Endosymbiotic Evolution of Algae, Secondary Heterotrophy and Parasitism
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
31288476
PubMed Central
PMC6681372
DOI
10.3390/biom9070266
PII: biom9070266
Knihovny.cz E-zdroje
- Klíčová slova
- endosymbiosis, evolution, parasitism, phagotrophy, photosynthesis, plastid, secondary heterotrophy,
- MeSH
- Chlorophyta * metabolismus mikrobiologie MeSH
- heterotrofní procesy MeSH
- symbióza * MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Photosynthesis is a biochemical process essential for life, serving as the ultimate source of chemical energy for phototrophic and heterotrophic life forms. Since the machinery of the photosynthetic electron transport chain is quite complex and is unlikely to have evolved multiple independent times, it is believed that this machinery has been transferred to diverse eukaryotic organisms by endosymbiotic events involving a eukaryotic host and a phototrophic endosymbiont. Thus, photoautotrophy, as a benefit, is transmitted through the evolution of plastids. However, many eukaryotes became secondarily heterotrophic, reverting to hetero-osmotrophy, phagotrophy, or parasitism. Here, I briefly review the constructive evolution of plastid endosymbioses and the consequential switch to reductive evolution involving losses of photosynthesis and plastids and the evolution of parasitism from a photosynthetic ancestor.
Faculty of Science University of South Bohemia 37005 České Budějovice Czech Republic
Institute of Parasitology Biology Centre CAS 37005 České Budějovice Czech Republic
Zobrazit více v PubMed
Shih P.M. Cyanobacterial evolution: Fresh insight into ancient questions. Curr. Biol. 2015;25:R193. doi: 10.1016/j.cub.2014.12.046. PubMed DOI
Shih P.M., Matzke J. Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proc. Natl. Acad. Sci USA. 2013;110:12355–12360. doi: 10.1073/pnas.1305813110. PubMed DOI PMC
Mereschkowksy C. Ober Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Zentralbl. 1905;25:593–604.
Martin W., Kowallik K.V. Annotated English translation of of Mereschkowsky’s 1905 paper “Über natur und Ursprung der Chromatophoren im Pflanzenreiche”. Eur. J. Phycol. 1999;34:287–295. doi: 10.1017/S0967026299002231. DOI
Pallen M.J. Time to recognize that mitochondria are bacteria? Trends Microbiol. 2011;19:58–61. doi: 10.1016/j.tim.2010.11.001. PubMed DOI
Oborník M. In the beginning was the word: How terminology drives our understanding of endosymbiotic organelles. Microbial Cell. 2019;6:134–141. doi: 10.15698/mic2019.02.669. PubMed DOI PMC
Cavalier-Smith T., Lee J.J. Protozoa as hosts for endosymbioses and the conversion of symbionts into organelles. J. Protozool. 1985;32:376–379. doi: 10.1111/j.1550-7408.1985.tb04031.x. DOI
Gould S.B., Waller R.F., McFadden G.I. Plastid evolution. Ann. Rev. Plant. Biol. 2008;59:491–517. doi: 10.1146/annurev.arplant.59.032607.092915. PubMed DOI
Keeling P.J. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Ann. Rev. Plant. Biol. 2013;64:583–607. doi: 10.1146/annurev-arplant-050312-120144. PubMed DOI
Archibald J.M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 2015;25:R911–R921. doi: 10.1016/j.cub.2015.07.055. PubMed DOI
Gruber A. What`s a name? Why organelles of endosymbiotic origin are implicitly called by their eukaryotic species name and how they can be distinguished from endosymbionts. Microbial Cell. 2019;6:123–133. doi: 10.15698/mic2019.02.668. PubMed DOI PMC
Keeling P.J. Diversity and evolutionary history of plastids and their hosts. Am. J. Bot. 2004;91:1481–1493. doi: 10.3732/ajb.91.10.1481. PubMed DOI
Jackson C., Clayden S., Reyes-Prieto A. The Glaucophyta: The blue-green plants in a nutshell. Acta Soc. Bot. Pol. 2015;84:149–165. doi: 10.5586/asbp.2015.020. DOI
Maréchal E., editor. Primary Endosymbiosis: Emergence of Primary Chloroplasts and Chromatophore Two Independent Events. Vol. 1829 Humana Press; New York, NY, USA: 2018. Plastids: Methods and protocols. Methods in molecular biology. PubMed
Larkum A.W.D., Kühl M. Chlorophyll d: The puzzle resolved. Trends Plant. Sci. 2005;10:P355–P357. doi: 10.1016/j.tplants.2005.06.005. PubMed DOI
Martin W., Herrmann R.G. Gene transfer from organelles to the nucleus: How much, what happens, and why? Plant. Phys. 1998;118:9–17. doi: 10.1104/pp.118.1.9. PubMed DOI PMC
Oborník M., Green B. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol. Biol. Evol. 2005;22:2343–2353. doi: 10.1093/molbev/msi230. PubMed DOI
Cihlář J., Füssy Z., Oborník M. Evolution of tetrapyrrole pathway in eukaryotic phototrophs. Adv. Bot. Res. 2019;90:273–309.
Cihlář J., Füssy Z., Horák A., Oborník M. Evolution of the tetrapyrrole biosyntheses pathway in secondary algae: Conservation, redundancy, and replacement. PLoS ONE. 2016;11:e0166338. doi: 10.1371/journal.pone.0166338. PubMed DOI PMC
Stiller J.W., Reel D.C., Johnson J.C. A single origin of plastids revisited: Convergent evolution in organellar genome content. J. Phycol. 2003;39:95–105. doi: 10.1046/j.1529-8817.2003.02070.x. DOI
Cavalier-Smith T. Principles of protein and lipid targeting in secondary symbiogenesis: Euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J. Eukaryot. Microbiol. 1999;46:347–366. doi: 10.1111/j.1550-7408.1999.tb04614.x. PubMed DOI
Marin B., Nowack E.C.M., Melkonian M. A plastid in the making: Evidence for a second primary endosymbiosis. Protist. 2005;156:425–432. doi: 10.1016/j.protis.2005.09.001. PubMed DOI
Yoon H.S., Reyes-Prieto A., Melkonian M., Bhattacharya D. Minimal plastid genome evolution in the Paulinella endosymbiont. Curr. Biol. 2006;16:R670–R672. doi: 10.1016/j.cub.2006.08.018. PubMed DOI
Delaye L., Valadez-Cano C., Pérez-Zamorano B. How really ancient is Paulinella chromatophora? PLoS Curr. Tree of Life. 2016:1. doi: 10.1371/currents.tol.e68a099364bb1a1e129a17b4e06b0c6b. PubMed DOI PMC
Delwiche C.F., Palmer J.D. The Origin Plastids and Their Spread via Secondary Symbiosis Plant Systematics and Evolution. Suppl. 11 Springer; Berlin, Germany: 1997. pp. 53–86.
Delwiche C.F. Tracing the thread of plastid diversity through the tapestry of life. Am. Nat. 1999;154:S164–S177. doi: 10.1086/303291. PubMed DOI
Falkowski P.G., Katz M.E., Knoll A.H., Quigg A., Raven J.A., Schofield O., Taylor F.J. The evolution of modern phytoplankton. Science. 2004;305:354–360. doi: 10.1126/science.1095964. PubMed DOI
Oborník M. The birth of red complex plastids: One, three, or four times? Trends Parasitol. 2018;34:923–925. doi: 10.1016/j.pt.2018.09.001. PubMed DOI
Curtis B., Tanifuji G., Burki F., Gruber A., Irimia M., Maruyama S., Arias M., Ball S., Gile G., Hirakawa Y., et al. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature. 2012;492:59–65. doi: 10.1038/nature11681. PubMed DOI
Vanclová A.M.G., Hadariová L., Hrdá Š., Hampl V. Secondary plastids of euglenophytes. Adv. Bot. Res. 2017;84:321–358.
Matsumoto T., Shinozaki F., Chikuni T., Yabuki A., Takishita K., Kawachi M., Nakayama T., Inouye I., Hashimoto T., Inagaki Y. Green-colored plastids in the dinoflagellate genus Lepidodinium are of core chlorophyte origin. Protist. 2011;162:268–276. doi: 10.1016/j.protis.2010.07.001. PubMed DOI
Waller R.F., Kořený L. Plastid complexity on dinogflagellates: A picture of gains, losses, replacements and revisions. Adv. Bot. Res. 2017;84:105–143.
Larkum A.W.D., Lockhart P.J., Howe C.J. Shopping for plastids. Trends Plant. Sci. 2007;12:189–195. doi: 10.1016/j.tplants.2007.03.011. PubMed DOI
Cavalier-Smith T. Kingdom Chromista and its eight phyla: A new synthesis emphasising periplastid protein targeting, cyto-skeletal and periplastid evolution, and ancient divergences. Protoplasma. 2018;255:297–357. doi: 10.1007/s00709-017-1147-3. PubMed DOI PMC
Bodył A., Stiller J.W., Mackiewicz P. Chromalveolate plastids: Direct descents or multiple endosymbioses? Trends Ecol. Evol. 2009;24:119–121. doi: 10.1016/j.tree.2008.11.003. PubMed DOI
Stiller J.W., Schreiber J., Yue J., Guo H., Ding Q., Huang J. The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat. Com. 2014;5:5764. doi: 10.1038/ncomms6764. PubMed DOI PMC
Petersen J., Ludewig A.K., Michael V., Bunk B., Jarek M., Baurain D., Brinkmann H. Chromera velia, endosymbioses and the rhodoplex hypothesis—Plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages) Genome Biol. Evol. 2014;6:666–684. doi: 10.1093/gbe/evu043. PubMed DOI PMC
Dorrell D.R., Bowler C. Secondary plastids of stramenopiles. Adv. Bot. Res. 2017;84:57–103.
Moore C.E., Archibald J.M. Nucleomorph genomes. Ann. Rev. Genet. 2009;43:251–264. doi: 10.1146/annurev-genet-102108-134809. PubMed DOI
Oborník M., Modrý D., Lukeš M., Černotíková-Stříbrná E., Cihlář J., Tesařová M., Kotabová E., Vancová E., Prášil O., Lukeš J. Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist. 2012;163:306–323. doi: 10.1016/j.protis.2011.09.001. PubMed DOI
Ševčíková T., Horák A., Klimeš V., Zbránková V., Demir-Hilton E., Sudek S., Jenkins J., Schmutz J., Přibyl P., Fousek J., et al. Updating algal evolutionary relationships through plastid genome sequencing: Did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci. Rep. 2015;5:10134. doi: 10.1038/srep10134. PubMed DOI PMC
Sobotka R., Esson H.J., Koník P., Trsková E., Moravcová L., Horák A., Dufková P., Oborník M. Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci. Rep. 2017;7:13214. doi: 10.1038/s41598-017-13575-x. PubMed DOI PMC
Oborník M., Janouškovec J., Chrudimský T., Lukeš J. Evolution of the apicoplast and its host: From heterotrophy to autotrophy and back again. Int. J. Parasitol. 2009;39:1–12. doi: 10.1016/j.ijpara.2008.07.010. PubMed DOI
Pospíšil P. Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim. Biophys. Acta. 2012;1817:218–231. doi: 10.1016/j.bbabio.2011.05.017. PubMed DOI
Koblížek M., Zeng Y., Horák A., Oborník M. Regressive evolution of photosynthesis in the Roseobacter clade. Adv. Bot. Res. 2013;66:385–405.
Hadariová L., Vesteg M., Hampl V., Krajčovič J. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr. Genet. 2018;64:365–387. doi: 10.1007/s00294-017-0761-0. PubMed DOI
Votýpka J., Nodrý D., Oborník M., Šlapeta J., Lukeš J. Apicomplexa. In: Archibald J.M., Simpson G.B., Slamovits C.H., editors. Handbook of the Protists. Springer; Berlin, Germany: 2017. pp. 567–624.
Těšitel J. Functional biology of parasitic plants: A review. Plant. Ecol. Evol. 2017;149:5–20. doi: 10.5091/plecevo.2016.1097. DOI
De la Cruz V.F., Gittleson S.M. The genus Polytomella: A review of classification, morphology, life cycle, metabolism, and motility. Arch. Protistenkunde. 1981;124:1–28. doi: 10.1016/S0003-9365(81)80001-2. DOI
Boucias D.G., Becnel J.J., White S.E., Bott M. In vivo and in vitro development of the protist Helicosporidium sp. J. Eukaryot. Microbiol. 2001;48:460–470. doi: 10.1111/j.1550-7408.2001.tb00180.x. PubMed DOI
De Koning A.P., Keeling P.J. The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured. BMC Biol. 2006;4:12. doi: 10.1186/1741-7007-4-12. PubMed DOI PMC
Blouin N.A., Lane C.E. Red algae provide fertile ground for exploring parasite evolution. Persp. Phycol. 2016;2016. 3:11–19. doi: 10.1127/pip/2015/0027. DOI
Marin B., Palm A., Klingberg M., Melkonian M. Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorhic signatures in the SSU rRNA secondary structure. Protist. 2003;154:99–145. doi: 10.1078/143446103764928521. PubMed DOI
Lowe C.D., Keeling P.J., Martin L.E., Slamovits C.H., Watts P.C., Montagnes D.J.S. Who is Oxyrrhis marina? Morphological and phylogenetic studies on an unusual dinoflagellate. J. Plankton Res. 2011;33:555–567. doi: 10.1093/plankt/fbq110. DOI
Füssy Z., Oborník M. Chromerids and their plastids. Adv. Bot. Res. 2017;84:187–218.
Füssy Z., Oborník M. Plastids: Methods and protocols methods in molecular biology. In: Maréchal E., editor. Complex Endosymbioses I: From Primary to Complex Plastids, Multiple Independent Events. Vol. 1829. Humana Press; New York, NY, USA: 2018. pp. 17–35. PubMed
Sato S. The apicomplexan plastid and its evolution. Cell. Mol. Life Sci. 2011;68:1285–1296. doi: 10.1007/s00018-011-0646-1. PubMed DOI PMC
Toso M.A., Omoto C.K. Gregarina niphandrodes may lack both a plastid genome and organelle. J. Euk. Microbiol. 2007;54:66–72. doi: 10.1111/j.1550-7408.2006.00229.x. PubMed DOI
Gornik S.G., Febrimarsa A.M.C., MacRae J.I., Ramprasad A., Rchiad Z., McConville M.J., Bacic A., McFadden G.I., Pain A., Waller R.F. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc. Natl. Acad. Sci. USA. 2015;112:5767–5772. doi: 10.1073/pnas.1423400112. PubMed DOI PMC
Burki F. The convoluted evolution of eukaryotes with complex plastids. Adv. Bot. Res. 2017;84:1–30.
Stoecker D.K., Hansen P.J., Caron D.A., Mitra A. Mixotrophy in the marine plankton. Ann. Rev. Mar. Sci. 2016;9:311–335. doi: 10.1146/annurev-marine-010816-060617. PubMed DOI
Rezic T., Filipović J., Santec B. Photo-mixotrophic cultivation of algae Euglena gracilis for lipid production. Agr. Consp. Sci. 2013;2013 78:65–69.
Heredia-Arroyo T., Wei W., Hu B. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenerg. 2011;35:2245–2253. doi: 10.1016/j.biombioe.2011.02.036. DOI
Villanova V., Fortunato A.E., Singh D., Bo D.D., Conte M., Obata T., Jouhet J., Fernie A.R., Maréchal E., Falciatore A., et al. Investigating mixotrophic metabolism in the model diatom Phaeodactylum tricornutum. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017;372:20160404. doi: 10.1098/rstb.2016.0404. PubMed DOI PMC
Jeong J.H., Yoo Y.D., Kim J.S., Seong K.A., Kang N.S., Kim T.H. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 2010;45:65–91. doi: 10.1007/s12601-010-0007-2. DOI
McFadden G.I., Reith M.E., Munholland J., Lang-Unnasch N. Plastid in human parasites. Nature. 1996;381:482. doi: 10.1038/381482a0. PubMed DOI
McFadden G.I., Waller R.F. Plastids in parasites of humans. Bioessays. 1997;19:1033–1040. doi: 10.1002/bies.950191114. PubMed DOI
Moore R.B., Oborník M., Janouškovec J., Chrudimský T., Vancová M., Green D., Wright S., Davies N., Bolch C., Heimann K., et al. A photosynthetic alveolate closely related to apicomplexan parasites. Nature. 2008;451:959–963. doi: 10.1038/nature06635. PubMed DOI
Woo Y., Ansari H., Otto T.D., Klinger C., Kolísko M., Saxena A., Shanmugam D., Tayyrov A., Veluchamy A., Ali S., et al. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. elife. 2015;4:e06974. doi: 10.7554/eLife.06974. PubMed DOI PMC
Janouškovec J., Tikhonenkov D.V., Burki F., Howe A.T., Kolísko M., Mylnikov A.P., Keeling P.J. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc. Natl. Acad. Sci. USA. 2015;112:10200–10207. doi: 10.1073/pnas.1423790112. PubMed DOI PMC
Kořený L., Sobotka R., Janouškovec J., Keeling P.J., Oborník M. Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites. Plant. Cell. 2011;23:3454–3462. doi: 10.1105/tpc.111.089102. PubMed DOI PMC
Okamoto N., McFadden G.I. The mother of all parasites. Futur. Microbiol. 2008;3:391–395. doi: 10.2217/17460913.3.4.391. DOI
Janouškovec J., Horák A., Barott K.L., Rohwer F.L., Keeling P.J. Global analysis of plastid diversity reveals apicomplexan-related lineages in coral reefs. Curr. Biol. 2012;22:R518–R519. doi: 10.1016/j.cub.2012.04.047. PubMed DOI
Janouškovec J., Horák A., Barott K.L., Rohwer F.L., Keeling P.J. Environmental distribution of coral-associated relatives of apicomplexan parasites. ISME J. 2013;7:444–447. doi: 10.1038/ismej.2012.129. PubMed DOI PMC
Cumbo V.R., Baird A.H., Moore R.B., Negri A.P., Neilan B.A., Salih A., van Oppen M.J., Marquis C.P. Chromera velia is endosymbiotic in larvae of the reef corals Acropora digitifera and A. tenuis. Protist. 2013;164:237–244. doi: 10.1016/j.protis.2012.08.003. PubMed DOI
Mohamed A.R., Cumbo V.R., Harii A., Shizato C., Chan C.X., Ragan M.A., Satoh N., Ball E.E., Miller D.J. Deciphering the nature of the coral-Chromera association. ISME J. 2018;12:776–790. doi: 10.1038/s41396-017-0005-9. PubMed DOI PMC
Skovgaard A., Karpov S.A., Guillou L. The parasitic dinoflagellates Blastodinium spp. Inhabiting the gut of marine, plaktonic copepods: Morphology, ecology, and unrecognized species diversity. Front. Microbiol. 2012;3:305. doi: 10.3389/fmicb.2012.00305. PubMed DOI PMC
Keeling P.J., McCutcheon J.P. Endosymbiosis: The feeling is not mutual. J. Theor. Biol. 2017;434:75–79. doi: 10.1016/j.jtbi.2017.06.008. PubMed DOI PMC
Kwong W.K., Del Campo J., Mathur V., Vermeij M.J.A., Keeling P.J. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature. 2019;568:103–107. doi: 10.1038/s41586-019-1072-z. PubMed DOI
Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events
Organellar Evolution: A Path from Benefit to Dependence
Editorial: Mixotrophic, Secondary Heterotrophic, and Parasitic Algae
Evolutionary and Molecular Aspects of Plastid Endosymbioses
Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia