Fatty Acid Biosynthesis in Chromerids
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
18-13458S
Grantová Agentura České Republiky - International
LM2015062
Ministerstvo Školství, Mládeže a Tělovýchovy - International
LM2018099
Ministerstvo Školství, Mládeže a Tělovýchovy - International
CZ.1.05/2.1.00/19.0380
Ministerstvo Školství, Mládeže a Tělovýchovy - International
CZ.02.1.01/0.0/0.0/16_019/0000759
European Regional Development Fund - International
PubMed
32722284
PubMed Central
PMC7464705
DOI
10.3390/biom10081102
PII: biom10081102
Knihovny.cz E-resources
- Keywords
- Chromera velia, Vitrella brassicaformis, de novo biosynthesis, desaturation, elongation, evolution, fatty acids,
- MeSH
- Apicomplexa classification genetics metabolism MeSH
- Biosynthetic Pathways genetics MeSH
- Fatty Acid Desaturases classification genetics metabolism MeSH
- Species Specificity MeSH
- Fatty Acid Elongases classification genetics metabolism MeSH
- Phylogeny MeSH
- Humans MeSH
- Fatty Acids biosynthesis MeSH
- Evolution, Molecular MeSH
- Protozoan Infections parasitology MeSH
- Protozoan Proteins classification genetics metabolism MeSH
- Fatty Acid Synthase, Type II classification genetics metabolism MeSH
- Fatty Acid Synthase, Type I classification genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Fatty Acid Desaturases MeSH
- Fatty Acid Elongases MeSH
- Fatty Acids MeSH
- Protozoan Proteins MeSH
- Fatty Acid Synthase, Type II MeSH
- Fatty Acid Synthase, Type I MeSH
Fatty acids are essential components of biological membranes, important for the maintenance of cellular structures, especially in organisms with complex life cycles like protozoan parasites. Apicomplexans are obligate parasites responsible for various deadly diseases of humans and livestock. We analyzed the fatty acids produced by the closest phototrophic relatives of parasitic apicomplexans, the chromerids Chromera velia and Vitrella brassicaformis, and investigated the genes coding for enzymes involved in fatty acids biosynthesis in chromerids, in comparison to their parasitic relatives. Based on evidence from genomic and metabolomic data, we propose a model of fatty acid synthesis in chromerids: the plastid-localized FAS-II pathway is responsible for the de novo synthesis of fatty acids reaching the maximum length of 18 carbon units. Short saturated fatty acids (C14:0-C18:0) originate from the plastid are then elongated and desaturated in the cytosol and the endoplasmic reticulum. We identified giant FAS I-like multi-modular enzymes in both chromerids, which seem to be involved in polyketide synthesis and fatty acid elongation. This full-scale description of the biosynthesis of fatty acids and their derivatives provides important insights into the reductive evolutionary transition of a phototropic algal ancestor to obligate parasites.
Biology Centre CAS Institute of Parasitology Branišovská 31 370 05 České Budějovice Czech Republic
Faculty of Science University of South Bohemia Branišovská 31 370 05 České Budějovice Czech Republic
See more in PubMed
Moore R.B., Oborník M., Janouškovec J., Chrudimský T., Vancová M., Green D.H., Wright S.W., Davies N.W., Bolch C.J.S., Heimann K., et al. A photosynthetic alveolate closely related to apicomplexan parasites. Nature. 2008;451:959–963. doi: 10.1038/nature06635. PubMed DOI
Oborník M., Modrý D., Lukeš M., Černotiková-Střibrná E., Cihlář J., Tesařová M., Kotabová E., Vancová M., Prášil O., Lukeš J. Morphology, Ultrastructure and Life Cycle of Vitrella brassicaformis n. sp., n. gen., a Novel Chromerid from the Great Barrier Reef. Protist. 2012;163:306–323. doi: 10.1016/j.protis.2011.09.001. PubMed DOI
Oborník M., Janouškovec J., Chrudimský T., Lukeš J. Evolution of the apicoplast and its hosts: From heterotrophy to autotrophy and back again. Int. J. Parasitol. 2009;39:1–12. doi: 10.1016/j.ijpara.2008.07.010. PubMed DOI
Füssy Z., Oborník M. Chromerids and Their Plastids. In: Hirakawa Y., editor. Secondary Endosymbioses. Volume 84. Academic Press Ltd-Elsevier Science Ltd.; London, UK: 2017. pp. 187–218.
Cumbo V.R., Baird A.H., Moore R.B., Negri A.P., Neilan B.A., Salih A., van Oppen M.J.H., Wang Y., Marquis C.P. Chromera velia is Endosymbiotic in Larvae of the Reef Corals Acropora digitifera and A. tenuis. Protist. 2013;164:237–244. doi: 10.1016/j.protis.2012.08.003. PubMed DOI
Janouškovec J., Sobotka R., Lai D., Flegontov P., Koník P., Komenda J., Ali S., Prášil O., Pain A., Oborník M., et al. Split Photosystem Protein, Linear-Mapping Topology, and Growth of Structural Complexity in the Plastid Genome of Chromera velia. Mol. Biol. Evol. 2013;30:2447–2462. doi: 10.1093/molbev/mst144. PubMed DOI
Okamoto N., McFadden G.I. The mother of all parasites. Future Microbiol. 2008;3:391–395. doi: 10.2217/17460913.3.4.391. DOI
Mohamed A.R., Cumbo V.R., Harii S., Shinzato C., Chan C.X., Ragan M.A., Satoh N., Ball E.E., Miller D.J. Deciphering the nature of the coral-Chromera association. ISME J. 2018;12:776–790. doi: 10.1038/s41396-017-0005-9. PubMed DOI PMC
Mathur V., del Campo J., Kolisko M., Keeling P.J. Global diversity and distribution of close relatives of apicomplexan parasites. Environ. Microbiol. 2018;20:2824–2833. doi: 10.1111/1462-2920.14134. PubMed DOI
Janouškovec J., Tikhonenkov D.V., Burki F., Howe A.T., Kolisko M., Mylnikov A.P., Keeling P.J. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc. Natl. Acad. Sci. USA. 2015;112:10200–10207. doi: 10.1073/pnas.1423790112. PubMed DOI PMC
Janouškovec J., Horák A., Oborník M., Lukeš J., Keeling P.J. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc. Natl. Acad. Sci. USA. 2010;107:10949–10954. doi: 10.1073/pnas.1003335107. PubMed DOI PMC
Kořený L., Sobotka R., Janouškovec J., Keeling P.J., Oborník M. Tetrapyrrole Synthesis of Photosynthetic Chromerids Is Likely Homologous to the Unusual Pathway of Apicomplexan Parasites. Plant Cell. 2011;23:3454–3462. doi: 10.1105/tpc.111.089102. PubMed DOI PMC
Woo Y.H., Ansari H., Otto T.D., Klinger C.M., Kolisko M., Michálek J., Saxena A., Shanmugam D., Tayyrov A., Veluchamy A., et al. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. Elife. 2015;4 doi: 10.7554/eLife.06974. PubMed DOI PMC
Oborník M. Endosymbiotic Evolution of Algae, Secondary Heterotrophy and Parasitism. Biomolecules. 2019;9 doi: 10.3390/biom9070266. PubMed DOI PMC
Flegontov P., Michálek J., Janouškovec J., Lai D.H., Jirků M., Hajdůšková E., Tomčala A., Otto T.D., Keeling P.J., Pain A., et al. Divergent Mitochondrial Respiratory Chains in Phototrophic Relatives of Apicomplexan Parasites. Mol. Biol. Evol. 2015;32:1115–1131. doi: 10.1093/molbev/msv021. PubMed DOI
Oborník M., Vancová M., Lai D.-H., Janouškovec J., Keeling P.J., Lukeš J. Morphology and Ultrastructure of Multiple Life Cycle Stages of the Photosynthetic Relative of Apicomplexa, Chromera velia. Protist. 2011;162:115–130. doi: 10.1016/j.protis.2010.02.004. PubMed DOI
Füssy Z., Masařova P., Kručinská J., Esson H.J., Oborník M. Budding of the Alveolate Alga Vitrella brassicaformis Resembles Sexual and Asexual Processes in Apicomplexan Parasites. Protist. 2017;168:80–91. doi: 10.1016/j.protis.2016.12.001. PubMed DOI
Cavalier-Smith T. Kingdom Chromista and its eight phyla: A new synthesis emphasising periplastid protein targeting, cyto-skeletal and periplastid evolution, and ancient divergences. Protoplasma. 2018;255:297–357. doi: 10.1007/s00709-017-1147-3. PubMed DOI PMC
Fahy E., Subramaniam S., Brown H.A., Glass C.K., Merrill A.H., Murphy R.C., Raetz C.R.H., Russell D.W., Seyama Y., Shaw W., et al. A comprehensive classification system for lipids. J. Lipid Res. 2005;46:839–861. doi: 10.1194/jlr.E400004-JLR200. PubMed DOI
Goodman C.D., McFadden G.I. Fatty acid biosynthesis as a drug target in apicomplexan parasites. Curr. Drug Targets. 2007;8:15–30. doi: 10.2174/138945007779315579. PubMed DOI
Chirala S.S., Wakil S.J. Structure and function of animal fatty acid synthase. Lipids. 2004;39:1045–1053. doi: 10.1007/s11745-004-1329-9. PubMed DOI
Ramakrishnan S., Serricchio M., Striepen B., Butikofer P. Lipid synthesis in protozoan parasites: A comparison between kinetoplastids and apicomplexans. Prog. Lipid Res. 2013;52:488–512. doi: 10.1016/j.plipres.2013.06.003. PubMed DOI PMC
Ryall K., Harper J.T., Keeling P.J. Plastid-derived Type II fatty acid biosynthetic enzymes in chromists. Gene. 2003;313:139–148. doi: 10.1016/S0378-1119(03)00671-1. PubMed DOI
Schmid K.M. Biochemistry of Lipids, Lipoproteins and Membranes. Elsevier B.V.; Amsterdam, The Netherlands: 2016. pp. 113–147.
Shelest E., Heimerl N., Fichtner M., Sasso S. Multimodular type I polyketide synthases in algae evolve by module duplications and displacement of AT domains in trans. BMC Genom. 2015:16. doi: 10.1186/s12864-015-2222-9. PubMed DOI PMC
McFadden G.I. Plastids and protein targeting. J. Eukaryot. Microbiol. 1999;46:339–346. doi: 10.1111/j.1550-7408.1999.tb04613.x. PubMed DOI
Wilson R.J.M. Plastid functions in the Apicomplexa. Protist. 2004;155:11–12. doi: 10.1078/1434461000158. PubMed DOI
Zhu G. Current progress in the fatty acid metabolism in Cryptosporidium parvum. J. Eukaryot. Microbiol. 2004;51:381–388. doi: 10.1111/j.1550-7408.2004.tb00384.x. PubMed DOI
Lu J.Z., Muench S.P., Allary M., Campbell S., Roberts C.W., Mui E., McLeod R.L., Rice D.W., Prigge S.T. Type I and type II fatty acid biosynthesis in Eimeria tenella: Enoyl reductase activity and structure. Parasitology. 2007;134:1949–1962. doi: 10.1017/S0031182007003319. PubMed DOI PMC
Mazumdar J., Striepen B. Make it or take it: Fatty acid metabolism of Apicomplexan parasites. Eukaryot. Cell. 2007;6:1727–1735. doi: 10.1128/EC.00255-07. PubMed DOI PMC
Sonda S., Hehl A.B. Lipid biology of Apicomplexa: Perspectives for new drug targets, particularly for Toxoplasma gondii. Trends Parasitol. 2006;22:41–47. doi: 10.1016/j.pt.2005.11.001. PubMed DOI
Salomaki E.D., Kolisko M. There Is Treasure Everywhere: Reductive Plastid Evolution in Apicomplexa in Light of Their Close Relatives. Biomolecules. 2019:9. doi: 10.3390/biom9080378. PubMed DOI PMC
Zhu G., Li Y.N., Cai X.M., Millership J.J., Marchewka M.J., Keithly J.S. Expression and functional characterization of a giant Type I fatty acid synthase (CpFAS1) gene from Cryptosporidium parvum. Mol. Biochem. Parasitol. 2004;134:127–135. doi: 10.1016/j.molbiopara.2003.11.011. PubMed DOI
John U., Beszteri B., Derelle E., de Peer Y.V., Read B., Moreau H., Cembella A. Novel insights into evolution of protistan polyketide synthases through phylogenomic analysis. Protist. 2008;159:21–30. doi: 10.1016/j.protis.2007.08.001. PubMed DOI
Heath R.J., Rubin J.R., Holland D.R., Zhang E.L., Snow M.E., Rock C.O. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J. Biol. Chem. 1999;274:11110–11114. doi: 10.1074/jbc.274.16.11110. PubMed DOI
Katoh K., Misawa K., Kuma K., Miyata T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Huelsenbeck J.P., Bollback J.P. Empirical and hierarchical Bayesian estimation of ancestral states. Syst. Biol. 2001;50:351–366. doi: 10.1080/106351501300317978. PubMed DOI
Ronquist F., Huelsenbeck J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI
Emanuelsson O., Nielsen H., Brunak S., von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 2000;300:1005–1016. doi: 10.1006/jmbi.2000.3903. PubMed DOI
Nielsen H., Engelbrecht J., Brunak S., von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997;10:1–6. doi: 10.1093/protein/10.1.1. PubMed DOI
Bendtsen J.D., Nielsen H., von Heijne G., Brunak S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 2004;340:783–795. doi: 10.1016/j.jmb.2004.05.028. PubMed DOI
Gruber A., Rocap G., Kroth P.G., Armbrust E.V., Mock T. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 2015;81:519–528. doi: 10.1111/tpj.12734. PubMed DOI PMC
Miller M.A., Pfeiffer W., Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees; Proceedings of the 2010 Gateway Computing Environments Workshop (GCE); New Orleans, LA, USA. 14 November 2010; pp. 1–8.
Folch J., Lees M., Stanley G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957;226:497–509. PubMed
Košťál V., Šimek P. Changes in fatty acid composition of phospholipids and triacylglycerols after cold-acclimation of an aestivating insect prepupa. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 1998;168:453–460. doi: 10.1007/s003600050165. DOI
Tomčala A., Kyselová V., Schneedorferová I., Opekarová I., Moos M., Urajová P., Kručinská J., Oborník M. Separation and identification of lipids in the photosynthetic cousins of Apicomplexa Chromera velia and Vitrella brassicaformis. J. Sep. Sci. 2017;40:3402–3413. doi: 10.1002/jssc.201700171. PubMed DOI
Zahradníčková H., Tomčala A., Berková P., Schneedorferová I., Okrouhlík J., Šimek P., Hodková M. Cost effective, robust, and reliable coupled separation techniques for the identification and quantification of phospholipids in complex biological matrices: Application to insects. J. Sep. Sci. 2014;37:2062–2068. doi: 10.1002/jssc.201400113. PubMed DOI
Dahmen J.L., Khadka M., Dodson V.J., Leblond J.D. Mono- and digalactosyldiacylglycerol composition of dinoflagellates. VI. Biochemical and genomic comparison of galactolipid biosynthesis between Chromera velia (Chromerida), a photosynthetic alveolate with red algal plastid ancestry, and the dinoflagellate, Lingulodinium polyedrum. Eur. J. Phycol. 2013;48:268–277. doi: 10.1080/09670262.2013.809610. DOI
Jenke-Kodama H., Sandmann A., Muller R., Dittmann E. Evolutionary implications of bacterial polyketide synthases. Mol. Biol. Evol. 2005;22:2027–2039. doi: 10.1093/molbev/msi193. PubMed DOI
Hashimoto K., Yoshizawa A.C., Okuda S., Kuma K., Goto S., Kanehisa M. The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J. Lipid Res. 2008;49:183–191. doi: 10.1194/jlr.M700377-JLR200. PubMed DOI
Gostincar C., Turk M., Gunde-Cimerman N. The Evolution of Fatty Acid Desaturases and Cytochrome b5 in Eukaryotes. J. Membr. Biol. 2010;233:63–72. doi: 10.1007/s00232-010-9225-x. PubMed DOI
Ramakrishnan S., Docampo M.D., MacRae J.I., Pujol F.M., Brooks C.F., van Dooren G.G., Hiltunen J.K., Kastaniotis A.J., McConville M.J., Striepen B. Apicoplast and Endoplasmic Reticulum Cooperate in Fatty Acid Biosynthesis in Apicomplexan Parasite Toxoplasma gondii. J. Biol. Chem. 2012;287:4957–4971. doi: 10.1074/jbc.M111.310144. PubMed DOI PMC
James G.O., Hocart C.H., Hillier W., Chen H.C., Kordbacheh F., Price G.D., Djordjevic M.A. Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresour. Technol. 2011;102:3343–3351. doi: 10.1016/j.biortech.2010.11.051. PubMed DOI
Rawsthorne S. Carbon flux and fatty acid synthesis in plants. Prog. Lipid Res. 2002;41:182–196. doi: 10.1016/S0163-7827(01)00023-6. PubMed DOI
Ramakrishnan S., Docampo M.D., MacRae J.I., Ralton J.E., Rupasinghe T., McConville M.J., Striepen B. The intracellular parasite Toxoplasma gondii depends on the synthesis of long-chain and very long-chain unsaturated fatty acids not supplied by the host cell. Mol. Microbiol. 2015;97:64–76. doi: 10.1111/mmi.13010. PubMed DOI PMC
Füssy Z., Faitova T., Oborník M. Subcellular Compartments Interplay for Carbon and Nitrogen Allocation in Chromera velia and Vitrella brassicaformis. Genome Biol. Evol. 2019;11:1765–1779. doi: 10.1093/gbe/evz123. PubMed DOI PMC
Weng L.C., Pasaribu B., Lin I.P., Tsai C.H., Chen C.S., Jiang P.L. Nitrogen Deprivation Induces Lipid Droplet Accumulation and Alters Fatty Acid Metabolism in Symbiotic Dinoflagellates Isolated from Aiptasia pulchella. Sci. Rep. 2014;4 doi: 10.1038/srep05777. PubMed DOI PMC
Siron R., Giusti G., Berland B. Changes in the fatty-acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorus deficiency. Mar. Ecol. Prog. Ser. 1989;55:95–100. doi: 10.3354/meps055095. DOI
Popko J., Herrfurth C., Feussner K., Ischebeck T., Iven T., Haslam R., Hamilton M., Sayanova O., Napier J., Khozin-Goldberg I., et al. Metabolome Analysis Reveals Betaine Lipids as Major Source for Triglyceride Formation, and the Accumulation of Sedoheptulose during Nitrogen-Starvation of Phaeodactylum tricornutum. PLoS ONE. 2016:11. doi: 10.1371/journal.pone.0164673. PubMed DOI PMC
Lukeš M., Giordano M., Prasil O. The effect of environmental factors on fatty acid composition of Chromera velia (Chromeridae) J. Appl. Phycol. 2017;29:1791–1799. doi: 10.1007/s10811-017-1114-6. DOI
Skiba M.A., Sikkema A.P., Fiers W.D., Gerwick W.H., Sherman D.H., Aldrich C.C., Smith J.L. Domain Organization and Active Site Architecture of a Polyketide Synthase C-methyltransferase. ACS Chem. Biol. 2016;11:3319–3327. doi: 10.1021/acschembio.6b00759. PubMed DOI PMC
Huerlimann R., Steinig E.J., Loxton H., Zenger K.R., Jerry D.R., Heimann K. The effect of nitrogen limitation on acetyl-CoA carboxylase expression and fatty acid content in Chromera velia and Isochrysis aff. galbana (TISO) Gene. 2014;543:204–211. doi: 10.1016/j.gene.2014.04.022. PubMed DOI
Dubois D., Fernandes F., Amiar S., Dass S., Katris N.J., Botté C.Y., Yamaryo-Botté Y. Toxoplasma gondii acetyl-CoA synthetase is involved in fatty acid elongation (of long fatty acid chains) during tachyzoite life stages. J. Lipid Res. 2018;59:994–1004. doi: 10.1194/jlr.M082891. PubMed DOI PMC
Simionato D., Block M.A., La Rocca N., Jouhet J., Marechal E., Finazzi G., Morosinotto T. The Response of Nannochloropsis gaditana to Nitrogen Starvation Includes De Novo Biosynthesis of Triacylglycerols, a Decrease of Chloroplast Galactolipids, and Reorganization of the Photosynthetic Apparatus. Eukaryot. Cell. 2013;12:665–676. doi: 10.1128/EC.00363-12. PubMed DOI PMC
Burrows E.H., Bennette N.B., Carrieri D., Dixon J.L., Brinker A., Frada M., Baldassano S.N., Falkowski P.G., Dismukes G.C. Dynamics of Lipid Biosynthesis and Redistribution in the Marine Diatom Phaeodactylum tricornutum Under Nitrate Deprivation. Bioenergy Res. 2012;5:876–885. doi: 10.1007/s12155-012-9201-7. DOI
Stephenson A.L., Dennis J.S., Howe C.J., Scott S.A., Smith A.G. Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels. 2010;1:47–58. doi: 10.4155/bfs.09.1. DOI
Yang D.W., Song D.H., Kind T., Ma Y., Hoefkens J., Fiehn O. Lipidomic Analysis of Chlamydomonas reinhardtii under Nitrogen and Sulfur Deprivation. PLoS ONE. 2015:10. doi: 10.1371/journal.pone.0137948. PubMed DOI PMC
Puzanskiy R.K., Shavarda A.L., Tarakhovskaya E.R., Shishova M.F. Analysis of Metabolic Profile of Chlamydomonas reinhardtii Cultivated under Autotrophic Conditions. Appl. Biochem. Microbiol. 2015;51:83–94. doi: 10.1134/S0003683815010135. PubMed DOI
Bisanz C., Bastien O., Grando D., Jouhet J., Marechal E., Cesbron-Delauw M.F. Toxoplasma gondii acyl-lipid metabolism: De novo synthesis from apicoplast-generated fatty acids versus scavenging of host cell precursors. Biochem. J. 2006;394:197–205. doi: 10.1042/BJ20050609. PubMed DOI PMC
Lack G., Homberger-Zizzari E., Folkers G., Scapozza L., Perozzo R. Recombinant expression and biochemical characterization of the unique elongating beta-ketoacyl-acyl carrier protein synthase involved in fatty acid biosynthesis of Plasmodium falciparum using natural and artificial substrates. J. Biol. Chem. 2006;281:9538–9546. doi: 10.1074/jbc.M509119200. PubMed DOI
Sharma S.K., Kapoor M., Ramya T.N.C., Kumar S., Kumar G., Modak R., Sharma S., Surolia N., Surolia A. Identification, characterization, and inhibition of Plasmodium falciparum beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ) J. Biol. Chem. 2003;278:45661–45671. doi: 10.1074/jbc.M304283200. PubMed DOI
Surolia N., Surolia A. Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum (vol 7, pg 167, 2000) Nat. Med. 2001;7:636. doi: 10.1038/84612. PubMed DOI
Waller R.F., Keeling P.J., Donald R.G.K., Striepen B., Handman E., Lang-Unnasch N., Cowman A.F., Besra G.S., Roos D.S., McFadden G.I. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Natl. Acad. Sci. USA. 1998;95:12352–12357. doi: 10.1073/pnas.95.21.12352. PubMed DOI PMC
Botte C.Y., Yamaryo-Botte Y., Rupasinghe T.W.T., Mullin K.A., MacRae J.I., Spurck T.P., Kalanon M., Shears M.J., Coppel R.L., Crellin P.K., et al. Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites. Proc. Natl. Acad. Sci. USA. 2013;110:7506–7511. doi: 10.1073/pnas.1301251110. PubMed DOI PMC
Goodman C.D., McFadden G.I. Fatty acid synthesis in protozoan parasites: Unusual pathways and novel drug targets. Curr. Pharm. Des. 2008;14:901–916. doi: 10.2174/138161208784041088. PubMed DOI
Liu B.Q., Wang Y.Q., Fillgrove K.L., Anderson V.E. Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to MCF-7 and SKBr-3 breast cancer cells. Cancer Chemother. Pharmacol. 2002;49:187–193. doi: 10.1007/s00280-001-0399-x. PubMed DOI
Kruger N.J., von Schaewen A. The oxidative pentose phosphate pathway: Structure and organisation. Curr. Opin. Plant Biol. 2003;6:236–246. doi: 10.1016/S1369-5266(03)00039-6. PubMed DOI
Bigogno C., Khozin-Goldberg I., Cohen Z. Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (Trebuxiophyceae, Chlorophyta) Phytochemistry. 2002;60:135–143. doi: 10.1016/S0031-9422(02)00037-7. PubMed DOI
Guschina I.A., Harwood J.L. Mechanisms of temperature adaptation in poikilotherms. FEBS Lett. 2006;580:5477–5483. doi: 10.1016/j.febslet.2006.06.066. PubMed DOI
Khozin-Goldberg I., Didi-Cohen S., Shayakhmetova I., Cohen Z. Biosynthesis of eicosapentaenoic acid (EPA) in the freshwater eustigmatophyte Monodus subterraneus (Eustigmatophyceae) J. Phycol. 2002;38:745–756. doi: 10.1046/j.1529-8817.2002.02006.x. DOI
Mitschler R.R., Welti R., Upton S.J. A comparative-study of lipid compositions of Cryptosporidium parvum (Apicomplexa) and madin-darby bovine kidney-cells. J. Eukaryot. Microbiol. 1994;41:8–12. doi: 10.1111/j.1550-7408.1994.tb05927.x. PubMed DOI
Toso M.A., Omoto C.K. Gregarina niphandrodes may lack both a plastid genome and organelle. J. Eukaryot. Microbiol. 2007;54:66–72. doi: 10.1111/j.1550-7408.2006.00229.x. PubMed DOI
Zhu G., Marchewka M.J., Keithly J.S. Cryptosporidium parvum appears to lack a plastid genome. Microbiology. 2000;146:315–321. doi: 10.1099/00221287-146-2-315. PubMed DOI
Keithly J.S., Langreth S.G., Buttle K.F., Mannella C.A. Electron tomographic and ultrastructural analysis of the Cryptosporidium parvum relict mitochondrion, its associated membranes, and Organelles. J. Eukaryot. Microbiol. 2005;52:132–140. doi: 10.1111/j.1550-7408.2005.04-3317.x. PubMed DOI
Ševčíková T., Horák A., Klimeš V., Zbránková V., Demir-Hilton E., Sudek S., Jenkins J., Schmutz J., Přibyl P., Fousek J., et al. Updating algal evolutionary relationships through plastid genome sequencing: Did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci. Rep. 2015;5 doi: 10.1038/srep10134. PubMed DOI PMC
Sobotka R., Esson H.J., Koník P., Trsková E., Moravcová L., Horák A., Dufková P., Oborník M. Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-13575-x. PubMed DOI PMC