Microalgae
Dotaz
Zobrazit nápovědu
Microalgae have increasingly gained research interest as a source of lipids for biodiesel production. The wet way processing of harvested microalgae was suggested and evaluated with respect to the possible environmental impacts and production costs. This study is focused on the three key steps of the suggested process: flocculation, water recycling, and extraction of lipids. Microalgae strains with high content of lipids were chosen for cultivation and subsequent treatment process. Ammonium hydroxide was tested as the flocculation agent and its efficiency was compared with chitosan. Determined optimal flocculation conditions for ammonium hydroxide enable the water recycling for the recurring microalgae growth, which was verified for the use of 30, 50, and 80% recycled water. For extraction of the wet microalgae hexane, hexane/ethanol and comparative chloroform/methanol systems were applied. The efficiency of hexane/ethanol extraction system was found as comparable with chloroform/methanol system and it seems to be promising owing to its low volatility and toxicity and mainly the low cost.
In this review, research on the use of microalgae as an option for bioremediation purposes of pharmaceutical compounds is reported and discussed thoroughly. Pharmaceuticals have been detected in water bodies around the world, attracting attention towards the increasing potential risks to humans and aquatic biota. Unfortunately, pharmaceuticals have no regulatory standards for safe disposal in many countries. Despite the advances in new analytical techniques, the current wastewater treatment facilities in many countries are ineffective to remove the whole presence of pharmaceutical compounds and their metabolites. Though new methods are substantially effective, removal rates of drugs from wastewater make the cost-effectiveness ratio a not viable option. Therefore, the necessity for investigating and developing more adequate removal treatments with a higher efficiency rate and at a lower cost is mandatory. The present review highlights the algae-based removal strategies for bioremediation purposes, considering their pathway as well as the removal rate and efficiency of the microalgae species used in assays. We have critically reviewed both application of living and non-living microalgae biomass for bioremediation purposes considering the most commonly used microalgae species. In addition, the use of modified and immobilized microalgae biomass for the removal of pharmaceutical compounds from water was discussed. Furthermore, research considering various microalgal species and their potential use to detoxify organic and inorganic toxic compounds were well evaluated in the review. Further research is required to exploit the potential use of microalgae species as an option for the bioremediation of pharmaceuticals in water.
- MeSH
- biodegradace MeSH
- biomasa MeSH
- léčivé přípravky metabolismus MeSH
- lidé MeSH
- mikrořasy * metabolismus MeSH
- odpadní voda MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This review summarizes the available information about potential sources of vitamin B12, especially for people who follow a vegan or vegetarian diet and inhabitants of poor countries in the developing world. Cyanobacteria and microalgae approved for food purposes can play a critical role as promising and innovative sources of this vitamin. This work involves a discussion of whether the form of vitamin B12 extracted from microalgae/cyanobacteria is biologically available to humans, specifically focusing on the genera Arthrospira and Chlorella. It describes analyses of their biomass composition, cultivation requirements, and genetic properties in B12 production. Furthermore, this review discusses the function of cobalamin in microalgae and cyanobacteria themselves and the possibility of modification and cocultivation to increase the content of B12 in their biomass.
With recent advances in novel gene-editing tools such as RNAi, ZFNs, TALENs, and CRISPR-Cas9, the possibility of altering microalgae toward designed properties for various application is becoming a reality. Alteration of microalgae genomes can modify metabolic pathways to give elevated yields in lipids, biomass, and other components. The potential of such genetically optimized microalgae can give a "domino effect" in further providing optimization leverages down the supply chain, in aspects such as cultivation, processing, system design, process integration, and revolutionary products. However, the current level of understanding the functional information of various microalgae gene sequences is still primitive and insufficient as microalgae genome sequences are long and complex. From this perspective, this work proposes to link up this knowledge gap between microalgae genetic information and optimized bioproducts using Artificial Intelligence (AI). With the recent acceleration of AI research, large and complex data from microalgae research can be properly analyzed by combining the cutting-edge of both fields. In this work, the most suitable class of AI algorithms (such as active learning, semi-supervised learning, and meta-learning) are discussed for different cases of microalgae applications. This work concisely reviews the current state of the research milestones and highlight some of the state-of-art that has been carried out, providing insightful future pathways. The utilization of AI algorithms in microalgae cultivation, system optimization, and other aspects of the supply chain is also discussed. This work opens the pathway to a digitalized future for microalgae research and applications.
In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted.
Red mud is a by-product of alumina production containing lanthanides. Growth of green microalgae on red mud and the intracellular accumulation of lanthanides was tested. The best growing species was Desmodesmus quadricauda (2.71 cell number doublings/day), which accumulated lanthanides to the highest level (27.3 mg/kg/day), if compared with Chlamydomonas reinhardtii and Parachlorellakessleri (2.50, 2.37 cell number doublings and 24.5, 12.5 mg/kg per day, respectively). With increasing concentrations of red mud, the growth rate decreased (2.71, 2.62, 2.43 cell number doublings/day) due to increased shadowing of cells by undissolved red mud particles. The accumulated lanthanide content, however, increased in the most efficient alga Desmodesmus quadricauda within 2 days from zero in red-mud free culture to 12.4, 39.0, 54.5 mg/kg of dry mass at red mud concentrations of 0.03, 0.05 and 0.1%, respectively. Red mud alleviated the metal starvation caused by cultivation in incomplete nutrient medium without added microelements. Moreover, the proportion of lanthanides in algae grown in red mud were about 250, 138, 117% higher than in culture grown in complete nutrient medium at red mud concentrations of 0.03, 0.05, 0.1%. Thus, green algae are prospective vehicles for bio-mining or bio-leaching of lanthanides from red mud.
The freshwater alga Chlorella, a highly productive source of starch, might substitute for starch-rich terrestrial plants in bioethanol production. The cultivation conditions necessary for maximizing starch content in Chlorella biomass, generated in outdoor scale-up solar photobioreactors, are described. The most important factor that can affect the rate of starch synthesis, and its accumulation, is mean illumination resulting from a combination of biomass concentration and incident light intensity. While 8.5% DW of starch was attained at a mean light intensity of 215 µmol/(m2 s1), 40% of DW was synthesized at a mean light intensity 330 µmol/(m2 s1). Another important factor is the phase of the cell cycle. The content of starch was highest (45% of DW) prior to cell division, but during the course of division, its cellular level rapidly decreased to about 13% of DW in cells grown in light, or to about 4% in those kept in the dark during the division phase. To produce biomass with high starch content, it is necessary to suppress cell division events, but not to disturb synthesis of starch in the chloroplast. The addition of cycloheximide (1 mg/L), a specific inhibitor of cytoplasmic protein synthesis, and the effect of element limitation (nitrogen, sulfur, phosphorus) were tested. The majority of the experiments were carried out in laboratory-scale photobioreactors, where culture treatments increased starch content to up to about 60% of DW in the case of cycloheximide inhibition or sulfur limitation. When the cells were limited by phosphorus or nitrogen supply, the cellular starch content increased to 55% or 38% of DW, respectively, however, after about 20 h, growth of the cultures stopped producing starch, and the content of starch again decreased. Sulfur limited and cycloheximide-treated cells maintained a high content of starch (60% of DW) for up to 2 days. Sulfur limitation, the most appropriate treatment for scaled-up culture of starch-enriched biomass, was carried out in an outdoor pilot-scale experiment. After 120 h of growth in complete mineral medium, during which time the starch content reached around 18% of DW, sulfur limitation increased the starch content to 50% of DW.
- MeSH
- biomasa MeSH
- biotechnologie metody MeSH
- Chlorella vulgaris metabolismus MeSH
- dusík metabolismus MeSH
- fosfor metabolismus MeSH
- fotobioreaktory MeSH
- mikrořasy metabolismus MeSH
- síra metabolismus MeSH
- škrob biosyntéza metabolismus MeSH
- sluneční záření MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
V současné době je celosvětově vynakládáno velké úsilí na nahrazení fosilních zdrojů energie obnovitelnými zdroji (biomasa, slunce, vítr atd.), které by navíc nezatěžovali zemskou atmosféru produkcí skleníkových plynů. Ukazuje se, že nelze očekávat příchod jedné univerzální technologie, ale je nutné využívat mnoho různých zdrojů tak, aby byla zohledněna geografická a ekonomická specifika konkrétní oblasti, kde se energie vyrábí. Jedním z možných zdrojů energie je produkce bioplynu z biomasy řas pěstovaných za tímto účelem ve speciálních reaktorech. Tento článek dává stručný přehled metod energetického využívání řas a zmiňuje hlavní ekonomické a technologické výzvy pro úspěšné zvládnutí této technologie. Zároveň je zmíněn evropský projekt „Renewable energy production through microalgae cultivation: Closing material cycles (ALGAENET)“, který spojuje výzkumná pracoviště v České republice (VŠCHT Praha), Španělsku a Chile.
Recently, a great eÍort is being put on the development of new technologies allowing energy production from renewable source that would not produce greenhouse gases. It is becoming increasingly apparent that one should not expect the advent of a new universal technology that would replace the entire energy production from fossil fuels. Instead, we need to develop many diÍerent technologies that would satisfy wide range of geographical and economical requirements. Biogas production from microalgae may become such a site-specific technology. This paper gives a brief list of diÍerent approaches to energy production from microalgae and describes the main economic and technological challenges for biogas production from microalgae. Moreover, an European project “Renewable energy production through microalgae cultivation: Closing material cycles (ALGAENET)“ that is currently being jointly executed by partners in the Czech Republic (ICT Prague), Spain and Chile.
The worldwide growing demand for energy permanently increases the pressure on industrial and scientific community to introduce new alternative biofuels on the global energy market. Besides the leading role of biodiesel and biogas, bioethanol receives more and more attention as first- and second-generation biofuel in the sustainable energy industry. Lately, microalgae (green algae and cyanobacteria) biomass has also remarkable potential as a feedstock for the third-generation biofuel production due to their high lipid and carbohydrate content. The third-generation bioethanol production technology can be divided into three major processing ways: (i) fermentation of pre-treated microalgae biomass, (ii) dark fermentation of reserved carbohydrates and (iii) direct "photo-fermentation" from carbon dioxide to bioethanol using light energy. All three technologies provide possible solutions, but from a practical point of view, traditional fermentation technology from microalgae biomass receives currently the most attention. This study mainly focusses on the latest advances in traditional fermentation processes including the steps of enhanced carbohydrate accumulation, biomass pre-treatment, starch and glycogen downstream processing and various fermentation approaches.
Centrifugation is the most commonly used method for harvesting autotrophically produced microalgae, but it is expensive due to high energy demands. With the aim of reducing these costs, we tested electrocoagulation with iron electrodes for harvesting Chlorella vulgaris. During extensive lab-scale experiments, the following factors were studied to achieve a high harvesting efficiency and a low iron content in the harvested biomass: electric charge, initial biomass concentration, pH, temperature, agitation intensity, residual salt content and electrolysis time. A harvesting efficiency greater than 95% was achieved over a broad range of conditions and the residual iron content in the biomass complied with legislative requirements for food. Using electrocoagulation as the pre-concentration step prior to centrifugation, total energy costs were reduced to 0.136 kWh/kg of dry biomass, which is less than 14% of that for centrifugation alone. Our data show that electrocoagulation is a suitable and cost-effective method for harvesting microalgae.
- MeSH
- biomasa MeSH
- Chlorella vulgaris * MeSH
- elektrokoagulace MeSH
- elektrolýza MeSH
- flokulace MeSH
- mikrořasy * MeSH
- Publikační typ
- časopisecké články MeSH