Subcellular Compartments Interplay for Carbon and Nitrogen Allocation in Chromera velia and Vitrella brassicaformis
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31192348
PubMed Central
PMC6668581
DOI
10.1093/gbe/evz123
PII: 5514481
Knihovny.cz E-zdroje
- Klíčová slova
- chromerid, endosymbiosis, mixotrophy, plastid integration, prediction algorithm, protein localization,
- MeSH
- algoritmy MeSH
- Alveolata metabolismus MeSH
- cytosol metabolismus MeSH
- dusík metabolismus MeSH
- fotosyntéza genetika fyziologie MeSH
- fylogeneze MeSH
- molekulární evoluce MeSH
- symbióza genetika fyziologie MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
- uhlík MeSH
Endosymbioses necessitate functional cooperation of cellular compartments to avoid pathway redundancy and streamline the control of biological processes. To gain insight into the metabolic compartmentation in chromerids, phototrophic relatives to apicomplexan parasites, we prepared a reference set of proteins probably localized to mitochondria, cytosol, and the plastid, taking advantage of available genomic and transcriptomic data. Training of prediction algorithms with the reference set now allows a genome-wide analysis of protein localization in Chromera velia and Vitrella brassicaformis. We confirm that the chromerid plastids house enzymatic pathways needed for their maintenance and photosynthetic activity, but for carbon and nitrogen allocation, metabolite exchange is necessary with the cytosol and mitochondria. This indeed suggests that the regulatory mechanisms operate in the cytosol to control carbon metabolism based on the availability of both light and nutrients. We discuss that this arrangement is largely shared with apicomplexans and dinoflagellates, possibly stemming from a common ancestral metabolic architecture, and supports the mixotrophy of the chromerid algae.
Zobrazit více v PubMed
Allen AE, et al. 2011. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473(7346):203–207. PubMed
Atteia A, et al. 2009. A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the α-proteobacterial mitochondrial ancestor. Mol Biol Evol. 26(7):1533–1548. PubMed
Bisanz C, et al. 2006. Toxoplasma gondii acyl-lipid metabolism: de novo synthesis from apicoplast-generated fatty acids versus scavenging of host cell precursors. Biochem J. 394(1):197–205. PubMed PMC
Blum T, Briesemeister S, Kohlbacher O.. 2009. MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction. BMC Bioinformatics 10:274.. PubMed PMC
Botté CY, et al. 2011. Identification of plant-like galactolipids in Chromera velia, a photosynthetic relative of malaria parasites. J Biol Chem. 286(34):29893–29903. PubMed PMC
Boucher MJ, et al. 2018. Integrative proteomics and bioinformatic prediction enable a high-confidence apicoplast proteome in malaria parasites. PLoS Biol. 16:1–29. PubMed PMC
Bouvier F, Harlingue AD, Backhaus RA, Kumagai MH, Camara B.. 2000. Identification of neoxanthin synthase as a carotenoid cyclase paralog. Eur J Biochem. 267(21):6346–6352. PubMed
Bromke MA. 2013. Amino acid biosynthesis pathways in diatoms. Metabolites 3(2):294–311. PubMed PMC
Buchfink B, Xie C, Huson DH.. 2015. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 12(1):59.. PubMed
Bulusu V, Jayaraman V, Balaram H.. 2011. Metabolic fate of fumarate, a side product of the purine salvage pathway in the intraerythrocytic stages of Plasmodium falciparum. J Biol Chem. 286(11):9236–9245. PubMed PMC
Burki F, et al. 2012. Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin. Genome Biol Evol. 4(6):626–635. PubMed PMC
Calvo SE, Mootha VK.. 2010. The mitochondrial proteome and human disease. Annu Rev Genom Hum Genet. 11(1):25–44. PubMed PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T.. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973. PubMed PMC
Chaudhary K, Fox BA, Bzik DJ.. 2014. Comparative aspects of nucleotide and amino acid metabolism in Toxoplasma gondii and other Apicomplexa In: Weiss LM, Kim K, editors. Toxoplasma gondii. 2nd ed Cambridge, MA, USA:Elsevier; p. 663–706.
Cohen L, Alexander H, Brown CT.. 2016. Marine Microbial Eukaryotic Transcriptome Sequencing Project, re-assemblies. figshare. 3840153. 10.6084/m9.figshare.3840153.v7 DOI
Cook T, et al. 2007. Divergent polyamine metabolism in the Apicomplexa. Microbiology 153(4):1123–1130. PubMed
Coppin A, et al. 2005. Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry. J Mol Evol. 60(2):257–267. PubMed
Cordeiro C, et al. 2012. The glyoxalase pathway in protozoan parasites. Int J Med Microbiol. 302:225–229. PubMed
Crooks G, Hon G, Chandonia J, Brenner S.. 2004. WebLogo: a sequence logo generator. Genome Res. 14(6):1188–1190. PubMed PMC
Cumbo VR, et al. 2013. Chromera velia is endosymbiotic in larvae of the reef corals Acropora digitifera and A. tenuis. Protist 164(2):237–244. PubMed
Danne JC, Gornik SG, MacRae JI, McConville MJ, Waller RF.. 2013. Alveolate mitochondrial metabolic evolution: dinoflagellates force reassessment of the role of parasitism as a driver of change in apicomplexans. Mol Biol Evol. 30(1):123–139. PubMed
de Souza A, Wang JZ, Dehesh K. 2017. Retrograde signals: Integrators of interorganellar communication and orchestrators of plant development. Ann Rev Plant Biol 68:85–108. PubMed
de la Torre F, El-Azaz J, Ávila C, Cánovas FM.. 2014. Deciphering the role of aspartate and prephenate aminotransferase activities in plastid nitrogen metabolism. Plant Physiol. 164(1):92–104. PubMed PMC
Dorrell RG, Butterfield ER, Nisbet RER, Howe CJ.. 2013. Evolution: unveiling early alveolates. Curr Biol. 23(24):R1093–R1096. PubMed
Dorrell RG, Drew J, Nisbet RER, Howe CJ.. 2014. Evolution of chloroplast transcript processing in Plasmodium and its chromerid algal relatives. PLoS Genet. 10(1):e1004008.. PubMed PMC
Dorrell RG, et al. 2017. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 6:e23717.. PubMed PMC
Emanuelsson O, Brunak S, von Heijne G, Nielsen H.. 2007. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2(4):953–971. PubMed
Emanuelsson O, Nielsen H, Brunak S, Von Heijne G.. 2000. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 300(4):1005–1016. PubMed
Ferrario-Méry S, Besin E, Pichon O, Meyer C, Hodges M.. 2006. The regulatory PII protein controls arginine biosynthesis in Arabidopsis. FEBS Lett. 580(8):2015–2020. PubMed
Flegontov P, et al. 2015. Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol Biol Evol. 32(5):1115–1131. PubMed
Fleige T, Fischer K, Ferguson DJP, Gross U, Bohne W.. 2007. Carbohydrate metabolism in the Toxoplasma gondii apicoplast: localization of three glycolytic isoenzymes, the single pyruvate dehydrogenase complex, and a plastid phosphate translocator. Eukaryot Cell 6(6):984–996. PubMed PMC
Foster C, Portman N, Chen M, Šlapeta J.. 2014. Increased growth and pigment content of Chromera velia in mixotrophic culture. FEMS Microbiol Ecol. 88(1):121–128. PubMed
Foth BJ, et al. 2005. The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast. Mol Microbiol. 55(1):39–53. PubMed
Füssy Z, Oborník M.. 2017a. Chromerids and their plastids In: Hirakawa Y, editor. Advances in botanical research. Vol. 84 Cambridge, MA, USA:Elsevier. p. 187–218.
Füssy Z, Oborník M.. 2017b. Reductive evolution of apicomplexan parasites from phototrophic ancestors In: Pontarotti P, editor. Evolutionary biology: self/nonself evolution, species and complex traits evolution, methods and concepts. Cham (Switzerland: ): Springer International Publishing; p. 217–236.
Füssy Z, Oborník M.. 2018. Complex endosymbioses I: from primary to complex plastids, multiple independent events. Methods Mol Biol. 1829:17–35. PubMed
Garg SG, Gould SB.. 2016. The role of charge in protein targeting evolution. Trends Cell Biol. 26(12):894–905. PubMed
Gawryluk RMR, Chisholm KA, Pinto DM, Gray MW.. 2014. Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants. J Proteomics 109:400–416. PubMed
Gonczarowska-Jorge H, Zahedi RP, Sickmann A.. 2017. The proteome of baker’s yeast mitochondria. Mitochondrion 33:15–21. PubMed
Gornik SG, et al. 2015. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci U S A. 112:5767–5772. PubMed PMC
Gould SB, et al. 2006. Protein targeting into the complex plastid of cryptophytes. J Mol Evol. 62(6):674–681. PubMed
Gray MW. 2015. Mosaic nature of the mitochondrial proteome: implications for the origin and evolution of mitochondria. Proc Natl Acad Sci U S A. 112(33):10133–10138. PubMed PMC
Gruber A. 2019. What’s in a name? How organelles of endosymbiotic origin can be distinguished from endosymbionts. Microb Cell 6(2):123–133. PubMed PMC
Gruber A, Rocap G, Kroth PG, Armbrust EV, Mock T.. 2015. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 81(3):519–528. PubMed PMC
Gruber A, et al. 2007. Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol Biol. 64(5):519–530. PubMed
Gschloessl B, Guermeur Y, Cock JM.. 2008. HECTAR: a method to predict subcellular targeting in heterokonts. BMC Bioinformatics 9(1):393.. PubMed PMC
Gupta A, et al. 2014. Reduced ribosomes of the apicoplast and mitochondrion of Plasmodium spp. and predicted interactions with antibiotics. Open Biol. 4(5):140045. PubMed PMC
Hadariová L, Vesteg M, Hampl V, Krajčovič J.. 2018. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet. 64(2):365–387. PubMed
Hiller K, Grote A, Scheer M, Münch R, Jahn D.. 2004. PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 32:375–379. PubMed PMC
Hopkins JF, et al. 2012. Proteomics reveals plastid- and periplastid-targeted proteins in the chlorarachniophyte alga Bigelowiella natans. Genome Biol Evol. 4(12):1391–1406. PubMed PMC
Huang S, Shingaki-Wells RN, Taylor NL, Millar AH.. 2013. The rice mitochondria proteome and its response during development and to the environment. Front Plant Sci. 4:16.. PubMed PMC
Imlay L, Odom AR.. 2014. Isoprenoid metabolism in apicomplexan parasites. Curr Clin Microbiol Rep. 1(3-4):37–50. PubMed PMC
Jacot D, Waller RF, Soldati-Favre D, MacPherson DA, MacRae JI.. 2016. Apicomplexan energy metabolism: carbon source promiscuity and the quiescence hyperbole. Trends Parasitol. 32(1):56–70. PubMed
Janouškovec J, Horák A, Oborník M, Lukeš J, Keeling PJ.. 2010. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci U S A. 107:10949–10954. PubMed PMC
Janouškovec J, et al. 2013. Colponemids represent multiple ancient alveolate lineages. Curr Biol. 23(24):2546–2552. PubMed
Janouškovec J, et al. 2015. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci U S A. 112(33):10200–10207. PubMed PMC
Jones P, et al. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240. PubMed PMC
Jouhet J, Maréchal E, Block MA.. 2007. Glycerolipid transfer for the building of membranes in plant cells. Prog Lipid Res. 46(1):37–55. PubMed
Joy JB, Liang RH, McCloskey RM, Nguyen T, Poon A.. 2016. Ancestral reconstruction. PLoS Comput Biol. 12(7):e1004763.. PubMed PMC
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K.. 2017. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45(D1):D353–D361. PubMed PMC
Katoh K, Standley DM.. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780. PubMed PMC
Kaundal R, Sahu SS, Verma R, Weirick T.. 2013. Identification and characterization of plastid-type proteins from sequence-attributed features using machine learning. BMC Bioinformatics 14:S7. PubMed PMC
Ke H, et al. 2015. Genetic investigation of tricarboxylic acid metabolism during the Plasmodium falciparum life cycle. Cell Rep. 11(1):164–174. PubMed PMC
Kearse M, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. PubMed PMC
Keeling PJ, et al. 2014. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12(6):e1001889. PubMed PMC
Keithly JS, Marchewka MJ, Zhu G, Marchewka MJ, Keithly JS.. 2000. Cryptosporidium parvum appears to lack a plastid genome. Microbiology 146:315–321. PubMed
Kersey PJ, et al. 2016. Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Res. 44(D1):D574–D580. PubMed PMC
Kilian O, Kroth PG.. 2005. Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J. 41(2):175–183. PubMed
Kohli GS, John U, Van Dolah FM, Murray SA.. 2016. Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes. ISME J. 10(8):1877–1890. PubMed PMC
Kořený L, Sobotka R, Janouškovec J, Keeling PJ, Oborník M.. 2011. Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites. Plant Cell 23(9):3454–3462. PubMed PMC
Kotabová E, Kaňa R, Jarešová J, Prášil O.. 2011. Non-photochemical fluorescence quenching in Chromera velia is enabled by fast violaxanthin de-epoxidation. FEBS Lett. 585(12):1941–1945. PubMed
Kunze M, Berger J.. 2015. The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance. Front Physiol. 6:1–27. PubMed PMC
Lim L, Linka M, Mullin KA, Weber APM, Mcfadden GI.. 2010. The carbon and energy sources of the non-photosynthetic plastid in the malaria parasite. FEBS Lett. 584(3):549–554. PubMed
MacRae JI, et al. 2012. Mitochondrial metabolism of glucose and glutamine is required for intracellular growth of Toxoplasma gondii. Cell Host Microbe 12(5):682–692. PubMed PMC
Mallo N, Fellows J, Johnson C, Sheiner L.. 2018. Protein import into the endosymbiotic organelles of apicomplexan parasites. Genes (Basel) 9(8):412. PubMed PMC
Mazumdar J, Striepen B.. 2007. Make it or take it: fatty acid metabolism of apicomplexan parasites. Eukaryot Cell 6(10):1727–1735. PubMed PMC
Mikami K, Hosokawa M.. 2013. Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. IJMS 14(7):13763–13781. PubMed PMC
Mohamed AR, et al. 2018. Deciphering the nature of the coral-Chromera association. ISME J. 12(3):776–790. PubMed PMC
Moore RB, et al. 2008. A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451(7181):959–963. PubMed
Müller S, Kappes B.. 2007. Vitamin and cofactor biosynthesis pathways in Plasmodium and other apicomplexan parasites. Trends Parasitol. 23(3):112–121. PubMed PMC
Nash EA, Nisbet RER, Barbrook AC, Howe CJ.. 2008. Dinoflagellates: a mitochondrial genome all at sea. Trends Genet. 24(7):328–335. PubMed
Németh E, Nagy Z, Pécsváradi A.. 2018. Chloroplast glutamine synthetase, the key regulator of nitrogen metabolism in wheat, performs its role by fine regulation of enzyme activity via negative cooperativity of its subunits. Front Plant Sci. 9:191.. PubMed PMC
Neuhaus HE, Emes MJ.. 2000. Nonphotosynthetic metabolism in plastids. Annu Rev Plant Physiol Plant Mol Biol. 51(1):111–140. PubMed
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ.. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32(1):268–274. PubMed PMC
Oborník M. 2018. The birth of red complex plastids: one, three, or four times? Trends Parasitol. 34(11):923–925. PubMed
Oborník M. 2019. In the beginning was the word: how terminology drives our understanding of endosymbiotic organelles. Microb Cell 6(2):134–141. PubMed PMC
Oborník M, Janouškovec J, Chrudimský T, Lukeš J.. 2009. Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again. Int J Parasitol. 39(1):1–12. PubMed
Oborník M, Lukeš J.. 2015. The organellar genomes of Chromera and Vitrella, the phototrophic relatives of apicomplexan parasites. Annu Rev Microbiol. 69(1):129–144. PubMed
Oborník M, et al. 2012. Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist 163(2):306–323. PubMed
Oppenheim RD, et al. 2014. BCKDH: the missing link in apicomplexan mitochondrial metabolism is required for full virulence of Toxoplasma gondii and Plasmodium berghei. PLoS Pathog. 10(7):e1004263. PubMed PMC
Pagliarini DJ, Rutter J.. 2013. Hallmarks of a new era in mitochondrial biochemistry. Genes Dev. 27(24):2615–2627. PubMed PMC
Palmfeldt J, Bross P.. 2017. Proteomics of human mitochondria. Mitochondrion 33:2–14. PubMed
Panigrahi AK, et al. 2009. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics 9(2):434–450. PubMed PMC
Patron NJ, Waller RF.. 2007. Transit peptide diversity and divergence: a global analysis of plastid targeting signal. BioEssays 29(10):1048–1058. PubMed
Petersen J, et al. 2014. Chromera velia, endosymbioses and the rhodoplex hypothesis—plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genome Biol Evol. 6(3):666–684. PubMed PMC
Petersen TN, Brunak S, von Heijne G, Nielsen H.. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 8(10):785–786. PubMed
Petsalaki EI, Bagos PG, Litou ZI, Hamodrakas SJ.. 2006. PredSL: a tool for the N-terminal sequence-based prediction of protein subcellular localization. Genomics Proteomics Bioinformatics 4(1):48–55. PubMed PMC
Ralph SA, Foth BJ, Hall N, McFadden GI.. 2004. Evolutionary pressures on apicoplast transit peptides. Mol Biol Evol. 21(12):2183–2194. PubMed
Sazanov LA, Jackson JB.. 1994. Proton-translocating transhydrogenase and NAD- and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria. FEBS Lett. 344(2-3):109–116. PubMed
Schleiff E, Soll J, Küchler M, Kühlbrandt W, Harrer R.. 2003. Characterization of the translocon of the outer envelope of chloroplasts. J Cell Biol. 160(4):541–551. PubMed PMC
Searcy DG. 2003. Metabolic integration during the evolutionary origin of mitochondria. Cell Res. 13(4):229–238. PubMed
Shanmugasundram A, Gonzalez-Galarza FF, Wastling JM, Vasieva O, Jones AR.. 2013. Library of Apicomplexan Metabolic Pathways: a manually curated database for metabolic pathways of apicomplexan parasites. Nucleic Acids Res. 41:706–713. PubMed PMC
Smith DGS, et al. 2007. Exploring the mitochondrial proteome of the ciliate protozoon Tetrahymena thermophila: direct analysis by tandem mass spectrometry. J Mol Biol. 374(3):837–863. PubMed
Sobotka R, et al. 2017. Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci Rep. 7(1):13214. PubMed PMC
Stitt M. 2002. Steps towards an integrated view of nitrogen metabolism. J Exp Bot. 53(370):959–970. PubMed
Sun S, Habermann BH.. 2017. A guide to computational methods for predicting mitochondrial localization In: Mokranjac D, Perocchi F, editors. Mitochondria: practical protocols. New York: Springer; p. 1–14. PubMed
Terashima M, Specht M, Hippler M.. 2011. The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features. Curr Genet. 57(3):151–168. PubMed
Tetlow IJ, Rawsthorne S, Raines C, Emes MJ.. 2005. Plastid metabolic pathways In: Møller SG, editor. Annual plant reviews. Vol. 13 Oxford, UK:Blackwell Publishing Ltd; p. 60–125.
Tikhonenkov DV, et al. 2014. Description of Colponema vietnamica sp.n. and Acavomonas peruviana n. gen. n. sp., two new alveolate phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of alveolates and eukaryotes. PLoS One 9:e95467.. PubMed PMC
Tymoshenko S, et al. 2015. Metabolic needs and capabilities of Toxoplasma gondii through combined computational and experimental analysis. PLoS Comput Biol. 11(5):e1004261. PubMed PMC
Van Dingenen J, Blomme J, Gonzalez N, Inzé D.. 2016. Plants grow with a little help from their organelle friends. J Exp Bot. 67(22):6267–6281. PubMed
van Dooren GG, Striepen B.. 2013. The algal past and parasite present of the apicoplast. Annu Rev Microbiol. 67(1):271–289. PubMed
van Wijk KJ, Baginsky S.. 2011. Plastid proteomics in higher plants: current state and future goals. Plant Physiol. 155(4):1578–1588. PubMed PMC
Vazač J, Füssy Z, Hladová I, Killi S, Oborník M.. 2018. Ploidy and number of chromosomes in the alveolate alga Chromera velia. Protist 169(1):53–63. PubMed
Waller RF, Gornik SG, Kořený L, Pain A.. 2016. Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid. Commun Integr Biol. 9(1):e1116653.. PubMed PMC
Waller RF, Kořený L.. 2017. Plastid complexity in dinoflagellates: a picture of gains, losses, replacements and revisions In: Hirakawa Y, editor. Advances in botanical research. Vol. 84 Cambridge, MA, USA:Elsevier. p. 105–143.
Woehle C, Dagan T, Martin WF, Gould SB.. 2011. Red and problematic green phylogenetic signals among thousands of nuclear genes from the photosynthetic and apicomplexa-related Chromera velia. Genome Biol Evol. 3:1220–1230. PubMed PMC
Woo YH, et al. 2015. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife 4:e06974.. PubMed PMC
Yoo H, Antoniewicz MR, Stephanopoulos G, Kelleher JK.. 2008. Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line. J Biol Chem. 283(30):20621–20627. PubMed PMC
Zhu G, et al. 2004. Expression and functional characterization of a giant Type I fatty acid synthase (CpFAS1) gene from Cryptosporidium parvum. Mol Biochem Parasitol. 134(1):127–135. PubMed
New plastids, old proteins: repeated endosymbiotic acquisitions in kareniacean dinoflagellates
Organellar Evolution: A Path from Benefit to Dependence
Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia
The Cryptic Plastid of Euglena longa Defines a New Type of Nonphotosynthetic Plastid Organelle
Common origin of ornithine-urea cycle in opisthokonts and stramenopiles
Fatty Acid Biosynthesis in Chromerids
Isolation of plastids and mitochondria from Chromera velia
Characterization of Aminoacyl-tRNA Synthetases in Chromerids