The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22448269
PubMed Central
PMC3308993
DOI
10.1371/journal.pone.0033746
PII: PONE-D-11-23463
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce * MeSH
- Euglenida genetika MeSH
- fylogeneze MeSH
- genom plastidový * MeSH
- infekce prvoky kmene Euglenozoa genetika patologie MeSH
- plastidy genetika MeSH
- symbióza fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Euglenids are a group of protists that comprises species with diverse feeding modes. One distinct and diversified clade of euglenids is photoautotrophic, and its members bear green secondary plastids. In this paper we present the plastid genome of the euglenid Eutreptiella, which we assembled from 454 sequencing of Eutreptiella gDNA. Comparison of this genome and the only other available plastid genomes of photosynthetic euglenid, Euglena gracilis, revealed that they contain a virtually identical set of 57 protein coding genes, 24 genes fewer than the genome of Pyramimonas parkeae, the closest extant algal relative of the euglenid plastid. Searching within the transcriptomes of Euglena and Eutreptiella showed that 6 of the missing genes were transferred to the nucleus of the euglenid host while 18 have been probably lost completely. Euglena and Eutreptiella represent the deepest bifurcation in the photosynthetic clade, and therefore all these gene transfers and losses must have happened before the last common ancestor of all known photosynthetic euglenids. After the split of Euglena and Eutreptiella only one additional gene loss took place. The conservation of gene content in the two lineages of euglenids is in contrast to the variability of gene order and intron counts, which diversified dramatically. Our results show that the early secondary plastid of euglenids was much more susceptible to gene losses and endosymbiotic gene transfers than the established plastid, which is surprisingly resistant to changes in gene content.
PLoS One. 2012;7(4): doi/10.1371/annotation/3f9f229e-e4e1-457b-b33d-89950e1799c5 PubMed Hampl, Vladimír 5th [corrected to Hampl, Vladimír]
Erratum vPLoS One. 2012;7(6): doi/10.1371/annotation/c03a517b-fade-4f91-ae19-8ccb2eea697c PubMed
Zobrazit více v PubMed
Preisfeld A, Busse I, Klingberg M, Talke S, Ruppel HG. Phylogenetic position and inter-relationships of the osmotrophic euglenids based on SSU rDNA data, with emphasis on the Rhabdomonadales (Euglenozoa). Int J Syst Evol Microbiol. 2001;51:751–8. PubMed
Leander BS, Esson HJ, Breglia SA. Macroevolution of complex cytoskeletal systems in euglenids. Bioessays. 2007;29:987–1000. PubMed
Linton E, Hittner D, Levandowski CF, Auld T, Triemer RE. A molecular study of euglenoid phylogeny using small subunit rDNA. J Eukaryot Microbiol. 1999;46:217–223. PubMed
Marin B, Palm A, Klingberg M, Melkonian M. Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparison and synapomorphic signatures in the SSU rRNA secondary structure. Protist. 2003;154:99–145. PubMed
Marin B. Origin and fate of chloroplasts in the euglenoida. Protist. 2004;155:13–14. PubMed
Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, et al. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res. 1993;21:3537–44. PubMed PMC
Gockel G, Hachtel W. Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist. 2000;151:347–51. PubMed
Gibbs SP. The chloroplasts of Euglena may have evolved from symbiotic green algae. Can J Bot. 1978;56:2883–2889.
Leander BS, Triemer RE, Farmer MA. Character evolution in heterotrophic euglenids. Eur J Protistol. 2001;37:337–356.
Leander BS. Did trypanosomatid parasites have photosynthetic ancestors? Trends Microbiol. 2004;12:251–8. PubMed
Krajčovič J, Ebringer L, Schwartzbach SD. Reversion of endosymbiosis? In: Seckbach J, editor. Symbiosis: Mechanisms and Models. Cellular Origin in Extreme Habitats, Vol. 4. Dordrecht: Kluwer Academic Publisher; 2002. pp. 185–206.
Vesteg M, Vacula R, Steiner JM, Mateášiková B, Löffelhardt W, et al. A possible role for short introns in the acquisition of stroma-targeting peptides in the flagellate Euglena gracilis. DNA Res. 2010;17:223–231. PubMed PMC
Hannaert V, Saavedra E, Duffieux F, Szikora JP, Rigden DJ, et al. Plant-like traits associated with metabolism of Trypanosoma parasites. Proc Natl Acad Sci USA. 2003;100:1067–1071. PubMed PMC
Bodył A, Mackiewicz P, Milanowski R. Did trypanosomatid parasites contain an eukaryotic alga-derived plastid in their evolutionary past? J Parasitol. 2010;96:465–75. PubMed
Maruyama S, Suzaki T, Weber APM, Archibald JM, Nozaki H. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. BMC Evolutionary Biology. 2011;11:105. PubMed PMC
Turmel M, Gagnon MC, O'Kelly CJ, Otis C, Lemieux C. The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol. 2009;26:631–48. PubMed
Thompson MD, Copertino DW, Thompson E, Favreau MR, Hallick RB. Evidence for the late origin of introns in chloroplast genes from an evolutionary analysis of the genus Euglena. Nucleic Acids Res. 1996;23(23):4745–52. Errata: Nucleic Acids Res 24: 542, 24: 1792, 1996. PubMed PMC
Doetsch NA, Thompson MD, Hallick RB. A maturase-encoding group III twintron is conserved in deeply rooted euglenoid species: are group III introns the chicken or the egg? Mol Biol Evol. 1998;15(1):76–86. PubMed
Müllner AN, Angeler DG, Samuel R, Linton EW, Triemer RE. Phylogenetic analysis of phagotrophic, photomorphic and osmotrophic euglenoids by using the nuclear 18S rDNA sequence. Int J Syst Evol Microbiol. 2001;51:783–91. PubMed
Busse I, Preisfeld A. Systematics of primary osmotrophic euglenids: a molecular approach to the phylogeny of Distigma and Astasia (Euglenozoa). Int J Syst Evol Microbiol. 2003;53:617–24. PubMed
Geimer S, Belicova A, Legen J, Slavikova S, Herrmann RG, et al. Transcriptome analysis of the Euglena gracilis plastid chromosome. Current Genetics. 2009;55:425–238. PubMed
Heinhorst S, Canon GC. DNA replication in chloroplasts. J Cell Sci. 1993;104:1–9.
Bendich AJ. Circular chloroplast chromosomes: the grand illusion. Plant Cell. 2004;16:1661–6. PubMed PMC
Ravel-Chapuis P, Heizmann P, Nigon V. Electron microscopic localization of the replication origin of Euglena gracilis chloroplast DNA. Nature. 1982;300:78–81.
Koller B, Delius H. Origin of replication in chloroplast DNA of Euglena gracilis located close to the region of variable size. EMBO J. 1982;1:995–8. PubMed PMC
Morton BR. Strand asymmetry and codon usage bias in the chloroplast genome of Euglena gracilis. Proc Natl Acad Sci U S A. 1999;96:5123–8. PubMed PMC
Michel F, Umesono K, Ozeki H. Comparative and functional anatomy of group II catalytic introns-a review. Gene. 1989;82:5–30. PubMed
Michel F, Ferat JL. Structure and activities of group II introns. Annu Rev Biochem. 1995;64:435–61. PubMed
Mohr G, Perlman PS, Lambowitz AM. Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acids Res. 1993;21:4991–7. PubMed PMC
Sheveleva EV, Hallick RB. Recent horizontal transfer to a chloroplast genome. Nucleic Acids Res. 2004;32:803–810. PubMed PMC
Huang CY, Ayliffe MA, Timmis JN. Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature. 2003;422:72–6. PubMed
Bock R, Timmis JN. Reconstructing evolution: gene transfer from plastids to the nucleus. Bioessays. 2008;30:556–66. PubMed
Lowe TM, Eddy SR. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucl Acids Res. 1997;25:955–964. PubMed PMC
Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, et al. Artemis: sequence visualization and annotation. Bioinformatics. 2000;16:944–5. PubMed
Conant GC, Wolfe KH. GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics. 2008;24:861–2. PubMed
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–3415. PubMed PMC
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. PubMed
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999;41:95–98.
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90. PubMed
Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. PubMed PMC
Euglenozoan kleptoplasty illuminates the early evolution of photoendosymbiosis
Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists