Euglenozoan kleptoplasty illuminates the early evolution of photoendosymbiosis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36927158
PubMed Central
PMC10041101
DOI
10.1073/pnas.2220100120
Knihovny.cz E-zdroje
- Klíčová slova
- endosymbiosis, euglenozoa, horizontal gene transfer, kleptoplasty, plastid evolution,
- MeSH
- Chlorophyta * genetika metabolismus MeSH
- Eukaryota genetika MeSH
- fotosyntéza * genetika MeSH
- fylogeneze MeSH
- plastidy genetika metabolismus MeSH
- symbióza genetika MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Kleptoplasts (kP) are distinct among photosynthetic organelles in eukaryotes (i.e., plastids) because they are routinely sequestered from prey algal cells and function only temporarily in the new host cell. Therefore, the hosts of kleptoplasts benefit from photosynthesis without constitutive photoendosymbiosis. Here, we report that the euglenozoan Rapaza viridis has only kleptoplasts derived from a specific strain of green alga, Tetraselmis sp., but no canonical plastids like those found in its sister group, the Euglenophyceae. R. viridis showed a dynamic change in the accumulation of cytosolic polysaccharides in response to light-dark cycles, and 13C isotopic labeling of ambient bicarbonate demonstrated that these polysaccharides originate in situ via photosynthesis; these data indicate that the kleptoplasts of R. viridis are functionally active. We also identified 276 sequences encoding putative plastid-targeting proteins and 35 sequences of presumed kleptoplast transporters in the transcriptome of R. viridis. These genes originated in a wide range of algae other than Tetraselmis sp., the source of the kleptoplasts, suggesting a long history of repeated horizontal gene transfer events from different algal prey cells. Many of the kleptoplast proteins, as well as the protein-targeting system, in R. viridis were shared with members of the Euglenophyceae, providing evidence that the early evolutionary stages in the green alga-derived secondary plastids of euglenophytes also involved kleptoplasty.
Department of Biological Sciences Faculty of Science Hokkaido University Sapporo 060 0808 Japan
Department of Biology Graduate School of Science Kobe University Kobe 657 8501 Japan
Department of Parasitology Faculty of Science Charles University BIOCEV Prague 25250 Czech Republic
Zobrazit více v PubMed
Keeling P. J., The endosymbiotic origin, diversification and fate of plastids. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 729–748 (2010). PubMed PMC
Keeling P. J., The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu. Rev. Plant Biol. 64, 583–607 (2013). PubMed
Archibald J. M., Genomic perspectives on the birth and spread of plastids. Proc. Natl. Acad. Sci. U.S.A. 112, 10147–10153 (2015). PubMed PMC
Sibbald S. J., Archibald J. M., Genomic insights into plastid evolution. Genome Biol. Evol. 12, 978–990 (2020). PubMed PMC
Gibbs S. P., The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann. N. Y. Acad. Sci. 361, 193–208 (1981). PubMed
Douglas S. E., “Chloroplast origins and evolution” in The Molecular Biology of Cyanobacteria. Advances in Photosynthesis, Bryant D. A., Ed. (Springer, 1994), vol. 1, pp. 91–118.
Bhattacharya D., Archibald J. M., Weber A. P. M., Reyes-Prieto A., How do endosymbionts become organelles? Understanding early events in plastid evolution. Bioessays 29, 1239–1246 (2007). PubMed
Reyes-Prieto A., Weber A. P. M., Bhattacharya D., The origin and establishment of the plastid in algae and plants. Annu. Rev. Genet. 41, 147–168 (2007). PubMed
Howe C. J., Barbrook A. C., Nisbet R. E. R., Lockhart P. J., Larkum A. W. D., The origin of plastids. Phil. Trans. R. Soc. Lond. B: Biol. Sci. 363, 2675–2685 (2008). PubMed PMC
Yamaguchi A., Yubuki N., Leander B. S., Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: Description of R. viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evol. Biol. 12, 29 (2012). PubMed PMC
Rumpho M. E., Dastoor F. P., Manhart J. R., Lee J., “The kleptoplast” in The Structure and Function of Plastids, Advances in Photosynthesis and Respiration, Wise R. R., Hoober J. K., Eds. (Springer, 2007), vol. 23, pp. 451–473.
Rumpho M. E., Summer E. J., Green B. J., Fox T. C., Manhart J. R., Mollusc/algal chloroplast symbiosis: How can isolated chloroplasts continue to function for months in the cytosol of a sea slug in the absence of an algal nucleus? Zoology (Jena) 104, 303–312 (2001). PubMed
Maeda T., et al. , Chloroplast acquisition without the gene transfer in kleptoplastic sea slugs, Plakobranchus ocellatus. Elife 10, e60176 (2021). PubMed PMC
Kim M., Nam S. W., Shin W., Coats D. W., Park M. G., Dinophysis caudata (Dinophyceae) sequesters and retains plastids from the mixotrophic ciliate prey Mesodinium rubrum. J. Phycol. 48, 569–579 (2012). PubMed
Hehenberger E., Gast R. J., Keeling P. J., A kleptoplastidic dinoflagellate and the tipping point between transient and fully integrated plastid endosymbiosis. Proc. Natl. Acad. Sci. U.S.A. 116, 17934–17942 (2019). PubMed PMC
Yamada N., et al. , Discovery of a kleptoplastic ‘dinotom’ dinoflagellate and the unique nuclear dynamics of converting kleptoplastids to permanent plastids. Sci. Rep. 9, 10474 (2019). PubMed PMC
Hongo Y., Yabuki A., Fujikura K., Nagai S., Genes functioned in kleptoplastids of Dinophysis are derived from haptophytes rather than from cryptophytes. Sci. Rep. 9, 9009 (2019). PubMed PMC
Onuma R., et al. , Changes in the transcriptome, ploidy, and optimal light intensity of a cryptomonad upon integration into a kleptoplastic dinoflagellate. ISME J. 14, 2407–2423 (2020). PubMed PMC
Bolte K., et al. , Protein targeting into secondary plastids. J. Eukaryot. Microbiol. 56, 9–15 (2009), 10.1111/j.1550-7408.2008.00370.x. PubMed DOI
Durnford D. G., Gray M. W., Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Eukaryot. Cell 5, 2079–2091 (2006). PubMed PMC
Novák Vanclová A. M. G., et al. , Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. New Phytol. 225, 1578–1592 (2020). PubMed
The UniProt Consortium, UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019). PubMed PMC
Soukal P., et al. , Heterotrophic euglenid Rhabdomonas costata resembles its phototrophic relatives in many aspects of molecular and cell biology. Sci. Rep. 11, 13070 (2021). PubMed PMC
Záhonová K., et al. , Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Sci. Rep. 8, 1–15 (2018). PubMed PMC
Turmel M., Gagnon M.-C., O’Kelly C. J., Otis C., Lemieux C., The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol. Biol. Evol. 26, 631–648 (2009). PubMed
Hrdá Š., Fousek J., Szabová J., Hampl V., Vlček Č., The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids. PLoS One 7, e33746 (2012). PubMed PMC
Jackson C., Knoll A. H., Chan C. X., Verbruggen H., Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci. Rep. 8, 1523 (2018). PubMed PMC
Maruyama S., Suzaki T., Weber A. P. M., Archibald J. M., Nozaki H., Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. BMC Evol. Biol. 11, 105 (2011). PubMed PMC
Larkum A. W., Lockhart P. J., Howe C. J., Shopping for plastids. Trends Plant Sci. 12, 189–195 (2007). PubMed
Ponce-Toledo R. I., López-García P., Moreira D., Horizontal and endosymbiotic gene transfer in early plastid evolution. New Phytol. 224, 618–624 (2019). PubMed PMC
Tyra H. M., et al. , Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol. 8, R212 (2007). PubMed PMC
Bodył A., Did some red alga-derived plastids evolve via kleptoplastidy?A hypothesis. Biol. Rev. 93, 201–222 (2018). PubMed
Dorrell R. G., et al. , Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. Elife 6, e23717 (2017). PubMed PMC
Okamoto N., Inouye I., Hatena arenicola gen. et sp. nov., a katablepharid undergoing probable plastid acquisition. Protist 157, 401–419 (2006). PubMed
Song C., Murata K., Suzaki T., Intracellular symbiosis of algae with possible involvement of mitochondrial dynamics. Sci. Rep. 7, 1221 (2017). PubMed PMC
Higuchi R., Songa C., Hoshina R., Suzaki T., Endosymbiosis-related changes in ultrastructure and chemical composition of Chlorella variabilis (Archaeplastida, Chlorophyta) cell wall in Paramecium bursaria (Ciliophora, Oligohymenophorea). Eur. J. Protistol. 66, 149–155 (2018). PubMed
Takenaka S., et al. , Accumulation of trehalose as a compatible solute under osmotic stress in Euglena gracilis Z. J. Eukaryot. Microbiol. 44, 609–613 (1997).
Hodge J. E., Hofreiter B. T., "Determination of reducing sugars and carbohydrates" in Methods in Carbohydrate Chemistry, Whistler R. L., Wolfrom M. L., Eds. (Academic Press, 1962), vol. 1, pp. 380–394.
Kashiyama Y., et al. , Taming chlorophylls by early eukaryotes underpinned algal interactions and the diversification of the eukaryotes on the oxygenated Earth. ISME J. 13, 1899–1910 (2019). PubMed PMC
Andrews S., FastQC: A quality control tool for high throughput sequence data (2010). http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 13 January 2017.
Bolger A. M., Lohse M., Usade B., Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). PubMed PMC
Nurk S., et al. , Assembling genomes and mini-metagenomes from highly chimeric reads, Lecture Notes in Computer Science, in Research in Computational Molecular Biology. RECOMB 2013, Deng M., et al., Eds. (Springer, 2013), vol. 7821, pp. 158–170.
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J., Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). PubMed
Dierckxsens N., Mardulyn P., Smits G., NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45, e18 (2017). PubMed PMC
Liu C., et al. , CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics 13, 715 (2012). PubMed PMC
Wyman S. K., Jansen R. K., Boore J. L., Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20, 3252–3255 (2004). PubMed
Lohse M., Drechsel O., Kahlau S., Bock R., OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 41, W575–W581 (2013). PubMed PMC
Grabherr M. G., et al. , Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011). PubMed PMC
Seppey M., Manni M., Zdobnov E. M., "BUSCO: Assessing genome assembly and annotation completeness" in Gene Prediction. Methods in Molecular Biology, Kollmar M., Ed. (Humana, 2019), vol. 1962, pp. 227–245. PubMed
Ebenezer T. E., et al. , Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 17, 11 (2019). PubMed PMC
Petersen T. N., Brunak S., von Heijne G., Nielsen H., SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011). PubMed
Hiller K., Grote A., Scheer M., Munch R., Jahn D., PrediSi: Prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 32, W375–W379 (2004). PubMed PMC
Emanuelsson O., Nielsen H., von Heijne G., ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 8, 978–984 7(1999). PubMed PMC
Krogh A., Larsson B., von Heijne G., Sonnhammer E. L., Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305, 567–580 (2001). PubMed
Li W., Godzik A., Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006). PubMed
Katoh K., Standley D. M., "MAFFT: Iterative refinement and additional methods" in Multiple Sequence Alignment Methods, Methods in Molecular Biology, Russell D. J., Ed. (Humana Press, 2014), vol. 1079, pp. 131–146. PubMed
Criscuolo A., Gribaldo S., BMGE (Block mapping and gathering with entropy): A new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010). PubMed PMC
Nguyen L.-T., Schmidt H. A., von Haeseler A., Minh B. Q., IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015). PubMed PMC
Hoang D. T., Chernomor O., von Haeseler A., Minh B. Q., Vinh L. S., UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018). PubMed PMC
Karnkowska A., et al. , Data for: Euglenozoan kleptoplasty illuminates the early evolution of photoendosymbiosis. Dryad. Available at 10.5061/dryad.37pvmcvpn. Deposited 21 November 2022. PubMed DOI PMC
Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin
Euglenozoan kleptoplasty illuminates the early evolution of photoendosymbiosis