• This record comes from PubMed

Fatty Acid Biosynthesis in Chromerids

. 2020 Jul 24 ; 10 (8) : . [epub] 20200724

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
18-13458S Grantová Agentura České Republiky - International
LM2015062 Ministerstvo Školství, Mládeže a Tělovýchovy - International
LM2018099 Ministerstvo Školství, Mládeže a Tělovýchovy - International
CZ.1.05/2.1.00/19.0380 Ministerstvo Školství, Mládeže a Tělovýchovy - International
CZ.02.1.01/0.0/0.0/16_019/0000759 European Regional Development Fund - International

Fatty acids are essential components of biological membranes, important for the maintenance of cellular structures, especially in organisms with complex life cycles like protozoan parasites. Apicomplexans are obligate parasites responsible for various deadly diseases of humans and livestock. We analyzed the fatty acids produced by the closest phototrophic relatives of parasitic apicomplexans, the chromerids Chromera velia and Vitrella brassicaformis, and investigated the genes coding for enzymes involved in fatty acids biosynthesis in chromerids, in comparison to their parasitic relatives. Based on evidence from genomic and metabolomic data, we propose a model of fatty acid synthesis in chromerids: the plastid-localized FAS-II pathway is responsible for the de novo synthesis of fatty acids reaching the maximum length of 18 carbon units. Short saturated fatty acids (C14:0-C18:0) originate from the plastid are then elongated and desaturated in the cytosol and the endoplasmic reticulum. We identified giant FAS I-like multi-modular enzymes in both chromerids, which seem to be involved in polyketide synthesis and fatty acid elongation. This full-scale description of the biosynthesis of fatty acids and their derivatives provides important insights into the reductive evolutionary transition of a phototropic algal ancestor to obligate parasites.

See more in PubMed

Moore R.B., Oborník M., Janouškovec J., Chrudimský T., Vancová M., Green D.H., Wright S.W., Davies N.W., Bolch C.J.S., Heimann K., et al. A photosynthetic alveolate closely related to apicomplexan parasites. Nature. 2008;451:959–963. doi: 10.1038/nature06635. PubMed DOI

Oborník M., Modrý D., Lukeš M., Černotiková-Střibrná E., Cihlář J., Tesařová M., Kotabová E., Vancová M., Prášil O., Lukeš J. Morphology, Ultrastructure and Life Cycle of Vitrella brassicaformis n. sp., n. gen., a Novel Chromerid from the Great Barrier Reef. Protist. 2012;163:306–323. doi: 10.1016/j.protis.2011.09.001. PubMed DOI

Oborník M., Janouškovec J., Chrudimský T., Lukeš J. Evolution of the apicoplast and its hosts: From heterotrophy to autotrophy and back again. Int. J. Parasitol. 2009;39:1–12. doi: 10.1016/j.ijpara.2008.07.010. PubMed DOI

Füssy Z., Oborník M. Chromerids and Their Plastids. In: Hirakawa Y., editor. Secondary Endosymbioses. Volume 84. Academic Press Ltd-Elsevier Science Ltd.; London, UK: 2017. pp. 187–218.

Cumbo V.R., Baird A.H., Moore R.B., Negri A.P., Neilan B.A., Salih A., van Oppen M.J.H., Wang Y., Marquis C.P. Chromera velia is Endosymbiotic in Larvae of the Reef Corals Acropora digitifera and A. tenuis. Protist. 2013;164:237–244. doi: 10.1016/j.protis.2012.08.003. PubMed DOI

Janouškovec J., Sobotka R., Lai D., Flegontov P., Koník P., Komenda J., Ali S., Prášil O., Pain A., Oborník M., et al. Split Photosystem Protein, Linear-Mapping Topology, and Growth of Structural Complexity in the Plastid Genome of Chromera velia. Mol. Biol. Evol. 2013;30:2447–2462. doi: 10.1093/molbev/mst144. PubMed DOI

Okamoto N., McFadden G.I. The mother of all parasites. Future Microbiol. 2008;3:391–395. doi: 10.2217/17460913.3.4.391. DOI

Mohamed A.R., Cumbo V.R., Harii S., Shinzato C., Chan C.X., Ragan M.A., Satoh N., Ball E.E., Miller D.J. Deciphering the nature of the coral-Chromera association. ISME J. 2018;12:776–790. doi: 10.1038/s41396-017-0005-9. PubMed DOI PMC

Mathur V., del Campo J., Kolisko M., Keeling P.J. Global diversity and distribution of close relatives of apicomplexan parasites. Environ. Microbiol. 2018;20:2824–2833. doi: 10.1111/1462-2920.14134. PubMed DOI

Janouškovec J., Tikhonenkov D.V., Burki F., Howe A.T., Kolisko M., Mylnikov A.P., Keeling P.J. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc. Natl. Acad. Sci. USA. 2015;112:10200–10207. doi: 10.1073/pnas.1423790112. PubMed DOI PMC

Janouškovec J., Horák A., Oborník M., Lukeš J., Keeling P.J. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc. Natl. Acad. Sci. USA. 2010;107:10949–10954. doi: 10.1073/pnas.1003335107. PubMed DOI PMC

Kořený L., Sobotka R., Janouškovec J., Keeling P.J., Oborník M. Tetrapyrrole Synthesis of Photosynthetic Chromerids Is Likely Homologous to the Unusual Pathway of Apicomplexan Parasites. Plant Cell. 2011;23:3454–3462. doi: 10.1105/tpc.111.089102. PubMed DOI PMC

Woo Y.H., Ansari H., Otto T.D., Klinger C.M., Kolisko M., Michálek J., Saxena A., Shanmugam D., Tayyrov A., Veluchamy A., et al. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. Elife. 2015;4 doi: 10.7554/eLife.06974. PubMed DOI PMC

Oborník M. Endosymbiotic Evolution of Algae, Secondary Heterotrophy and Parasitism. Biomolecules. 2019;9 doi: 10.3390/biom9070266. PubMed DOI PMC

Flegontov P., Michálek J., Janouškovec J., Lai D.H., Jirků M., Hajdůšková E., Tomčala A., Otto T.D., Keeling P.J., Pain A., et al. Divergent Mitochondrial Respiratory Chains in Phototrophic Relatives of Apicomplexan Parasites. Mol. Biol. Evol. 2015;32:1115–1131. doi: 10.1093/molbev/msv021. PubMed DOI

Oborník M., Vancová M., Lai D.-H., Janouškovec J., Keeling P.J., Lukeš J. Morphology and Ultrastructure of Multiple Life Cycle Stages of the Photosynthetic Relative of Apicomplexa, Chromera velia. Protist. 2011;162:115–130. doi: 10.1016/j.protis.2010.02.004. PubMed DOI

Füssy Z., Masařova P., Kručinská J., Esson H.J., Oborník M. Budding of the Alveolate Alga Vitrella brassicaformis Resembles Sexual and Asexual Processes in Apicomplexan Parasites. Protist. 2017;168:80–91. doi: 10.1016/j.protis.2016.12.001. PubMed DOI

Cavalier-Smith T. Kingdom Chromista and its eight phyla: A new synthesis emphasising periplastid protein targeting, cyto-skeletal and periplastid evolution, and ancient divergences. Protoplasma. 2018;255:297–357. doi: 10.1007/s00709-017-1147-3. PubMed DOI PMC

Fahy E., Subramaniam S., Brown H.A., Glass C.K., Merrill A.H., Murphy R.C., Raetz C.R.H., Russell D.W., Seyama Y., Shaw W., et al. A comprehensive classification system for lipids. J. Lipid Res. 2005;46:839–861. doi: 10.1194/jlr.E400004-JLR200. PubMed DOI

Goodman C.D., McFadden G.I. Fatty acid biosynthesis as a drug target in apicomplexan parasites. Curr. Drug Targets. 2007;8:15–30. doi: 10.2174/138945007779315579. PubMed DOI

Chirala S.S., Wakil S.J. Structure and function of animal fatty acid synthase. Lipids. 2004;39:1045–1053. doi: 10.1007/s11745-004-1329-9. PubMed DOI

Ramakrishnan S., Serricchio M., Striepen B., Butikofer P. Lipid synthesis in protozoan parasites: A comparison between kinetoplastids and apicomplexans. Prog. Lipid Res. 2013;52:488–512. doi: 10.1016/j.plipres.2013.06.003. PubMed DOI PMC

Ryall K., Harper J.T., Keeling P.J. Plastid-derived Type II fatty acid biosynthetic enzymes in chromists. Gene. 2003;313:139–148. doi: 10.1016/S0378-1119(03)00671-1. PubMed DOI

Schmid K.M. Biochemistry of Lipids, Lipoproteins and Membranes. Elsevier B.V.; Amsterdam, The Netherlands: 2016. pp. 113–147.

Shelest E., Heimerl N., Fichtner M., Sasso S. Multimodular type I polyketide synthases in algae evolve by module duplications and displacement of AT domains in trans. BMC Genom. 2015:16. doi: 10.1186/s12864-015-2222-9. PubMed DOI PMC

McFadden G.I. Plastids and protein targeting. J. Eukaryot. Microbiol. 1999;46:339–346. doi: 10.1111/j.1550-7408.1999.tb04613.x. PubMed DOI

Wilson R.J.M. Plastid functions in the Apicomplexa. Protist. 2004;155:11–12. doi: 10.1078/1434461000158. PubMed DOI

Zhu G. Current progress in the fatty acid metabolism in Cryptosporidium parvum. J. Eukaryot. Microbiol. 2004;51:381–388. doi: 10.1111/j.1550-7408.2004.tb00384.x. PubMed DOI

Lu J.Z., Muench S.P., Allary M., Campbell S., Roberts C.W., Mui E., McLeod R.L., Rice D.W., Prigge S.T. Type I and type II fatty acid biosynthesis in Eimeria tenella: Enoyl reductase activity and structure. Parasitology. 2007;134:1949–1962. doi: 10.1017/S0031182007003319. PubMed DOI PMC

Mazumdar J., Striepen B. Make it or take it: Fatty acid metabolism of Apicomplexan parasites. Eukaryot. Cell. 2007;6:1727–1735. doi: 10.1128/EC.00255-07. PubMed DOI PMC

Sonda S., Hehl A.B. Lipid biology of Apicomplexa: Perspectives for new drug targets, particularly for Toxoplasma gondii. Trends Parasitol. 2006;22:41–47. doi: 10.1016/j.pt.2005.11.001. PubMed DOI

Salomaki E.D., Kolisko M. There Is Treasure Everywhere: Reductive Plastid Evolution in Apicomplexa in Light of Their Close Relatives. Biomolecules. 2019:9. doi: 10.3390/biom9080378. PubMed DOI PMC

Zhu G., Li Y.N., Cai X.M., Millership J.J., Marchewka M.J., Keithly J.S. Expression and functional characterization of a giant Type I fatty acid synthase (CpFAS1) gene from Cryptosporidium parvum. Mol. Biochem. Parasitol. 2004;134:127–135. doi: 10.1016/j.molbiopara.2003.11.011. PubMed DOI

John U., Beszteri B., Derelle E., de Peer Y.V., Read B., Moreau H., Cembella A. Novel insights into evolution of protistan polyketide synthases through phylogenomic analysis. Protist. 2008;159:21–30. doi: 10.1016/j.protis.2007.08.001. PubMed DOI

Heath R.J., Rubin J.R., Holland D.R., Zhang E.L., Snow M.E., Rock C.O. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J. Biol. Chem. 1999;274:11110–11114. doi: 10.1074/jbc.274.16.11110. PubMed DOI

Katoh K., Misawa K., Kuma K., Miyata T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC

Huelsenbeck J.P., Bollback J.P. Empirical and hierarchical Bayesian estimation of ancestral states. Syst. Biol. 2001;50:351–366. doi: 10.1080/106351501300317978. PubMed DOI

Ronquist F., Huelsenbeck J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI

Emanuelsson O., Nielsen H., Brunak S., von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 2000;300:1005–1016. doi: 10.1006/jmbi.2000.3903. PubMed DOI

Nielsen H., Engelbrecht J., Brunak S., von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997;10:1–6. doi: 10.1093/protein/10.1.1. PubMed DOI

Bendtsen J.D., Nielsen H., von Heijne G., Brunak S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 2004;340:783–795. doi: 10.1016/j.jmb.2004.05.028. PubMed DOI

Gruber A., Rocap G., Kroth P.G., Armbrust E.V., Mock T. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 2015;81:519–528. doi: 10.1111/tpj.12734. PubMed DOI PMC

Miller M.A., Pfeiffer W., Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees; Proceedings of the 2010 Gateway Computing Environments Workshop (GCE); New Orleans, LA, USA. 14 November 2010; pp. 1–8.

Folch J., Lees M., Stanley G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957;226:497–509. PubMed

Košťál V., Šimek P. Changes in fatty acid composition of phospholipids and triacylglycerols after cold-acclimation of an aestivating insect prepupa. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 1998;168:453–460. doi: 10.1007/s003600050165. DOI

Tomčala A., Kyselová V., Schneedorferová I., Opekarová I., Moos M., Urajová P., Kručinská J., Oborník M. Separation and identification of lipids in the photosynthetic cousins of Apicomplexa Chromera velia and Vitrella brassicaformis. J. Sep. Sci. 2017;40:3402–3413. doi: 10.1002/jssc.201700171. PubMed DOI

Zahradníčková H., Tomčala A., Berková P., Schneedorferová I., Okrouhlík J., Šimek P., Hodková M. Cost effective, robust, and reliable coupled separation techniques for the identification and quantification of phospholipids in complex biological matrices: Application to insects. J. Sep. Sci. 2014;37:2062–2068. doi: 10.1002/jssc.201400113. PubMed DOI

Dahmen J.L., Khadka M., Dodson V.J., Leblond J.D. Mono- and digalactosyldiacylglycerol composition of dinoflagellates. VI. Biochemical and genomic comparison of galactolipid biosynthesis between Chromera velia (Chromerida), a photosynthetic alveolate with red algal plastid ancestry, and the dinoflagellate, Lingulodinium polyedrum. Eur. J. Phycol. 2013;48:268–277. doi: 10.1080/09670262.2013.809610. DOI

Jenke-Kodama H., Sandmann A., Muller R., Dittmann E. Evolutionary implications of bacterial polyketide synthases. Mol. Biol. Evol. 2005;22:2027–2039. doi: 10.1093/molbev/msi193. PubMed DOI

Hashimoto K., Yoshizawa A.C., Okuda S., Kuma K., Goto S., Kanehisa M. The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J. Lipid Res. 2008;49:183–191. doi: 10.1194/jlr.M700377-JLR200. PubMed DOI

Gostincar C., Turk M., Gunde-Cimerman N. The Evolution of Fatty Acid Desaturases and Cytochrome b5 in Eukaryotes. J. Membr. Biol. 2010;233:63–72. doi: 10.1007/s00232-010-9225-x. PubMed DOI

Ramakrishnan S., Docampo M.D., MacRae J.I., Pujol F.M., Brooks C.F., van Dooren G.G., Hiltunen J.K., Kastaniotis A.J., McConville M.J., Striepen B. Apicoplast and Endoplasmic Reticulum Cooperate in Fatty Acid Biosynthesis in Apicomplexan Parasite Toxoplasma gondii. J. Biol. Chem. 2012;287:4957–4971. doi: 10.1074/jbc.M111.310144. PubMed DOI PMC

James G.O., Hocart C.H., Hillier W., Chen H.C., Kordbacheh F., Price G.D., Djordjevic M.A. Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresour. Technol. 2011;102:3343–3351. doi: 10.1016/j.biortech.2010.11.051. PubMed DOI

Rawsthorne S. Carbon flux and fatty acid synthesis in plants. Prog. Lipid Res. 2002;41:182–196. doi: 10.1016/S0163-7827(01)00023-6. PubMed DOI

Ramakrishnan S., Docampo M.D., MacRae J.I., Ralton J.E., Rupasinghe T., McConville M.J., Striepen B. The intracellular parasite Toxoplasma gondii depends on the synthesis of long-chain and very long-chain unsaturated fatty acids not supplied by the host cell. Mol. Microbiol. 2015;97:64–76. doi: 10.1111/mmi.13010. PubMed DOI PMC

Füssy Z., Faitova T., Oborník M. Subcellular Compartments Interplay for Carbon and Nitrogen Allocation in Chromera velia and Vitrella brassicaformis. Genome Biol. Evol. 2019;11:1765–1779. doi: 10.1093/gbe/evz123. PubMed DOI PMC

Weng L.C., Pasaribu B., Lin I.P., Tsai C.H., Chen C.S., Jiang P.L. Nitrogen Deprivation Induces Lipid Droplet Accumulation and Alters Fatty Acid Metabolism in Symbiotic Dinoflagellates Isolated from Aiptasia pulchella. Sci. Rep. 2014;4 doi: 10.1038/srep05777. PubMed DOI PMC

Siron R., Giusti G., Berland B. Changes in the fatty-acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorus deficiency. Mar. Ecol. Prog. Ser. 1989;55:95–100. doi: 10.3354/meps055095. DOI

Popko J., Herrfurth C., Feussner K., Ischebeck T., Iven T., Haslam R., Hamilton M., Sayanova O., Napier J., Khozin-Goldberg I., et al. Metabolome Analysis Reveals Betaine Lipids as Major Source for Triglyceride Formation, and the Accumulation of Sedoheptulose during Nitrogen-Starvation of Phaeodactylum tricornutum. PLoS ONE. 2016:11. doi: 10.1371/journal.pone.0164673. PubMed DOI PMC

Lukeš M., Giordano M., Prasil O. The effect of environmental factors on fatty acid composition of Chromera velia (Chromeridae) J. Appl. Phycol. 2017;29:1791–1799. doi: 10.1007/s10811-017-1114-6. DOI

Skiba M.A., Sikkema A.P., Fiers W.D., Gerwick W.H., Sherman D.H., Aldrich C.C., Smith J.L. Domain Organization and Active Site Architecture of a Polyketide Synthase C-methyltransferase. ACS Chem. Biol. 2016;11:3319–3327. doi: 10.1021/acschembio.6b00759. PubMed DOI PMC

Huerlimann R., Steinig E.J., Loxton H., Zenger K.R., Jerry D.R., Heimann K. The effect of nitrogen limitation on acetyl-CoA carboxylase expression and fatty acid content in Chromera velia and Isochrysis aff. galbana (TISO) Gene. 2014;543:204–211. doi: 10.1016/j.gene.2014.04.022. PubMed DOI

Dubois D., Fernandes F., Amiar S., Dass S., Katris N.J., Botté C.Y., Yamaryo-Botté Y. Toxoplasma gondii acetyl-CoA synthetase is involved in fatty acid elongation (of long fatty acid chains) during tachyzoite life stages. J. Lipid Res. 2018;59:994–1004. doi: 10.1194/jlr.M082891. PubMed DOI PMC

Simionato D., Block M.A., La Rocca N., Jouhet J., Marechal E., Finazzi G., Morosinotto T. The Response of Nannochloropsis gaditana to Nitrogen Starvation Includes De Novo Biosynthesis of Triacylglycerols, a Decrease of Chloroplast Galactolipids, and Reorganization of the Photosynthetic Apparatus. Eukaryot. Cell. 2013;12:665–676. doi: 10.1128/EC.00363-12. PubMed DOI PMC

Burrows E.H., Bennette N.B., Carrieri D., Dixon J.L., Brinker A., Frada M., Baldassano S.N., Falkowski P.G., Dismukes G.C. Dynamics of Lipid Biosynthesis and Redistribution in the Marine Diatom Phaeodactylum tricornutum Under Nitrate Deprivation. Bioenergy Res. 2012;5:876–885. doi: 10.1007/s12155-012-9201-7. DOI

Stephenson A.L., Dennis J.S., Howe C.J., Scott S.A., Smith A.G. Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels. 2010;1:47–58. doi: 10.4155/bfs.09.1. DOI

Yang D.W., Song D.H., Kind T., Ma Y., Hoefkens J., Fiehn O. Lipidomic Analysis of Chlamydomonas reinhardtii under Nitrogen and Sulfur Deprivation. PLoS ONE. 2015:10. doi: 10.1371/journal.pone.0137948. PubMed DOI PMC

Puzanskiy R.K., Shavarda A.L., Tarakhovskaya E.R., Shishova M.F. Analysis of Metabolic Profile of Chlamydomonas reinhardtii Cultivated under Autotrophic Conditions. Appl. Biochem. Microbiol. 2015;51:83–94. doi: 10.1134/S0003683815010135. PubMed DOI

Bisanz C., Bastien O., Grando D., Jouhet J., Marechal E., Cesbron-Delauw M.F. Toxoplasma gondii acyl-lipid metabolism: De novo synthesis from apicoplast-generated fatty acids versus scavenging of host cell precursors. Biochem. J. 2006;394:197–205. doi: 10.1042/BJ20050609. PubMed DOI PMC

Lack G., Homberger-Zizzari E., Folkers G., Scapozza L., Perozzo R. Recombinant expression and biochemical characterization of the unique elongating beta-ketoacyl-acyl carrier protein synthase involved in fatty acid biosynthesis of Plasmodium falciparum using natural and artificial substrates. J. Biol. Chem. 2006;281:9538–9546. doi: 10.1074/jbc.M509119200. PubMed DOI

Sharma S.K., Kapoor M., Ramya T.N.C., Kumar S., Kumar G., Modak R., Sharma S., Surolia N., Surolia A. Identification, characterization, and inhibition of Plasmodium falciparum beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ) J. Biol. Chem. 2003;278:45661–45671. doi: 10.1074/jbc.M304283200. PubMed DOI

Surolia N., Surolia A. Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum (vol 7, pg 167, 2000) Nat. Med. 2001;7:636. doi: 10.1038/84612. PubMed DOI

Waller R.F., Keeling P.J., Donald R.G.K., Striepen B., Handman E., Lang-Unnasch N., Cowman A.F., Besra G.S., Roos D.S., McFadden G.I. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Natl. Acad. Sci. USA. 1998;95:12352–12357. doi: 10.1073/pnas.95.21.12352. PubMed DOI PMC

Botte C.Y., Yamaryo-Botte Y., Rupasinghe T.W.T., Mullin K.A., MacRae J.I., Spurck T.P., Kalanon M., Shears M.J., Coppel R.L., Crellin P.K., et al. Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites. Proc. Natl. Acad. Sci. USA. 2013;110:7506–7511. doi: 10.1073/pnas.1301251110. PubMed DOI PMC

Goodman C.D., McFadden G.I. Fatty acid synthesis in protozoan parasites: Unusual pathways and novel drug targets. Curr. Pharm. Des. 2008;14:901–916. doi: 10.2174/138161208784041088. PubMed DOI

Liu B.Q., Wang Y.Q., Fillgrove K.L., Anderson V.E. Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to MCF-7 and SKBr-3 breast cancer cells. Cancer Chemother. Pharmacol. 2002;49:187–193. doi: 10.1007/s00280-001-0399-x. PubMed DOI

Kruger N.J., von Schaewen A. The oxidative pentose phosphate pathway: Structure and organisation. Curr. Opin. Plant Biol. 2003;6:236–246. doi: 10.1016/S1369-5266(03)00039-6. PubMed DOI

Bigogno C., Khozin-Goldberg I., Cohen Z. Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (Trebuxiophyceae, Chlorophyta) Phytochemistry. 2002;60:135–143. doi: 10.1016/S0031-9422(02)00037-7. PubMed DOI

Guschina I.A., Harwood J.L. Mechanisms of temperature adaptation in poikilotherms. FEBS Lett. 2006;580:5477–5483. doi: 10.1016/j.febslet.2006.06.066. PubMed DOI

Khozin-Goldberg I., Didi-Cohen S., Shayakhmetova I., Cohen Z. Biosynthesis of eicosapentaenoic acid (EPA) in the freshwater eustigmatophyte Monodus subterraneus (Eustigmatophyceae) J. Phycol. 2002;38:745–756. doi: 10.1046/j.1529-8817.2002.02006.x. DOI

Mitschler R.R., Welti R., Upton S.J. A comparative-study of lipid compositions of Cryptosporidium parvum (Apicomplexa) and madin-darby bovine kidney-cells. J. Eukaryot. Microbiol. 1994;41:8–12. doi: 10.1111/j.1550-7408.1994.tb05927.x. PubMed DOI

Toso M.A., Omoto C.K. Gregarina niphandrodes may lack both a plastid genome and organelle. J. Eukaryot. Microbiol. 2007;54:66–72. doi: 10.1111/j.1550-7408.2006.00229.x. PubMed DOI

Zhu G., Marchewka M.J., Keithly J.S. Cryptosporidium parvum appears to lack a plastid genome. Microbiology. 2000;146:315–321. doi: 10.1099/00221287-146-2-315. PubMed DOI

Keithly J.S., Langreth S.G., Buttle K.F., Mannella C.A. Electron tomographic and ultrastructural analysis of the Cryptosporidium parvum relict mitochondrion, its associated membranes, and Organelles. J. Eukaryot. Microbiol. 2005;52:132–140. doi: 10.1111/j.1550-7408.2005.04-3317.x. PubMed DOI

Ševčíková T., Horák A., Klimeš V., Zbránková V., Demir-Hilton E., Sudek S., Jenkins J., Schmutz J., Přibyl P., Fousek J., et al. Updating algal evolutionary relationships through plastid genome sequencing: Did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci. Rep. 2015;5 doi: 10.1038/srep10134. PubMed DOI PMC

Sobotka R., Esson H.J., Koník P., Trsková E., Moravcová L., Horák A., Dufková P., Oborník M. Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-13575-x. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...