Structural Diversity of Copper(II) Complexes with 9-Deazahypoxanthine and Their in Vitro SOD-Like Activity
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26184182
PubMed Central
PMC4519932
DOI
10.3390/ijms160715954
PII: ijms160715954
Knihovny.cz E-resources
- Keywords
- 6-oxo-9-deazapurine, 9-deazahypoxanthine, X-ray crystal structure, copper(II) complexes, in vitro SOD-like activity,
- MeSH
- Biocompatible Materials chemistry metabolism MeSH
- Electrochemical Techniques MeSH
- Spectrometry, Mass, Electrospray Ionization MeSH
- Hypoxanthines chemistry MeSH
- Coordination Complexes chemistry metabolism MeSH
- Crystallography, X-Ray MeSH
- Copper chemistry MeSH
- Molecular Conformation MeSH
- Spectroscopy, Fourier Transform Infrared MeSH
- Superoxide Dismutase metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 9-deazahypoxanthine MeSH Browser
- Biocompatible Materials MeSH
- Hypoxanthines MeSH
- Coordination Complexes MeSH
- Copper MeSH
- Superoxide Dismutase MeSH
Two structurally different copper(II) complexes of the compositions [{Cu(9dhx)(H2O)3}2(µ-SO4)2] (1) and [Cu(9dhx)2(H2O)2(NO3)2]·H2O (2), involving 9-deazahypoxanthine (9dhx; 6-oxo-9-deazapurine; 9-deazahypoxanthine), have been prepared and characterized by elemental analysis, infrared and electronic spectroscopy, electrospray ionisation (ESI) mass spectrometry, thermogravimetric (TG) and differential thermal (DTA) analyses, and cyclic voltammetry. The X-ray structures of complexes 1 and [Cu(9dhx)2(H2O)2(NO3)2] (2a) revealed the distorted octahedral geometry in the vicinity of the copper(II) atoms, with the NO5 and N2O4 donor set, respectively. In the dimeric compound 1, the {Cu(9dhx)(H2O)3}2 units are bridged by sulfate groups with the Cu···Cu separation being 5.3446(2) Å. In both structures the 9dhx ligands are coordinated through the N3 atoms of the pyrimidine moieties. The SOD-like activity of complexes 1 and 2 was evaluated in vitro showing moderate effect, with the IC50 values equal to 18.20, and 53.33 μM, respectively.
See more in PubMed
Solomon E.I., Heppner D.E., Johnston E.M., Ginsbach J.W., Cirera J., Qayyum M., Kieber-Emmons M.T., Kjaergaard C.H., Hadt R.G., Tian L. Copper active sites in biology. Chem. Rev. 2014;114:3659–3853. doi: 10.1021/cr400327t. PubMed DOI PMC
Chrichton R.R. Biological Inorganic Chemistry: A New Introduction to Molecular Structure and Function. 2nd ed. Elsevier; Oxford, UK: 2012.
Linder M.C. Biochemistry of Copper. Plenum Press; New York, NY, USA: 1991.
Fridovich I. Superoxide dismutases. Annu. Rev. Biochem. 1975;44:147–159. doi: 10.1146/annurev.bi.44.070175.001051. PubMed DOI
Veni K.G., Usha B., Kumar D.M., Rao T.R. Alterations in serum SOD and CAT levels in patients with breast cancer. J. Exp. Sci. 2011;2:58–60.
Salminen A., Ojala J., Kaarniranta K., Kauppinen A. Mitochondrial dysfunction and oxidative stress activate inflammasomes: Impact on the aging process and age-related diseases. Cell. Mol. Life Sci. 2012;69:2999–3013. doi: 10.1007/s00018-012-0962-0. PubMed DOI PMC
Hendriks J.J.A., Teunissen C.E., de Vries H.E., Dijkstra C.D. Macrophages and neurodegeneration. Brain Res. Rev. 2005;48:185–195. doi: 10.1016/j.brainresrev.2004.12.008. PubMed DOI
Margaill I., Plotkine M., Lerouet D. Antioxidant strategies in the treatment of stroke. Free Radic. Biol. Med. 2005;39:429–443. doi: 10.1016/j.freeradbiomed.2005.05.003. PubMed DOI
Jay D., Hitomi H., Griendling K.K. Oxidative stress and diabetic cardiovascular complications. Free Radic. Biol. Med. 2006;40:183–192. doi: 10.1016/j.freeradbiomed.2005.06.018. PubMed DOI
Nathan C., Shiloh M.U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA. 2000;97:8841–8848. doi: 10.1073/pnas.97.16.8841. PubMed DOI PMC
Jackson A.C., Kammouni W., Zherebitskaya E., Fernyhough P. Role of oxidative stress in rabies virus infection of adult mouse dorsal root ganglion neurons. J. Virol. 2010;84:4697–4705. doi: 10.1128/JVI.02654-09. PubMed DOI PMC
Gupta-Elera G., Garrett A.R., Robison R.A., O’Neill K.L. The role of oxidative stress in prostate cancer. Eur. J. Cancer Prev. 2012;21:155–162. doi: 10.1097/CEJ.0b013e32834a8002. PubMed DOI
Belda R., Blasco S., Verdejo B., Jiménez H.R., Doménech-Carbó A., Soriano C., Latorre J., Terencio C., García-España E. Homo- and heterobinuclear Cu2+ and Zn2+ complexes of abiotic cyclic hexaazapyridinocyclophanes as SOD mimics. Dalton Trans. 2013;42:11194–11204. doi: 10.1039/c3dt51012c. PubMed DOI
Siddiqi Z.A., Shahid M., Khalid M., Kumar S. Antimicrobial and SOD activities of novel transition metal ternary complexes of iminodiacetic acid containing α-diimine as auxiliary ligand. Eur. J. Med. Chem. 2009;44:2517–2522. doi: 10.1016/j.ejmech.2009.01.025. PubMed DOI
Vančo J., Švajlenová O., Račanská E., Muselík J., Valentová J. Antiradical activity of different copper(II) Schiff base complexes and their effect on alloxan-induced diabetes. J. Trace Elem. Med. Biol. 2004;18:155–161. doi: 10.1016/j.jtemb.2004.07.003. PubMed DOI
Štarha P., Trávníček Z., Herchel R., Popa I., Suchý P., Vančo J. Dinuclear copper(II) complexes containing 6-(benzylamino)purines as bridging ligands: Synthesis, characterization, and in vitro and in vivo antioxidant activities. J. Inorg. Biochem. 2009;103:432–440. doi: 10.1016/j.jinorgbio.2008.12.009. PubMed DOI
Klanicová A., Trávníček Z., Vančo J., Popa I., Šindelář Z. Dinuclear copper(II) perchlorate complexes with 6-(benzylamino)purine derivatives: Synthesis, X-ray structure, magnetism and antiradical activity. Polyhedron. 2010;29:2582–2589. doi: 10.1016/j.poly.2010.06.007. DOI
Novotná R., Trávníček Z., Herchel R. SOD-Mimic Cu(II) dimeric complexes involving kinetin and its derivative: Preparation and characterization. Bioinorg. Chem. Appl. 2012;2012 doi: 10.1155/2012/704329. PubMed DOI PMC
Bantia S., Miller P.J., Parker C.D., Ananth S.L., Horn L.L., Kilpatrick J.M., Morris P.E., Hutchison T.L., Montgomery J.A., Sandhu J.S. Purine phosphorylase inhibitor BCX-1777 (Immucillin-H)–a novel potent and orally active immunosuppressive agent. Int. Immunopharmacol. 2001;1:1199–1210. doi: 10.1016/S1567-5769(01)00056-X. PubMed DOI
Dummer R., Duvic M., Scarisbrick J., Olsen E.A., Rozati S., Eggmann N., Oldinger S.M., Hutchinson K., Geskin L., Illidge T.M., et al. Final results of a multicenter phase II study of the purine nucleoside phosphorylase (PNP) inhibitor forodesine in patients with advanced cutaneous t-cell lymphomas (CTCL) (Mycosis fungoides and Sézary syndrome) Ann. Oncol. 2014;25:1807–1812. doi: 10.1093/annonc/mdu231. PubMed DOI
Gáliková J., Trávníček Z. Effect of different reaction conditions on the structural diversity of zinc (II) complexes with 9-deazahypoxanthine. Polyhedron. 2014;79:269–276. doi: 10.1016/j.poly.2014.05.008. DOI
Vančo J., Gáliková J., Hošek J., Dvořák Z., Paráková L., Trávníček Z. Gold(I) complexes of 9-deazahypoxanthine as selective antitumor and anti-inflammatory agents. PLoS ONE. 2014;9:e109901. doi: 10.1371/journal.pone.0109901. PubMed DOI PMC
Gáliková J., Hošek J., Trávníček Z. Synthesis, X-ray crystal structure and biological evaluation of zinc(II)-dichlorido complexes with 9-deazahypoxathine derivatives. Inorg. Chim. Acta. 2015;434:67–73. doi: 10.1016/j.ica.2015.05.013. DOI
Novotná R., Trávníček Z. Infinite ladder-like chains organized into a three-dimensional zigzag supra-molecular architecture in 9-deazahypoxanthine. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2013;C69:158–161. doi: 10.1107/S0108270112050767. PubMed DOI
Kamath V.P., Juarez-Brambila J.J., Morris C.B., Winslow C.D., Morris P.E., Jr. Development of a practical synthesis of a purine nucleoside phosphorylase inhibitor: BCX-4208. Org. Process Res. Dev. 2009;13:928–932. doi: 10.1021/op9001142. DOI
Geary W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 1971;7:81–122. doi: 10.1016/S0010-8545(00)80009-0. DOI
Nakamoto K., Margoshes M., Rundle R.E. Stretching frequencies as a function of distances in hydrogen bonds. J. Am. Chem. Soc. 1955;77:6480–6486. doi: 10.1021/ja01629a013. DOI
Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Orgametallic and Bioinorganic Chemistry. 5th ed. Wiley; New York, NY, USA: 1997.
Solomon E.I., Lever A.B.P. Inorganic Electronic Structure and Spectroscopy, Applications and Case Studies. Volume 2 Wiley; New York, NY, USA: 1999.
Allen F.H. The Cambridge Structural Database: A quarter of a million crystal structures and rising. Acta Crystallogr. Sect. B Struct. Sci. 2002;58:380–388. doi: 10.1107/S0108768102003890. PubMed DOI
Jitsukawa K., Harata M., Arii H., Sakurai H., Masuda H. SOD activities of the copper complexes with tripodal polypyridylamine ligands having a hydrogen bonding site. Inorg. Chim. Acta. 2001;324:108–116. doi: 10.1016/S0020-1693(01)00567-9. DOI
Zhou Y.H., Sun D.L., Tao J., Chen L.Q., Huang Y.F., Li Y.K., Cheng Y. Synthesis, crystal structure, and SOD-like activity of two copper(II) complexes with hydroxymethyl pendants. J. Coord. Chem. 2014;67:2393–2404. doi: 10.1080/00958972.2014.940335. DOI
Klanicová A., Houck J.D., Baran P., Trávníček Z. Synthesis, X-ray structures, properties and SOD-like activity of ternary copper(II) complexes showing the N4O2 coordination with a combination of monodentate and bidentate N-donor ligands. Inorg. Chim. Acta. 2012;384:47–53. doi: 10.1016/j.ica.2011.11.021. DOI
Bóka B., Myari A., Sóvágó I., Hadjiliadis N. Copper(II) and zinc(II) complexes of the peptides Ac-HisValHis-NH2 and Ac-HisValGlyAsp-NH2 related to the active site of the enzyme CuZnSOD. J. Inorg. Biochem. 2004;98:113–122. doi: 10.1016/j.jinorgbio.2003.09.012. PubMed DOI
Zoski C.G. Handbook of Electrochemistry. 1st ed. Elsevier; Oxford, UK: 2007.
Oxford Diffraction . CrysAlis RED and CrysAlis CCD Software (Ver. 1.171.33.52) Oxford Diffraction Ltd.; Abingdon, Oxfordshire, UK: 2009.
Sheldrick G.M. A short history of SHELX. Acta Crystallogr. 2008;A64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI
Brandenburg K. DIAMOND. Crystal Impact GbR; Bonn, Germany: 2011. Release 3.2i.