Evolution of the Tetrapyrrole Biosynthetic Pathway in Secondary Algae: Conservation, Redundancy and Replacement
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27861576
PubMed Central
PMC5115734
DOI
10.1371/journal.pone.0166338
PII: PONE-D-16-35079
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce * MeSH
- biosyntetické dráhy * genetika MeSH
- Cryptophyta klasifikace genetika metabolismus MeSH
- Dinoflagellata klasifikace genetika metabolismus MeSH
- fylogeneze MeSH
- hem metabolismus MeSH
- porfobilinogensynthasa genetika metabolismus MeSH
- rozsivky klasifikace genetika metabolismus MeSH
- stanovení celkové genové exprese MeSH
- tetrapyrroly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hem MeSH
- porfobilinogensynthasa MeSH
- tetrapyrroly MeSH
Tetrapyrroles such as chlorophyll and heme are indispensable for life because they are involved in energy fixation and consumption, i.e. photosynthesis and oxidative phosphorylation. In eukaryotes, the tetrapyrrole biosynthetic pathway is shaped by past endosymbioses. We investigated the origins and predicted locations of the enzymes of the heme pathway in the chlorarachniophyte Bigelowiella natans, the cryptophyte Guillardia theta, the "green" dinoflagellate Lepidodinium chlorophorum, and three dinoflagellates with diatom endosymbionts ("dinotoms"): Durinskia baltica, Glenodinium foliaceum and Kryptoperidinium foliaceum. Bigelowiella natans appears to contain two separate heme pathways analogous to those found in Euglena gracilis; one is predicted to be mitochondrial-cytosolic, while the second is predicted to be plastid-located. In the remaining algae, only plastid-type tetrapyrrole synthesis is present, with a single remnant of the mitochondrial-cytosolic pathway, a ferrochelatase of G. theta putatively located in the mitochondrion. The green dinoflagellate contains a single pathway composed of mostly rhodophyte-origin enzymes, and the dinotoms hold two heme pathways of apparently plastidal origin. We suggest that heme pathway enzymes in B. natans and L. chlorophorum share a predominantly rhodophytic origin. This implies the ancient presence of a rhodophyte-derived plastid in the chlorarachniophyte alga, analogous to the green dinoflagellate, or an exceptionally massive horizontal gene transfer.
Biology Centre Czech Academy of Sciences Institute of Parasitology České Budějovice Czech Republic
Institute of Microbiology Czech Academy of Sciences Třeboň Czech Republic
University of South Bohemia Faculty of Science České Budějovice Czech Republic
Zobrazit více v PubMed
McFadden GI, Guy L, Saw JH, Ettema TJG, Eme L, Sharpe SC, et al. Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harb Perspect Biol. 2014;6 10.1101/cshperspect.a016105 PubMed DOI PMC
Nowack ECM, Melkonian M, Glöckner G. Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol. 2008;18: 410–418. 10.1016/j.cub.2008.02.051 PubMed DOI
Keeling PJ. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol. 2013;64: 583–607. 10.1146/annurev-arplant-050312-120144 PubMed DOI
Stiller JW, Schreiber J, Yue J, Guo H, Ding Q, Huang J. The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat Commun. 2014;5: 5764 10.1038/ncomms6764 PubMed DOI PMC
Zimorski V, Ku C, Martin WF, Gould SB. Endosymbiotic theory for organelle origins. Curr Opin Microbiol. 2014;22: 38–48. 10.1016/j.mib.2014.09.008 PubMed DOI
Gould SB, Maier U-G, Martin WF. Protein import and the origin of red complex plastids. Curr Biol. 2015;25: R515–R521. 10.1016/j.cub.2015.04.033 PubMed DOI
Archibald JM. Genomic perspectives on the birth and spread of plastids. Proc Natl Acad Sci U S A. 2015;112: 10147–53. 10.1073/pnas.1421374112 PubMed DOI PMC
Waller RF, Gornik SG, Kořený L, Pain A. Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid. Commun Integr Biol. 2016;9 10.1080/19420889.2015.1116653 PubMed DOI PMC
Cavalier-Smith T. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol. 1999;46: 347–366. 10.1111/j.1550-7408.1999.tb04614.x PubMed DOI
Lane CE, Archibald JM. The eukaryotic tree of life: endosymbiosis takes its TOL. Trends Ecol Evol. 2008;23: 268–275. 10.1016/j.tree.2008.02.004 PubMed DOI
Sanchez-Puerta MV, Delwiche CF. A hypothesis for plastid evolution in chromalveolates. J Phycol. 2008;44: 1097–1107. 10.1111/j.1529-8817.2008.00559.x PubMed DOI
Bodył A, Stiller JW, Mackiewicz P. Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol Evol. 2009;24: 119–121. 10.1016/j.tree.2008.11.003 PubMed DOI
Janouškovec J, Horák A, Oborník M, Lukeš J, Keeling PJ. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci U S A. 2010;107: 10949–54. 10.1073/pnas.1003335107 PubMed DOI PMC
Felsner G, Sommer MS, Gruenheit N, Hempel F, Moog D, Zauner S, et al. ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Genome Biol Evol. 2011;3: 140–150. 10.1093/gbe/evq074 PubMed DOI PMC
Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci U S A. 2009;106: 3859–64. 10.1073/pnas.0807880106 PubMed DOI PMC
Brown MW, Sharpe SC, Silberman JD, Heiss A a, Lang BF, Simpson AGB, et al. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proc Biol Sci. 2013;280: 20131755 10.1098/rspb.2013.1755 PubMed DOI PMC
Yabuki A, Kamikawa R, Ishikawa S a, Kolisko M, Kim E, Tanabe AS, et al. Palpitomonas bilix represents a basal cryptist lineage: insight into the character evolution in Cryptista. Sci Rep. 2014;4: 4641 10.1038/srep04641 PubMed DOI PMC
Burki F, Kaplan M, Tikhonenkov DV, Zlatogursky V, Minh BQ, Radaykina LV, et al. Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc R Soc B Biol Sci. 2016;283: 20152802 10.1098/rspb.2015.2802 PubMed DOI PMC
Delwiche CF. Tracing the thread of plastid—Diversity through the tapestry of life. Am Nat. 1999;154: S164–S177. Available: http://www.jstor.org/stable/10.2307/2463984 10.1086/303291 PubMed DOI
Inagaki Y, Dacks JB, Ford Doolittle W, Watanabe KI, Ohama T. Evolutionary relationship between dinoflagellates bearing obligate diatom endosymbionts: Insight into tertiary endosymbiosis. Int J Syst Evol Microbiol. 2000;50: 2075–2081. 10.1099/00207713-50-6-2075 PubMed DOI
Saldarriaga JF, Taylor FJR, Keeling PJ, Cavalier-smith T. Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J Mol Evol. 2001;53: 204–213. 10.1007/s002390010210 PubMed DOI
Ishida K, Green BR. Second- and third-hand chloroplasts in dinoflagellates: Phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proc Natl Acad Sci U S A. 2002;99: 9294–9299. 10.1073/pnas.142091799 PubMed DOI PMC
Keeling PJ. The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci. 2010;365: 729–48. 10.1098/rstb.2009.0103 PubMed DOI PMC
Elbrachter M, Schnepf E. Gymnodinium chlorophorum, a new, green, bloom-forming dinoflagellate (Gymnodiniales, Dinophyceae) with a vestigial prasinophyte endosymbiont. Phycologia. 1996;35: 381–393. 10.2216/I0031-8884-35-5-381.1 DOI
Takishita K, Kawachi M, Noel MH, Matsumoto T, Kakizoe N, Watanabe MM, et al. Origins of plastids and glyceraldehyde-3-phosphate dehydrogenase genes in the green-colored dinoflagellate Lepidodinium chlorophorum. Gene. 2008;410: 26–36. 10.1016/j.gene.2007.11.008 PubMed DOI
Chesnick JM, Morden CW, Schmieg AM. Identity of the endosymbiont of Peridinium foliaceum (Pyrrophyta): Analysis of the rbcLS operon. J Phycol. 1996;32: 850–857. 10.1111/J.0022-3646.1996.00850.X DOI
Imanian B, Keeling PJ. The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages. BMC Evol Biol. 2007;7: 172 10.1186/1471-2148-7-172 PubMed DOI PMC
Moustafa A, Beszteri BB, Maier UG, Bowler C, Valentin K, Bhattacharya D. Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science. 2009;324: 1724–6. 10.1126/science.1172983 PubMed DOI
Dorrell RG, Smith AG. Do red and green make brown?: Perspectives on plastid acquisitions within chromalveolates. Eukaryot Cell. 2011;10: 856–868. 10.1128/EC.00326-10 PubMed DOI PMC
Woehle C, Dagan T, Martin WF, Gould SB. Red and problematic green phylogenetic signals among thousands of nuclear genes from the photosynthetic and apicomplexa-related Chromera velia. Genome Biol Evol. 2011;3: 1220–1230. 10.1093/gbe/evr100 PubMed DOI PMC
Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, et al. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature. 2012;492: 59–65. 10.1038/nature11681 PubMed DOI
Deschamps P, Moreira D. Reevaluating the green contribution to diatom genomes. Genome Biol Evol. 2012;4: 683–688. 10.1093/gbe/evs053 PubMed DOI PMC
Burki F, Flegontov P, Oborník M, Cihlář J, Pain A, Lukeš J, et al. Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin. Genome Biol Evol. 2012;4: 626–635. 10.1093/gbe/evs049 PubMed DOI PMC
Petersen J, Ludewig AK, Michael V, Bunk B, Jarek M, Baurain D, et al. Chromera velia, endosymbioses and the rhodoplex hypothesis—Plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genome Biol Evol. 2014;6: 666–684. 10.1093/gbe/evu043 PubMed DOI PMC
Ševčíková T, Horák A, Klimeš V, Zbránková V, Demir-Hilton E, Sudek S, et al. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep. 2015;5: 10134 10.1038/srep10134 PubMed DOI PMC
Yamaguchi A, Yubuki N, Leander BS. Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evol Biol. BioMed Central Ltd; 2012;12: 29 10.1186/1471-2148-12-29 PubMed DOI PMC
Hrdá Š, Fousek J, Szabová J, Hampl V, Vlček Č. The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids. PLoS One. 2012;7: e33746 10.1371/journal.pone.0033746 PubMed DOI PMC
Deusch O, Landan G, Roettger M, Gruenheit N, Kowallik K V., Allen JF, et al. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Mol Biol Evol. 2008;25: 748–761. 10.1093/molbev/msn022 PubMed DOI
Huang S, Shingaki-Wells RN, Taylor NL, Millar AH. The rice mitochondria proteome and its response during development and to the environment. Front Plant Sci. 2013;4: 16 10.3389/fpls.2013.00016 PubMed DOI PMC
Gross J, Bhattacharya D. Mitochondrial and plastid evolution in eukaryotes: an outsiders’ perspective. Nat Rev Genet. 2009;10: 495–505. 10.1038/nrg2649 PubMed DOI
Basak I, Moeller SG. Emerging facets of plastid division regulation. Planta. 2013. pp. 389–398. 10.1007/s00425-012-1743-6 PubMed DOI
Gould SB, Waller RF, McFadden GI. Plastid evolution. Annu Rev Plant Biol. 2008;59: 491–517. 10.1146/annurev.arplant.59.032607.092915 PubMed DOI
Barbrook AC, Howe CJ, Purton S. Why are plastid genomes retained in non-photosynthetic organisms? Trends Plant Sci. 2006;11: 101–108. 10.1016/j.tplants.2005.12.004 PubMed DOI
Smith DR, Crosby K, Lee RW. Correlation between nuclear plastid DNA abundance and plastid number supports the limited transfer window hypothesis. Genome Biol Evol. 2011;3: 365–371. 10.1093/gbe/evr001 PubMed DOI PMC
Gillott MA, Gibbs SP. Cryptomonad nucleomorph: its ultrastructure and evolutionary significance. J Phycol. 1980;16: 558–568. 10.1111/j.1529-8817.1980.tb03074.x DOI
Gilson PR, McFadden GI. Good things in small packages: the tiny genomes of chlorarachniophyte endosymbionts. BioEssays. 1997;19: 167–173. 10.1002/bies.950190212 PubMed DOI
Hehenberger E, Imanian B, Burki F, Keeling PJ. Evidence for the retention of two evolutionary distinct plastids in dinoflagellates with diatom endosymbionts. Genome Biol Evol. 2014;6: 2321–2334. 10.1093/gbe/evu182 PubMed DOI PMC
Imanian B, Keeling PJ. Horizontal gene transfer and redundancy of tryptophan biosynthetic enzymes in dinotoms. Genome Biol Evol. 2014;6: 333–343. 10.1093/gbe/evu014 PubMed DOI PMC
Dodge JD. The functional and phylogenetic significance of dinoflagellate eyespots. BioSystems. 1983;16: 259–267. 10.1016/0303-2647(83)90009-6 PubMed DOI
Kořený L, Sobotka R, Kovářová J, Gnipová A, Flegontov P, Horváth A, et al. Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc Natl Acad Sci U S A. 2012;109: 3808–3813. 10.1073/pnas.1201089109 PubMed DOI PMC
Weinstein JD, Beale SI. Separate Physiological roles and subcellular compartments for two tetrapyrrole biosynthesis pathway in Euglena gracilis. J Biol Chem. 1983;258: 6799–6807. PubMed
Mayer SM, Beale SI, Weinstein JD. Enzymatic conversion of glutamate to δ-aminolevulinic acid in soluble extract of Euglena gracilis. J Biol Chem. 1987;262: 12541–12549. PubMed
Mayer SM, Beale S. δ-Aminolevulinic acid biosynthesis from glutamate in Euglena gracilis. Plant Physiol. 1991;97: 1094–1102. PubMed PMC
Iida K, Mimura I, Kajiwara M. Evaluation of two biosynthetic pathways to δ-aminolevulinic acid in Euglena gracilis. Eur J Biochem. 2002;269: 291–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/11784323 PubMed
Kořený L, Oborník M. Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis. Genome Biol Evol. 2011;3: 359–364. 10.1093/gbe/evr029 PubMed DOI PMC
Oborník M, Green BR. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol Biol Evol. 2005;22: 2343–2353. 10.1093/molbev/msi230 PubMed DOI
Kořený L, Sobotka R, Janouškovec J, Keeling PJ, Oborník M. Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites. Plant Cell. 2011;23: 3454–62. 10.1105/tpc.111.089102 PubMed DOI PMC
Janouškovec J, Tikhonenkov D V, Burki F, Howe AT, Kolísko M, Mylnikov AP, et al. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci U S A. 2015;112: 10200–7. 10.1073/pnas.1423790112 PubMed DOI PMC
Fernández Robledo JA, Caler E, Matsuzaki M, Keeling PJ, Shanmugam D, Roos DS, et al. The search for the missing link: A relic plastid in Perkinsus? [Internet]. International Journal for Parasitology. 2011. pp. 1217–1229. 10.1016/j.ijpara.2011.07.008 PubMed DOI PMC
Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ, et al. Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol. 2004;2: 203–216. 10.1038/nrmicro843 PubMed DOI
Kořený L, Lukeš J, Oborník M. Evolution of the haem synthetic pathway in kinetoplastid flagellates: An essential pathway that is not essential after all? Int J Parasitol. 2010;40: 149–156. 10.1016/j.ijpara.2009.11.007 PubMed DOI
Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ. The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: Evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol. 2007;24: 54–62. 10.1093/molbev/msl129 PubMed DOI
Bendtsen JD, Nielsen H, Von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004;340: 783–795. 10.1016/j.jmb.2004.05.028 PubMed DOI
Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007;2: 953–971. 10.1038/nprot.2007.131 PubMed DOI
Masuda T, Suzuki T, Shimada H, Ohta H, Takamiya K. Subcellular localization of two types of ferrochelatase in cucumber. Planta. 2003;217: 602–609. 10.1007/s00425-003-1019-2 PubMed DOI
Maier UG, Rensing SA, Igloi GL, Maerz M. Twintrons are not unique to the Euglena chloroplast genome: structure and evolution of a plastome cpn60 gene from a cryptomonad. Mol Gen Genet. 1995;246: 128–131. 10.1007/BF00290141 PubMed DOI
Douglas SE, Penny SL. The plastid genome of the cryptophyte alga, Guillardia theta: Complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol. 1999;48: 236–244. 10.1007/PL00006462 PubMed DOI
Woo YH, Ansari H, Otto TD, Klinger CM, Kolisko M, Michálek J, et al. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. Elife. 2015;4: 1–41. 10.7554/eLife.06974 PubMed DOI PMC
Burki F, Okamoto N, Pombert J-F, Keeling PJ. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc Biol Sci. 2012;279: 2246–54. 10.1098/rspb.2011.2301 PubMed DOI PMC
Parfrey LW, Lahr DJG, Knoll AH, Katz LA. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci U S A. 2011;108: 13624–9. 10.1073/pnas.1110633108 PubMed DOI PMC
Zhang H, Hou Y, Miranda L, Campbell DA, Sturm NR, Gaasterland T, et al. Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci U S A. 2007;104: 4618–4623. 10.1073/pnas.0700258104 PubMed DOI PMC
Gruber A, Vugrinec S, Hempel F, Gould SB, Maier UG, Kroth PG. Protein targeting into complex diatom plastids: Functional characterisation of a specific targeting motif. Plant Mol Biol. 2007;64: 519–530. 10.1007/s11103-007-9171-x PubMed DOI
Jordan PM. The biosynthesis of uroporphyrinogen III: mechanism of action of porphobilinogen deaminase. Ciba Found Symp. NETHERLANDS; 1994;180: 70–96. PubMed
Hansen G, Botes L, De Salas M. Ultrastructure and large subunit rDNA sequences of Lepidodinium viride reveal a close relationship to Lepidodinium chlorophorum comb. nov. (= Gymnodinium chlorophorum). Phycol Res. 2007;55: 25–41. 10.1111/j.1440-1835.2006.00442.x DOI
Larkum AWD, Lockhart PJ, Howe CJ. Shopping for plastids. Trends Plant Sci. 2007;12: 189–195. 10.1016/j.tplants.2007.03.011 PubMed DOI
Doolittle WF. You are what you eat: A gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 1998;14: 307–311. 10.1016/S0168-9525(98)01494-2 PubMed DOI
Archibald JM, Rogers MB, Toop M, Ishida K-I, Keeling PJ. Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci U S A. 2003;100: 7678–7683. 10.1073/pnas.1230951100 PubMed DOI PMC
Yang Y, Matsuzaki M, Takahashi F, Qu L, Nozaki H. Phylogenomic analysis of “red” genes from two divergent species of the “green” secondary phototrophs, the chlorarachniophytes, suggests multiple horizontal gene transfers from the red lineage before the divergence of extant chlorarachniophytes. PLoS One. 2014;9 10.1371/journal.pone.0101158 PubMed DOI PMC
Hirakawa Y, Burki F, Keeling PJ. Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga. Eukaryot Cell. 2012;11: 324–333. 10.1128/EC.05264-11 PubMed DOI PMC
Stoecker DK, Johnson MD, De Vargas C, Not F. Acquired phototrophy in aquatic protists. Aquat Microb Ecol. 2009;57: 279–310. 10.3354/ame01340 DOI
Burki F, Imanian B, Hehenberger E, Hirakawa Y, Maruyama S, Keeling PJ. Endosymbiotic gene transfer in tertiary plastid-containing dinoflagellates. Eukaryot Cell. 2014;13: 246–255. 10.1128/EC.00299-13 PubMed DOI PMC
Moreira D, Deschamps P. What was the real contribution of endosymbionts to the eukaryotic nucleus? insights from photosynthetic eukaryotes. Cold Spring Harb Perspect Biol. 2014;6: 1–9. 10.1101/cshperspect.a016014 PubMed DOI PMC
Pittis AA, Gabaldón T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature. 2016;531: 101–4. 10.1038/nature16941 PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215: 403–10. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32: 1792–1797. 10.1093/nar/gkh340 PubMed DOI PMC
Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27: 221–4. 10.1093/molbev/msp259 PubMed DOI
Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22: 2688–2690. 10.1093/bioinformatics/btl446 PubMed DOI
Lartillot N, Philippe H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol. 2004;21: 1095–1109. 10.1093/molbev/msh112 PubMed DOI
Van de Peer Y, Frickey T, Taylor JS, Meyer A. Dealing with saturation at the amino acid level: A case study based on anciently duplicated zebrafish genes. Gene. 2002;295: 205–211. PubMed
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28: 1647–1649. 10.1093/bioinformatics/bts199 PubMed DOI PMC
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29: 644–52. 10.1038/nbt.1883 PubMed DOI PMC
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1: 18 10.1186/2047-217X-1-18 PubMed DOI PMC
Huang X, Madan a. CAP 3: A DNA sequence assembly program. Genome Res. 1999;9: 868–877. 10.1101/gr.9.9.868 PubMed DOI PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva E V., Zdobnov EM. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31: 3210–3212. 10.1093/bioinformatics/btv351 PubMed DOI
Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events
Organellar Evolution: A Path from Benefit to Dependence
Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia
Enigmatic Evolutionary History of Porphobilinogen Deaminase in Eukaryotic Phototrophs
Common origin of ornithine-urea cycle in opisthokonts and stramenopiles
Endosymbiotic Evolution of Algae, Secondary Heterotrophy and Parasitism
In the beginning was the word: How terminology drives our understanding of endosymbiotic organelles