Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-03224S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000759
ERDF/ESF, Centre for Research of Pathogenicity and Virulence of Parasites
PubMed
34204357
PubMed Central
PMC8233740
DOI
10.3390/ijms22126495
PII: ijms22126495
Knihovny.cz E-zdroje
- Klíčová slova
- Chromera velia, heterologous expression, predictions, tetrapyrrole biosynthesis,
- MeSH
- Alveolata fyziologie MeSH
- Apicomplexa metabolismus MeSH
- biologický transport MeSH
- hem metabolismus MeSH
- metabolické sítě a dráhy * MeSH
- mitochondrie genetika metabolismus ultrastruktura MeSH
- molekulární evoluce MeSH
- protozoální proteiny chemie genetika metabolismus MeSH
- regulace genové exprese enzymů MeSH
- rozsivky metabolismus MeSH
- sekvence aminokyselin MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hem MeSH
- protozoální proteiny MeSH
Heme biosynthesis is essential for almost all living organisms. Despite its conserved function, the pathway's enzymes can be located in a remarkable diversity of cellular compartments in different organisms. This location does not always reflect their evolutionary origins, as might be expected from the history of their acquisition through endosymbiosis. Instead, the final subcellular localization of the enzyme reflects multiple factors, including evolutionary origin, demand for the product, availability of the substrate, and mechanism of pathway regulation. The biosynthesis of heme in the apicomonad Chromera velia follows a chimeric pathway combining heme elements from the ancient algal symbiont and the host. Computational analyses using different algorithms predict complex targeting patterns, placing enzymes in the mitochondrion, plastid, endoplasmic reticulum, or the cytoplasm. We employed heterologous reporter gene expression in the apicomplexan parasite Toxoplasma gondii and the diatom Phaeodactylum tricornutum to experimentally test these predictions. 5-aminolevulinate synthase was located in the mitochondria in both transfection systems. In T. gondii, the two 5-aminolevulinate dehydratases were located in the cytosol, uroporphyrinogen synthase in the mitochondrion, and the two ferrochelatases in the plastid. In P. tricornutum, all remaining enzymes, from ALA-dehydratase to ferrochelatase, were placed either in the endoplasmic reticulum or in the periplastidial space.
Department of Biochemistry University of Cambridge Cambridge CB2 1TN UK
Faculty of Science University of South Bohemia 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Tanaka R., Tanaka A. Tetrapyrrole biosynthesis in higher plants. Annu. Rev. Plant Biol. 2007;58:321–346. doi: 10.1146/annurev.arplant.57.032905.105448. PubMed DOI
Koreny L., Sobotka R., Kovarova J., Gnipova A., Flegontov P., Horvath A., Obornik M., Ayala F.J., Lukes J. Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc. Natl. Acad. Sci. USA. 2012;109:3808–3813. doi: 10.1073/pnas.1201089109. PubMed DOI PMC
Jordan P.M. Highlights in haem biosynthesis. Curr. Opin. Struct. Biol. 1994;4:902–911. doi: 10.1016/0959-440X(94)90273-9. PubMed DOI
Oborník M., Green B.R. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol. Biol. Evol. 2005;22:2343–2353. doi: 10.1093/molbev/msi230. PubMed DOI
Kořený L., Oborník M., Lukeš J. Make it, take it, or leave it: Heme metabolism of parasites. PLoS Pathog. 2013;9:e1003088. doi: 10.1371/journal.ppat.1003088. PubMed DOI PMC
Masuda T., Fujita Y. Regulation and evolution of chlorophyll metabolism. Photochem. Photobiol. Sci. 2008;7:1131–1149. doi: 10.1039/b807210h. PubMed DOI
Czarnecki O., Grimm B. Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. J. Exp. Bot. 2012;63:1675–1687. doi: 10.1093/jxb/err437. PubMed DOI
Ikushiro H., Nagami A., Takai T., Sawai T., Shimeno Y., Hori H., Miyahara I., Kamiya N., Yano T. heme-dependent inactivation of 5-aminolevulinate synthase from Caulobacter crescentus. Sci. Rep. 2018;8:1–13. doi: 10.1038/s41598-018-32591-z. PubMed DOI PMC
Wißbrock A., George A.A.P., Brewitz H.H., Kühl T., Imhof D. The molecular basis of transient heme-protein interactions: Analysis, concept and implementation. Biosci. Rep. 2019;39 doi: 10.1042/BSR20181940. PubMed DOI PMC
Kloehn J., Harding C.R., Soldati-Favre D. Supply and demand—Heme synthesis, salvage and utilization by Apicomplexa. FEBS J. 2021;288:382–404. doi: 10.1111/febs.15445. PubMed DOI
Kořený L., Sobotka R., Janouškovec J., Keeling P.J., Oborník M. Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites. Plant Cell. 2011;23:3454–3462. doi: 10.1105/tpc.111.089102. PubMed DOI PMC
Hamza I. Intracellular trafficking of porphyrins. ACS Chem. Biol. 2006;1:627–629. doi: 10.1021/cb600442b. PubMed DOI PMC
Swenson S.A., Moore C.M., Marcero J.R., Medlock A.E., Reddi A.R., Khalimonchuk O. From synthesis to utilization: The ins and outs of mitochondrial heme. Cells. 2020;9:579. doi: 10.3390/cells9030579. PubMed DOI PMC
Mochizuki N., Tanaka R., Grimm B., Masuda T., Moulin M., Smith A.G., Tanaka A., Terry M.J. The cell biology of tetrapyrroles: A life and death struggle. Trends Plant Sci. 2010;15:488–498. doi: 10.1016/j.tplants.2010.05.012. PubMed DOI
Kořený L., Oborník M. Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis. Genome Biol. Evol. 2011;3:359–364. doi: 10.1093/gbe/evr029. PubMed DOI PMC
Cihlář J., Füssy Z., Horak A., Oborník M. Evolution of the tetrapyrrole biosynthetic pathway in secondary algae: Conservation, redundancy and replacement. PLoS ONE. 2016;11:e0166338. doi: 10.1371/journal.pone.0166338. PubMed DOI PMC
Votýpka J., Modrý D., Oborník M., Šlapeta J., Lukeš J. Apicomplexa. In: Archibald J.M., Simpson A.G.B., Slamovits C.H., editors. Handbook of the Protists. Springer International Publishing; Cham, Switzerland: 2017. pp. 567–624. DOI
Ralph S.A., Van Dooren G.G., Waller R., Crawford M.J., Fraunholz M., Foth B.J., Tonkin C.J., Roos D., McFadden G.I. Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat. Rev. Microbiol. 2004;2:203–216. doi: 10.1038/nrmicro843. PubMed DOI
Seeber F., Limenitakis J., Soldati-Favre D. Apicomplexan mitochondrial metabolism: A story of gains, losses and retentions. Trends Parasitol. 2008;24:468–478. doi: 10.1016/j.pt.2008.07.004. PubMed DOI
Van Dooren G.G., Kennedy A.T., McFadden G.I. The use and abuse of heme in apicomplexan parasites. Antioxid. Redox Signal. 2012;17:634–656. doi: 10.1089/ars.2012.4539. PubMed DOI
Tjhin E.T., Hayward J.A., McFadden G.I., van Dooren G.G. Characterization of the apicoplast-localized enzyme TgUroD in Toxoplasma gondii reveals a key role of the apicoplast in heme biosynthesis. J. Biol. Chem. 2020;295:1539–1550. doi: 10.1074/jbc.RA119.011605. PubMed DOI PMC
Dalbey R., von Heijne G. Protein Targeting, Transport, and Translocation. 1st ed. Academic Press; Cambridge, MA, USA: 2002. 336p
Kroth P.G. Protein transport into secondary plastids and the evolution of primary and secondary plastids. Int. Rev. Cytol. 2002;221:191–255. doi: 10.1016/s0074-7696(02)21013-x. PubMed DOI
Gould S.B., Waller R., McFadden G.I. Plastid evolution. Annu. Rev. Plant Biol. 2008;59:491–517. doi: 10.1146/annurev.arplant.59.032607.092915. PubMed DOI
Bolte K., Bullmann L., Hempel F., Bozarth A., Zauner S., Maier U.G. Protein targeting into secondary plastids. J. Eukaryot. Microbiol. 2009;56:9–15. doi: 10.1111/j.1550-7408.2008.00370.x. PubMed DOI
Maier U.G., Zauner S., Hempel F. Protein import into complex plastids: Cellular organization of higher complexity. Eur. J. Cell Biol. 2015;94:340–348. doi: 10.1016/j.ejcb.2015.05.008. PubMed DOI
Cavalier-Smith T. Kingdom Chromista and its eight phyla: A new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. Protoplasma. 2018;255:297–357. doi: 10.1007/s00709-017-1147-3. PubMed DOI PMC
Moore R.B., Oborník M., Janouškovec J., Chrudimský T., Vancová M., Green D.H., Wright S.W., Davies N.W., Bolch C.J.S., Heimann K., et al. A photosynthetic alveolate closely related to apicomplexan parasites. Nature. 2008;451:959–963. doi: 10.1038/nature06635. PubMed DOI
Oborník M., Modrý D., Lukeš M., Černotíková-Stříbrná E., Cihlář J., Tesařová M., Kotabová E., Vancová M., Prasil O., Lukeš J. Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist. 2012;163:306–323. doi: 10.1016/j.protis.2011.09.001. PubMed DOI
Janouškovec J., Tikhonenkov D., Burki F., Howe A.T., Kolísko M., Mylnikov A.P., Keeling P.J. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc. Natl. Acad. Sci. USA. 2015;112:10200–10207. doi: 10.1073/pnas.1423790112. PubMed DOI PMC
Oborník M., Kručinská J., Esson H. Life cycles of chromerids resemble those of colpodellids and apicomplexan parasites. Perspect. Phycol. 2016;3:21–27. doi: 10.1127/pip/2016/0038. DOI
Füssy Z., Masařová P., Kručinská J., Esson H.J., Oborník M. Budding of the alveolate alga Vitrella brassicaformis resembles sexual and asexual processes in apicomplexan parasites. Protist. 2017;168:80–91. doi: 10.1016/j.protis.2016.12.001. PubMed DOI
Oborník M. Endosymbiotic evolution of algae, secondary heterotrophy and parasitism. Biomolecules. 2019;9:266. doi: 10.3390/biom9070266. PubMed DOI PMC
Oborník M. Photoparasitism as an intermediate state in the evolution of apicomplexan parasites. Trends Parasitol. 2020;36:727–734. doi: 10.1016/j.pt.2020.06.002. PubMed DOI
Kilian O., Kroth P.G. Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J. 2005;41:175–183. doi: 10.1111/j.1365-313X.2004.02294.x. PubMed DOI
Patron N.J., Waller R. Transit peptide diversity and divergence: A global analysis of plastid targeting signals. BioEssays. 2007;29:1048–1058. doi: 10.1002/bies.20638. PubMed DOI
Apt K.E., Grossman A.R., Kroth-Pancic P.G. Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol. Gen. Genet. MGG. 1996;252:572–579. doi: 10.1007/bf02172403. PubMed DOI
Striepen B., He C.Y., Matrajt M., Soldati-Favre D., Roos D. Expression, selection, and organellar targeting of the green fluorescent protein in Toxoplasma gondii. Mol. Biochem. Parasitol. 1998;92:325–338. doi: 10.1016/S0166-6851(98)00011-5. PubMed DOI
Poulsen N., Chesley P.M., Kröger N. MOLECULAR genetic manipulation of the diatom Thalassiosira pseudonana (bacillariophyceae) J. Phycol. 2006;42:1059–1065. doi: 10.1111/j.1529-8817.2006.00269.x. DOI
Striepen B., Soldati D. Toxoplasma Gondii. Academic Press; Cambridge, MA, USA: 2007. Genetic manipulation of Toxoplasma gondii; pp. 391–418. DOI
Zhang C., Hu H. High-efficiency nuclear transformation of the diatom Phaeodactylum tricornutum by electroporation. Mar. Genom. 2014;16:63–66. doi: 10.1016/j.margen.2013.10.003. PubMed DOI
McFadden G.I. Plastids and protein targeting. J. Eukaryot. Microbiol. 1999;46:339–346. doi: 10.1111/j.1550-7408.1999.tb04613.x. PubMed DOI
Roos D.S., Crawford M.J., Donald R.G., Kissinger J., Klimczak L.J., Striepen B. Origin, targeting, and function of the apicomplexan plastid. Curr. Opin. Microbiol. 1999;2:426–432. doi: 10.1016/S1369-5274(99)80075-7. PubMed DOI
DeRocher A., Hagen C.B., Froehlich J.E., Feagin J.E., Parsons M. Analysis of targeting sequences demonstrates that trafficking to the Toxoplasma gondii plastid branches off the secretory system. J. Cell Sci. 2000;113:3969–3977. doi: 10.1242/jcs.113.22.3969. PubMed DOI
Waller R.F., Reed M.B., Cowman A.F., McFadden G.I. Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J. 2000;19:1794–1802. doi: 10.1093/emboj/19.8.1794. PubMed DOI PMC
Apt K.E., Zaslavkaia L., Lippmeier J.C., Lang M., Kilian O., Wetherbee R., Grossman A.R., Kroth P.G. In vivo characterization of diatom multipartite plastid targeting signals. J. Cell Sci. 2002;115:4061–4069. doi: 10.1242/jcs.00092. PubMed DOI
Sheiner L., Demerly J.L., Poulsen N., Beatty W.L., Lucas O., Behnke M., White M.W., Striepen B. A systematic screen to discover and analyze apicoplast proteins identifies a conserved and essential protein import factor. PLOS Pathog. 2011;7:e1002392. doi: 10.1371/journal.ppat.1002392. PubMed DOI PMC
Huesgen P.F., Alami M., Lange P.F., Foster L.J., Schröder W.P., Overall C.M., Green B.R. Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids. PLoS ONE. 2013;8:e74483. doi: 10.1371/journal.pone.0074483. PubMed DOI PMC
Füssy Z., Oborník M. Advances in Botanical Research. Volume 84. Elsevier; Amsterdam, The Netherlands: 2017. Chromerids and their plastids; pp. 187–218. DOI
Oborník M., Lukeš J. International Review of Cell and Molecular Biology. Volume 306. Academic Press; Cambridge, MA, USA: 2013. Cell biology of chromerids; pp. 333–369. PubMed DOI
Nielsen H. Predicting secretory proteins with SignalP. In: Kihara D., editor. Protein Function Prediction. Humana Press; New York, NY, USA: 2017. pp. 59–73. PubMed DOI
Emanuelsson O., Brunak S., Von Heijne G., Nielsen H.A. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2007;2:953–971. doi: 10.1038/nprot.2007.131. PubMed DOI
Gruber A., Rocap G., Kroth P.G., Armbrust E.V., Mock T. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 2015;81:519–528. doi: 10.1111/tpj.12734. PubMed DOI PMC
Füssy Z., Faitová T., Oborník M. subcellular compartments interplay for carbon and nitrogen allocation in Chromera velia and Vitrella brassicaformis. Genome Biol. Evol. 2019;11:1765–1779. doi: 10.1093/gbe/evz123. PubMed DOI PMC
Fukasawa Y., Tsuji J., Fu S.-C., Tomii K., Horton P., Imai K. MitoFates: Improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell. Proteom. 2015;14:1113–1126. doi: 10.1074/mcp.M114.043083. PubMed DOI PMC
Gruber A., McKay C., Kroth P.G., Armbrust E.V., Mock T. Comparison of different versions of SignalP and TargetP for diatom plastid protein predictions with ASAFind. Matters. 2020;81:519–528. doi: 10.1111/tpj.12734. PubMed DOI
Bártulos C.R., Rogers M.B., Williams T., Gentekaki E., Brinkmann H., Cerff R., Liaud M.-F., Hehl A., Yarlett N.R., Gruber A., et al. Mitochondrial glycolysis in a major lineage of eukaryotes. Genome Biol. Evol. 2018;10:2310–2325. doi: 10.1093/gbe/evy164. PubMed DOI PMC
Tanaka A., De Martino A., Amato A., Montsant A., Mathieu B., Rostaing P., Tirichine L., Bowler C. ultrastructure and membrane traffic during cell division in the marine pennate diatom Phaeodactylum tricornutum. Protist. 2015;166:506–521. doi: 10.1016/j.protis.2015.07.005. PubMed DOI PMC
Gould S.B., Sommer M.S., Hadfi K., Zauner S., Kroth P.G., Maier U.G. Protein targeting into the complex plastid of cryptophytes. J. Mol. Evol. 2006;62:674–681. doi: 10.1007/s00239-005-0099-y. PubMed DOI
Gould S.B., Sommer M.S., Kroth P.G., Gile G.H., Keeling P.J., Maier U.G. Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms. Mol. Biol. Evol. 2006;23:2413–2422. doi: 10.1093/molbev/msl113. PubMed DOI
Ovciarikova J., Lemgruber L., Stilger K.L., Sullivan W.J., Sheiner L. Mitochondrial behaviour throughout the lytic cycle of Toxoplasma gondii. Sci. Rep. 2017;7:42746. doi: 10.1038/srep42746. PubMed DOI PMC
Šubrtová K., Panicucci B., Zíková A. ATPaseTb2, a unique membrane-bound FoF1-ATPase component, is essential in bloodstream and dyskinetoplastic trypanosomes. PLOS Pathog. 2015;11:e1004660. doi: 10.1371/journal.ppat.1004660. PubMed DOI PMC
Brzezowski P., Richter A.S., Grimm B. Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochim. Biophys. Acta Bioenerg. 2015;1847:968–985. doi: 10.1016/j.bbabio.2015.05.007. PubMed DOI
Cihlář J., Füssy Z., Oborník M. Advances in Botanical Research. Volume 90. Academic Press; Cambridge, MA, USA: 2019. Evolution of tetrapyrrole pathway in eukaryotic phototrophs; pp. 273–309. DOI
Zaslavskaia L.A., Lippmeier J.C., Grossman A.R., Kroth P.G., Apt K.E. Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J. Phycol. 2000;36:379–386. doi: 10.1046/j.1529-8817.2000.99164.x. DOI
Niu Y.-F., Yang Z., Zhang M.-H., Zhu C.-C., Yang W.-D., Liu J.-S., Li H.-Y. Transformation of diatom Phaeodactylum tricornutum by electroporation and establishment of inducible selection marker. Biotechniques. 2012;52 doi: 10.2144/000113881. PubMed DOI
Weiss L.M., Kim K. Toxoplasma Gondii: The Model Apicomplexan—Perspectives and Methods. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2013. 1085p. DOI
Igamberdiev A.U., Kleczkowski L.A. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium. Front. Plant Sci. 2015;6 doi: 10.3389/fpls.2015.00010. PubMed DOI PMC
Warren M.J., Smith A.G., Schubert H.L., Erskine P.T., Cooper J.B. Tetrapyrroles. Springer; New York, NY, USA: 2009. 5-Aminolaevulinic acid dehydratase, porphobilinogen deaminase and uroporphyrinogen III synthase; pp. 43–73. DOI
Woo Y.H., Ansari H., Otto T., Klinger C.M., Kolisko M., Michálek J., Saxena A., Shanmugam D., Tayyrov A., Veluchamy A., et al. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife. 2015;4:e06974. doi: 10.7554/eLife.06974. PubMed DOI PMC
Shepherd M., Medlock A., Dailey H. Encyclopedia of Biological Chemistry. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2013. Porphyrin metabolism; pp. 544–549. DOI
Bhagavan N., Ha C.-E. Essentials of Medical Biochemistry. Academic Press; Cambridge, MA, USA: 2015. Metabolism of iron and heme; pp. 511–529. DOI
Masoumi A., Heinemann I.U., Rohde M., Koch M., Jahn M., Jahn D. Complex formation between protoporphyrinogen IX oxidase and ferrochelatase during haem biosynthesis in Thermosynechococcus elongatus. Microbiology. 2009;154:3707–3714. doi: 10.1099/mic.0.2008/018705-0. PubMed DOI
Herbst J., Hey D., Grimm B. Advances in Botanical Research. Elsevier; Amsterdam, The Netherlands: 2019. Posttranslational control of tetrapyrrole biosynthesis: Interacting proteins, chaperones, auxiliary factors; pp. 163–194. DOI
Gonzalez N.H., Felsner G., Schramm F.D., Klingl A., Maier U.-G., Bolte K. A single peroxisomal targeting signal mediates matrix protein import in diatoms. PLoS ONE. 2011;6:e25316. doi: 10.1371/journal.pone.0025316. PubMed DOI PMC
Stork S., Lau J., Moog D., Maier U.-G. Three old and one new: Protein import into red algal-derived plastids surrounded by four membranes. Protoplasma. 2013;250:1013–1023. doi: 10.1007/s00709-013-0498-7. PubMed DOI
Gruber A., Vugrinec S., Hempel F., Gould S.B., Maier U.-G., Kroth P.G. Protein targeting into complex diatom plastids: Functional characterisation of a specific targeting motif. Plant Mol. Biol. 2007;64:519–530. doi: 10.1007/s11103-007-9171-x. PubMed DOI
Felsner G., Sommer M.S., Maier U.G. The physical and functional borders of transit peptide-like sequences in secondary endosymbionts. BMC Plant Biol. 2010;10:223. doi: 10.1186/1471-2229-10-223. PubMed DOI PMC
Blume M., Nitzsche R., Sternberg U., Gerlic M., Masters S.L., Gupta N., McConville M.J. A Toxoplasma gondii gluconeogenic enzyme contributes to robust central carbon metabolism and is essential for replication and virulence. Cell Host Microbe. 2015;18:210–220. doi: 10.1016/j.chom.2015.07.008. PubMed DOI
Brown K.M., Long S., Sibley L.D. Plasma membrane association by N-Acylation governs PKG function in Toxoplasma gondii. mBio. 2017;8:e00375-17. doi: 10.1128/mBio.00375-17. PubMed DOI PMC
Sheiner L., Striepen B. Protein sorting in complex plastids. Biochim. Biophys. Acta Mol. Cell Res. 2013;1833:352–359. doi: 10.1016/j.bbamcr.2012.05.030. PubMed DOI PMC
Boucher M.J., Yeh E. Plastid–endomembrane connections in apicomplexan parasites. PLoS Pathog. 2019;15:e1007661. doi: 10.1371/journal.ppat.1007661. PubMed DOI PMC
Agrawal S., van Dooren G.G., Beatty W.L., Striepen B. Genetic evidence that an endosymbiont-derived endoplasmic reticulum-associated protein degradation (ERAD) system functions in import of apicoplast proteins. J. Biol. Chem. 2009;284:33683–33691. doi: 10.1074/jbc.M109.044024. PubMed DOI PMC
Hempel F., Bullmann L., Lau J., Zauner S., Maier U.G. ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Mol. Biol. Evol. 2009;26:1781–1790. doi: 10.1093/molbev/msp079. PubMed DOI
Hempel F., Bolte K., Klingl A., Zauner S., Maier U.-G. Plastid Biology. Springer; New York, NY, USA: 2014. Protein transport into plastids of secondarily evolved organisms; pp. 291–303.
Bullmann L., Haarmann R., Mirus O., Bredemeier R., Hempel F., Maier U.G., Schleiff E. Filling the gap, evolutionarily conserved Omp85 in plastids of chromalveolates. J. Biol. Chem. 2010;285:6848–6856. doi: 10.1074/jbc.M109.074807. PubMed DOI PMC
Glaser S., van Dooren G.G., Agrawal S., Brooks C.F., McFadden G.I., Striepen B., Higgins M.K. Tic22 is an essential chaperone required for protein import into the apicoplast. J. Biol. Chem. 2012;287:39505–39512. doi: 10.1074/jbc.M112.405100. PubMed DOI PMC
Sheiner L., Fellows J.D., Ovciarikova J., Brooks C.F., Agrawal S., Holmes Z.C., Bietz I., Flinner N., Heiny S., Mirus O., et al. Toxoplasma gondii Toc75 functions in import of stromal but not peripheral apicoplast proteins. Traffic. 2015;16:1254–1269. doi: 10.1111/tra.12333. PubMed DOI
Roger A.J., Muñoz-Gómez S.A., Kamikawa R. The origin and diversification of mitochondria. Curr. Biol. 2017;27:R1177–R1192. doi: 10.1016/j.cub.2017.09.015. PubMed DOI
Wiedemann N., Pfanner N. Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 2017;86:685–714. doi: 10.1146/annurev-biochem-060815-014352. PubMed DOI
Maréchal E., Cesbron-Delauw M.-F. The apicoplast: A new member of the plastid family. Trends Plant. Sci. 2001;6:200–205. doi: 10.1016/S1360-1385(01)01921-5. PubMed DOI
Smith A., Santana M., Wallace-Cook A., Roper J., Labbe-Bois R. Isolation of a cDNA encoding chloroplast ferrochelatase from Arabidopsis thaliana by functional complementation of a yeast mutant. J. Biol. Chem. 1994;269:13405–13413. doi: 10.1016/S0021-9258(17)36847-3. PubMed DOI
Tanaka R., Kobayashi K., Masuda T. Tetrapyrrole metabolism in Arabidopsis thaliana. Arab. Book. 2011;9:e0145. doi: 10.1199/tab.0145. PubMed DOI PMC
Nagai S., Koide M., Takahashi S., Kikuta A., Aono M., Sasaki-Sekimoto Y., Ohta H., Takamiya K.-I., Masuda T. Induction of isoforms of tetrapyrrole biosynthetic enzymes, AtHEMA2 and AtFC1, under stress conditions and their physiological functions in arabidopsis. Plant Physiol. 2007;144:1039–1051. doi: 10.1104/pp.107.100065. PubMed DOI PMC
Kobayashi K., Masuda T. Transcriptional regulation of tetrapyrrole biosynthesis in Arabidopsis thaliana. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.01811. PubMed DOI PMC
Sobotka R., Tichy M., Wilde A., Hunter C.N. Functional assignments for the carboxyl-terminal domains of the ferrochelatase from synechocystis PCC 6803: The CAB domain plays a regulatory role, and region II is essential for catalysis. Plant Physiol. 2011;155:1735–1747. doi: 10.1104/pp.110.167528. PubMed DOI PMC
Pazderník M., Mareš J., Pilný J., Sobotka R. The antenna-like domain of the cyanobacterial ferrochelatase can bind chlorophyll and carotenoids in an energy-dissipative configuration. J. Biol. Chem. 2019;294:11131–11143. doi: 10.1074/jbc.RA119.008434. PubMed DOI PMC
Franken A.C.W., Lokman B.C., Ram A.F.J., Punt P.J., van den Hondel C.A.M.J.J., de Weert S. Heme biosynthesis and its regulation: Towards understanding and improvement of heme biosynthesis in filamentous fungi. Appl. Microbiol. Biotechnol. 2011;91:447–460. doi: 10.1007/s00253-011-3391-3. PubMed DOI PMC
Zhang J., Kang Z., Chen J., Du G. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci. Rep. 2015;5:8584. doi: 10.1038/srep08584. PubMed DOI PMC
Medlock A.E., Shiferaw M.T., Marcero J.R., Vashisht A.A., Wohlschlegel J.A., Phillips J.D., Dailey H.A. Identification of the mitochondrial heme metabolism complex. PLoS ONE. 2015;10:e0135896. doi: 10.1371/journal.pone.0135896. PubMed DOI PMC
Petersen T.N., Brunak S., Von Heijne G., Nielsen H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods. 2011;8:785–786. doi: 10.1038/nmeth.1701. PubMed DOI
Emanuelsson O., Nielsen H., Brunak S., von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 2000;300:1005–1016. doi: 10.1006/jmbi.2000.3903. PubMed DOI
Schneider T.D., Stephens R.M. Sequence logos: A new way to display consensus sequences. Nucleic Acids Res. 1990;18:6097–6100. doi: 10.1093/nar/18.20.6097. PubMed DOI PMC
Crooks G.E., Hon G., Chandonia J.-M., Brenner S.E. WebLogo: A sequence logo generator. Genome Res. 2004;14:1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC
Roos D., Donald R.G.K., Morrissette N.S., Moulton A.L.C. Methods in Cell Biology. Volume 45. Elsevier; Amsterdam, The Netherlands: 1995. Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii; pp. 27–63. PubMed DOI
Donald R.G., Roos D. Stable molecular transformation of Toxoplasma gondii: A selectable dihydrofolate reductase-thymidylate synthase marker based on drug-resistance mutations in malaria. Proc. Natl. Acad. Sci. USA. 1993;90:11703–11707. doi: 10.1073/pnas.90.24.11703. PubMed DOI PMC
Jacot D., Meissner M., Sheiner L., Soldati-Favre D., Striepen B. Toxoplasma Gondii, The Model Apicomplexan—Perspectives and Methods. 2nd ed. Elevier; Amsterdam, The Netherlands: 2014. Genetic manipulation of Toxoplasma gondii; pp. 577–611. DOI
Lucocq J.M., Habermann A., Watt S., Backer J.M., Mayhew T.M., Griffiths G. A rapid method for assessing the distribution of gold labeling on thin sections. J. Histochem. Cytochem. 2004;52:991–1000. doi: 10.1369/jhc.3A6178.2004. PubMed DOI
Lucocq J.M., Gawden-Bone C. Quantitative assessment of specificity in immunoelectron microscopy. J. Histochem. Cytochem. 2010;58:917–927. doi: 10.1369/jhc.2010.956243. PubMed DOI PMC