-zdroje
- Klíčová slova
- astrocytes, calcium, connexins, energy deprivation, glucose, hippocampus, neuroglial interactions, volume,
- Publikační typ
- časopisecké články MeSH
The main energy source powering the brain is glucose. Strong energy needs of our nervous system are fulfilled by conveying this essential metabolite through blood via an extensive vascular network. Glucose then reaches brain tissues by cell uptake, diffusion and metabolization, processes primarily undertaken by astrocytes. Deprivation of glucose can however occur in various circumstances. In particular, ageing is associated with cognitive disturbances that are partly attributable to metabolic deficiency leading to brain glycopenia. Despite the crucial role of glucose and its metabolites in sustaining neuronal activity, little is known about its moment-to-moment contribution to astroglial physiology. We thus here investigated the early structural and functional alterations induced in astrocytes by a transient metabolic challenge consisting in glucose deprivation. Electrophysiological recordings of hippocampal astroglial cells of the stratum radiatum in situ revealed that shortage of glucose specifically increases astrocyte membrane capacitance, whilst it has no impact on other passive membrane properties. Consistent with this change, morphometric analysis unraveled a prompt increase in astrocyte volume upon glucose deprivation. Furthermore, characteristic functional properties of astrocytes are also affected by transient glucose deficiency. We indeed found that glucoprivation decreases their gap junction-mediated coupling, while it progressively and reversibly increases their intracellular calcium levels during the slow depression of synaptic transmission occurring simultaneously, as assessed by dual electrophysiological and calcium imaging recordings. Together, these data indicate that astrocytes rapidly respond to metabolic dysfunctions, and are therefore central to the neuroglial dialog at play in brain adaptation to glycopenia.
Zobrazit více v PubMed
Abdelhafiz A. H., Rodriguez-Manas L., Morley J. E., Sinclair A. J. (2015). Hypoglycemia in older people - a less well recognized risk factor for frailty. Aging Dis. 6, 156–167. 10.14336/ad.2014.0330 PubMed DOI PMC
Allaman I., Belanger M., Magistretti P. J. (2011). Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci. 34, 76–87. 10.1016/j.tins.2010.12.001 PubMed DOI
Anderova M., Benesova J., Mikesova M., Dzamba D., Honsa P., Kriska J., et al. . (2014). Altered astrocytic swelling in the cortex of alpha-syntrophin-negative GFAP/EGFP mice. PLoS One 9:e113444. 10.1371/journal.pone.0113444 PubMed DOI PMC
Andrew R. D., Lobinowich M. E., Osehobo E. P. (1997). Evidence against volume regulation by cortical brain cells during acute osmotic stress. Exp. Neurol. 143, 300–312. 10.1006/exnr.1996.6375 PubMed DOI
Arluison M., Quignon M., Nguyen P., Thorens B., Leloup C., Penicaud L. (2004). Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain—an immunohistochemical study. J. Chem. Neuroanat. 28, 117–136. 10.1016/j.jchemneu.2004.05.009 PubMed DOI
Arnold S. (2005). Estrogen suppresses the impact of glucose deprivation on astrocytic calcium levels and signaling independently of the nuclear estrogen receptor. Neurobiol. Dis. 20, 82–92. 10.1016/j.nbd.2005.02.002 PubMed DOI
Ball K. K., Harik L., Gandhi G. K., Cruz N. F., Dienel G. A. (2011). Reduced gap junctional communication among astrocytes in experimental diabetes: contributions of altered connexin protein levels and oxidative-nitrosative modifications. J. Neurosci. Res. 89, 2052–2067. 10.1002/jnr.22663 PubMed DOI PMC
Barros L. F., Courjaret R., Jakoby P., Loaiza A., Lohr C., Deitmer J. W. (2009). Preferential transport and metabolism of glucose in Bergmann glia over Purkinje cells: a multiphoton study of cerebellar slices. Glia 57, 962–970. 10.1002/glia.20820 PubMed DOI
Benesova J., Hock M., Butenko O., Prajerova I., Anderova M., Chvatal A. (2009). Quantification of astrocyte volume changes during ischemia in situ reveals two populations of astrocytes in the cortex of GFAP/EGFP mice. J. Neurosci. Res. 87, 96–111. 10.1002/jnr.21828 PubMed DOI
Benesova J., Rusnakova V., Honsa P., Pivonkova H., Dzamba D., Kubista M., et al. . (2012). Distinct expression/function of potassium and chloride channels contributes to the diverse volume regulation in cortical astrocytes of GFAP/EGFP mice. PLoS One 7:e29725. 10.1371/journal.pone.0029725 PubMed DOI PMC
Boury-Jamot B., Carrard A., Martin J. L., Halfon O., Magistretti P. J., Boutrel B. (2015). Disrupting astrocyte-neuron lactate transfer persistently reduces conditioned responses to cocaine. Mol. Psychiatry [Epub ahead of print]. . 10.1038/mp.2015.157 PubMed DOI PMC
Brown A. M. (2004). Brain glycogen re-awakened. J. Neurochem. 89, 537–552. 10.1111/j.1471-4159.2004.02421.x PubMed DOI
Brown A. M., Sickmann H. M., Fosgerau K., Lund T. M., Schousboe A., Waagepetersen H. S., et al. . (2005). Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. J. Neurosci. Res. 79, 74–80. 10.1002/jnr.20335 PubMed DOI
Chever O., Pannasch U., Ezan P., Rouach N. (2014). Astroglial connexin 43 sustains glutamatergic synaptic efficacy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20130596. 10.1098/rstb.2013.0596 PubMed DOI PMC
Dallérac G., Rouach N. (2016). Astrocytes as new targets to improve cognitive functions. Prog. Neurobiol. [Epub ahead of print]. 10.1016/j.pneurobio.2016.01.003 PubMed DOI
Du Y., Ma B., Kiyoshi C. M., Alford C. C., Wang W., Zhou M. (2015). Freshly dissociated mature hippocampal astrocytes exhibit passive membrane conductance and low membrane resistance similarly to syncytial coupled astrocytes. J. Neurophysiol. 113, 3744–3750. 10.1152/jn.00206.2015 PubMed DOI PMC
Escartin C., Rouach N. (2013). Astroglial networking contributes to neurometabolic coupling. Front. Neuroenergetics 5:4. 10.3389/fnene.2013.00004 PubMed DOI PMC
Fernández-Moncada I., Barros L. F. (2014). Non-preferential fuelling of the Na+/K+-ATPase pump. Biochem. J. 460, 353–361. 10.1042/bj20140003 PubMed DOI
Gandhi G. K., Ball K. K., Cruz N. F., Dienel G. A. (2010). Hyperglycaemia and diabetes impair gap junctional communication among astrocytes. ASN Neuro. 2:e00030. 10.1042/an20090048 PubMed DOI PMC
Harris J. J., Jolivet R., Attwell D. (2012). Synaptic energy use and supply. Neuron 75, 762–777. 10.1016/j.neuron.2012.08.019 PubMed DOI
Hermann G. E., Viard E., Rogers R. C. (2014). Hindbrain glucoprivation effects on gastric vagal reflex circuits and gastric motility in the rat are suppressed by the astrocyte inhibitor fluorocitrate. J. Neurosci. 34, 10488–10496. 10.1523/jneurosci.1406-14.2014 PubMed DOI PMC
Hirase H., Qian L., Bartho P., Buzsaki G. (2004). Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol. 2:E96. 10.1371/journal.pbio.0020096 PubMed DOI PMC
Hirrlinger J., Hulsmann S., Kirchhoff F. (2004). Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur. J. Neurosci. 20, 2235–2239. 10.1111/j.1460-9568.2004.03689.x PubMed DOI
Howarth C., Gleeson P., Attwell D. (2012). Updated energy budgets for neural computation in the neocortex and cerebellum. J. Cereb. Blood Flow Metab. 32, 1222–1232. 10.1038/jcbfm.2012.35 PubMed DOI PMC
Hwang E. M., Kim E., Yarishkin O., Woo D. H., Han K. S., Park N., et al. . (2014). A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes. Nat. Commun. 5:3227. 10.1038/ncomms4227 PubMed DOI
Ioudina M., Uemura E., Greenlee H. W. (2004). Glucose insufficiency alters neuronal viability and increases susceptibility to glutamate toxicity. Brain Res. 1004, 188–192. 10.1016/j.brainres.2003.12.046 PubMed DOI
Itoh Y., Abe T., Takaoka R., Tanahashi N. (2004). Fluorometric determination of glucose utilization in neurons in vitro and in vivo. J. Cereb. Blood Flow Metab. 24, 993–1003. 10.1097/01.wcb.0000127661.07591.de PubMed DOI
Jakoby P., Schmidt E., Ruminot I., Gutiérrez R., Barros L. F., Deitmer J. W. (2014). Higher transport and metabolism of glucose in astrocytes compared with neurons: a multiphoton study of hippocampal and cerebellar tissue slices. Cereb. Cortex 24, 222–231. 10.1093/cercor/bhs309 PubMed DOI
Kacem K., Lacombe P., Seylaz J., Bonvento G. (1998). Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia 23, 1–10. 10.1002/(sici)1098-1136(199805)23:1<1::aid-glia1>3.0.co;2-b PubMed DOI
Khakh B. S., Mccarthy K. D. (2015). Astrocyte calcium signaling: from observations to functions and the challenges therein. Cold Spring Harb. Perspect. Biol. 7:a020404. 10.1101/cshperspect.a020404 PubMed DOI PMC
Korol D. L., Gold P. E. (1998). Glucose, memory and aging. Am. J. Clin. Nutr. 67, 764S–771S. PubMed
Lieth E., Barber A. J., Xu B., Dice C., Ratz M. J., Tanase D., et al. . (1998). Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes 47, 815–820. 10.2337/diabetes.47.5.815 PubMed DOI
Lipton P. (1999). Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568. 10.1203/00006450-199904020-00260 PubMed DOI
Lord L. D., Expert P., Huckins J. F., Turkheimer F. E. (2013). Cerebral energy metabolism and the brain’s functional network architecture: an integrative review. J. Cereb. Blood Flow Metab. 33, 1347–1354. 10.1038/jcbfm.2013.94 PubMed DOI PMC
Lundgaard I., Li B., Xie L., Kang H., Sanggaard S., Haswell J. D., et al. . (2015). Direct neuronal glucose uptake Heralds activity-dependent increases in cerebral metabolism. Nat. Commun. 6:6807. 10.1038/ncomms7807 PubMed DOI PMC
Lutz S. E., Zhao Y., Gulinello M., Lee S. C., Raine C. S., Brosnan C. F. (2009). Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. J. Neurosci. 29, 7743–7752. 10.1523/jneurosci.0341-09.2009 PubMed DOI PMC
Magistretti P. J., Allaman I. (2015). A cellular perspective on brain energy metabolism and functional imaging. Neuron 86, 883–901. 10.1016/j.neuron.2015.03.035 PubMed DOI
McDougal D. H., Hermann G. E., Rogers R. C. (2013). Astrocytes in the nucleus of the solitary tract are activated by low glucose or glucoprivation: evidence for glial involvement in glucose homeostasis. Front. Neurosci. 7:249. 10.3389/fnins.2013.00249 PubMed DOI PMC
McNay E. C. (2005). The impact of recurrent hypoglycemia on cognitive function in aging. Neurobiol. Aging 26 Suppl 1, 76–79. 10.1016/j.neurobiolaging.2005.08.014 PubMed DOI
McNay E. C., Gold P. E. (2001). Age-related differences in hippocampal extracellular fluid glucose concentration during behavioral testing and following systemic glucose administration. J. Gerontol. A. Biol. Sci. Med. Sci. 56, B66–B71. 10.1093/gerona/56.2.b66 PubMed DOI
Medrano S., Gruenstein E., Dimlich R. V. (1992). Histamine stimulates glycogenolysis in human astrocytoma cells by increasing intracellular free calcium. Brain Res. 592, 202–207. 10.1016/0006-8993(92)91677-7 PubMed DOI
Mergenthaler P., Lindauer U., Dienel G. A., Meisel A. (2013). Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 36, 587–597. 10.1016/j.tins.2013.07.001 PubMed DOI PMC
Nehlig A., Wittendorp-Rechenmann E., Lam C. D. (2004). Selective uptake of [14C]2-deoxyglucose by neurons and astrocytes: high-resolution microautoradiographic imaging by cellular 14C-trajectography combined with immunohistochemistry. J. Cereb. Blood Flow Metab. 24, 1004–1014. 10.1097/01.wcb.0000128533.84196.d8 PubMed DOI
Nielsen S., Nagelhus E. A., Amiry-Moghaddam M., Bourque C., Agre P., Ottersen O. P. (1997). Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J. Neurosci. 17, 171–180. PubMed PMC
Nolte C., Matyash M., Pivneva T., Schipke C. G., Ohlemeyer C., Hanisch U. K., et al. . (2001). GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33, 72–86. 10.1002/1098-1136(20010101)33:1<72::aid-glia1007>n3.3.co;2-1 PubMed DOI
Pannasch U., Freche D., Dallerac G., Ghezali G., Escartin C., Ezan P., et al. . (2014). Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat. Neurosci. 17, 549–558. 10.1038/nn.3662 PubMed DOI
Pannasch U., Vargova L., Reingruber J., Ezan P., Holcman D., Giaume C., et al. . (2011). Astroglial networks scale synaptic activity and plasticity. Proc. Natl. Acad. Sci. U S A 108, 8467–8472. 10.1073/pnas.1016650108 PubMed DOI PMC
Papadopoulos M. C., Koumenis I. L., Dugan L. L., Giffard R. G. (1997). Vulnerability to glucose deprivation injury correlates with glutathione levels in astrocytes. Brain Res. 748, 151–156. 10.1016/s0006-8993(96)01293-0 PubMed DOI
Pascual O., Casper K. B., Kubera C., Zhang J., Revilla-Sanchez R., Sul J. Y., et al. . (2005). Astrocytic purinergic signaling coordinates synaptic networks. Science 310, 113–116. 10.1126/science.1116916 PubMed DOI
Patel A. B., Lai J. C. K., Chowdhury G. M. I., Hyder F., Rothman D. L., Shulman R. G., et al. . (2014). Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proc. Natl. Acad. Sci. USA 111, 5385–5390. 10.1073/pnas.1403576111 PubMed DOI PMC
Penicaud L., Leloup C., Fioramonti X., Lorsignol A., Benani A. (2006). Brain glucose sensing: a subtle mechanism. Curr. Opin. Clin. Nutr. Metab. Care. 9, 458–462. 10.1097/01.mco.0000232908.84483.e0 PubMed DOI
Rouach N., Koulakoff A., Abudara V., Willecke K., Giaume C. (2008). Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322, 1551–1555. 10.1126/science.1164022 PubMed DOI
Sahu G., Sukumaran S., Bera A. K. (2014). Pannexins form gap junctions with electrophysiological and pharmacological properties distinct from connexins. Sci. Rep. 4:4955. 10.1038/srep04955 PubMed DOI PMC
Salameh A., Dhein S. (2013). Effects of mechanical forces and stretch on intercellular gap junction coupling. Biochim. Biophys. Acta 1828, 147–156. 10.1016/j.bbamem.2011.12.030 PubMed DOI
Saravia F. E., Revsin Y., Gonzalez Deniselle M. C., Gonzalez S. L., Roig P., Lima A., et al. . (2002). Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: the nonobese diabetic (NOD) and streptozotocin-treated mice. Brain Res. 957, 345–353. 10.1016/s0006-8993(02)03675-2 PubMed DOI
Schools G. P., Zhou M., Kimelberg H. K. (2006). Development of gap junctions in hippocampal astrocytes: evidence that whole cell electrophysiological phenotype is an intrinsic property of the individual cell. J. Neurophysiol. 96, 1383–1392. 10.1152/jn.00449.2006 PubMed DOI
Schurr A., Miller J. J., Payne R. S., Rigor B. M. (1999). An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J. Neurosci. 19, 34–39. PubMed PMC
Shulman R. G., Rothman D. L., Behar K. L., Hyder F. (2004). Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci. 27, 489–495. 10.1016/j.tins.2004.06.005 PubMed DOI
Silver I. A., Deas J., Erecinska M. (1997). Ion homeostasis in brain cells: differences in intracellular ion responses to energy limitation between cultured neurons and glial cells. Neuroscience 78, 589–601. 10.1016/s0306-4522(96)00600-8 PubMed DOI
Simard M., Arcuino G., Takano T., Liu Q. S., Nedergaard M. (2003). Signaling at the gliovascular interface. J. Neurosci. 23, 9254–9262. PubMed PMC
Smith A. J., Verkman A. S. (2015). Superresolution imaging of aquaporin-4 cluster size in antibody-stained paraffin brain sections. Biophys. J. 109, 2511–2522. 10.1016/j.bpj.2015.10.047 PubMed DOI PMC
Stolarczyk E., Guissard C., Michau A., Even P. C., Grosfeld A., Serradas P., et al. . (2010). Detection of extracellular glucose by GLUT2 contributes to hypothalamic control of food intake. Am. J. Physiol. Endocrinol. Metab. 298, E1078–E1087. 10.1152/ajpendo.00737.2009 PubMed DOI
Sun D., Jakobs T. C. (2012). Structural remodeling of astrocytes in the injured CNS. Neuroscientist 18, 567–588. 10.1177/1073858411423441 PubMed DOI PMC
Suzuki A., Stern S. A., Bozdagi O., Huntley G. W., Walker R. H., Magistretti P. J., et al. . (2011). Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144, 810–823. 10.1016/j.cell.2011.02.018 PubMed DOI PMC
Sykova E. (2001). Glial diffusion barriers during aging and pathological states. Prog. Brain Res. 132, 339–363. 10.1016/s0079-6123(01)32087-3 PubMed DOI
Sykova E., Mazel T., Hasenohrl R. U., Harvey A. R., Simonova Z., Mulders W. H., et al. . (2002). Learning deficits in aged rats related to decrease in extracellular volume and loss of diffusion anisotropy in hippocampus. Hippocampus 12, 269–279. 10.1002/hipo.1101 PubMed DOI
Tsacopoulos M., Magistretti P. J. (1996). Metabolic coupling between glia and neurons. J. Neurosci. 16, 877–885. PubMed PMC
Wang D., Pascual J. M., Yang H., Engelstad K., Jhung S., Sun R. P., et al. . (2005). Glut-1 deficiency syndrome: clinical, genetic and therapeutic aspects. Ann. Neurol. 57, 111–118. 10.1002/ana.20331 PubMed DOI
Wender R., Brown A. M., Fern R., Swanson R. A., Farrell K., Ransom B. R. (2000). Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J. Neurosci. 20, 6804–6810. PubMed PMC
Winkler E. A., Nishida Y., Sagare A. P., Rege S. V., Bell R. D., Perlmutter D., et al. (2015). GLUT1 redsuctions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 18, 521–530. 10.1038/nn.3966 PubMed DOI PMC
Zhou M., Xu G., Xie M., Zhang X., Schools G. P., Ma L., et al. . (2009). TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices. J. Neurosci. 29, 8551–8564. 10.1523/jneurosci.5784-08.2009 PubMed DOI PMC