• This record comes from PubMed

Structural Diversity of Copper(II) Complexes with 9-Deazahypoxanthine and Their in Vitro SOD-Like Activity

. 2015 Jul 14 ; 16 (7) : 15954-70. [epub] 20150714

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Two structurally different copper(II) complexes of the compositions [{Cu(9dhx)(H2O)3}2(µ-SO4)2] (1) and [Cu(9dhx)2(H2O)2(NO3)2]·H2O (2), involving 9-deazahypoxanthine (9dhx; 6-oxo-9-deazapurine; 9-deazahypoxanthine), have been prepared and characterized by elemental analysis, infrared and electronic spectroscopy, electrospray ionisation (ESI) mass spectrometry, thermogravimetric (TG) and differential thermal (DTA) analyses, and cyclic voltammetry. The X-ray structures of complexes 1 and [Cu(9dhx)2(H2O)2(NO3)2] (2a) revealed the distorted octahedral geometry in the vicinity of the copper(II) atoms, with the NO5 and N2O4 donor set, respectively. In the dimeric compound 1, the {Cu(9dhx)(H2O)3}2 units are bridged by sulfate groups with the Cu···Cu separation being 5.3446(2) Å. In both structures the 9dhx ligands are coordinated through the N3 atoms of the pyrimidine moieties. The SOD-like activity of complexes 1 and 2 was evaluated in vitro showing moderate effect, with the IC50 values equal to 18.20, and 53.33 μM, respectively.

See more in PubMed

Solomon E.I., Heppner D.E., Johnston E.M., Ginsbach J.W., Cirera J., Qayyum M., Kieber-Emmons M.T., Kjaergaard C.H., Hadt R.G., Tian L. Copper active sites in biology. Chem. Rev. 2014;114:3659–3853. doi: 10.1021/cr400327t. PubMed DOI PMC

Chrichton R.R. Biological Inorganic Chemistry: A New Introduction to Molecular Structure and Function. 2nd ed. Elsevier; Oxford, UK: 2012.

Linder M.C. Biochemistry of Copper. Plenum Press; New York, NY, USA: 1991.

Fridovich I. Superoxide dismutases. Annu. Rev. Biochem. 1975;44:147–159. doi: 10.1146/annurev.bi.44.070175.001051. PubMed DOI

Veni K.G., Usha B., Kumar D.M., Rao T.R. Alterations in serum SOD and CAT levels in patients with breast cancer. J. Exp. Sci. 2011;2:58–60.

Salminen A., Ojala J., Kaarniranta K., Kauppinen A. Mitochondrial dysfunction and oxidative stress activate inflammasomes: Impact on the aging process and age-related diseases. Cell. Mol. Life Sci. 2012;69:2999–3013. doi: 10.1007/s00018-012-0962-0. PubMed DOI PMC

Hendriks J.J.A., Teunissen C.E., de Vries H.E., Dijkstra C.D. Macrophages and neurodegeneration. Brain Res. Rev. 2005;48:185–195. doi: 10.1016/j.brainresrev.2004.12.008. PubMed DOI

Margaill I., Plotkine M., Lerouet D. Antioxidant strategies in the treatment of stroke. Free Radic. Biol. Med. 2005;39:429–443. doi: 10.1016/j.freeradbiomed.2005.05.003. PubMed DOI

Jay D., Hitomi H., Griendling K.K. Oxidative stress and diabetic cardiovascular complications. Free Radic. Biol. Med. 2006;40:183–192. doi: 10.1016/j.freeradbiomed.2005.06.018. PubMed DOI

Nathan C., Shiloh M.U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA. 2000;97:8841–8848. doi: 10.1073/pnas.97.16.8841. PubMed DOI PMC

Jackson A.C., Kammouni W., Zherebitskaya E., Fernyhough P. Role of oxidative stress in rabies virus infection of adult mouse dorsal root ganglion neurons. J. Virol. 2010;84:4697–4705. doi: 10.1128/JVI.02654-09. PubMed DOI PMC

Gupta-Elera G., Garrett A.R., Robison R.A., O’Neill K.L. The role of oxidative stress in prostate cancer. Eur. J. Cancer Prev. 2012;21:155–162. doi: 10.1097/CEJ.0b013e32834a8002. PubMed DOI

Belda R., Blasco S., Verdejo B., Jiménez H.R., Doménech-Carbó A., Soriano C., Latorre J., Terencio C., García-España E. Homo- and heterobinuclear Cu2+ and Zn2+ complexes of abiotic cyclic hexaazapyridinocyclophanes as SOD mimics. Dalton Trans. 2013;42:11194–11204. doi: 10.1039/c3dt51012c. PubMed DOI

Siddiqi Z.A., Shahid M., Khalid M., Kumar S. Antimicrobial and SOD activities of novel transition metal ternary complexes of iminodiacetic acid containing α-diimine as auxiliary ligand. Eur. J. Med. Chem. 2009;44:2517–2522. doi: 10.1016/j.ejmech.2009.01.025. PubMed DOI

Vančo J., Švajlenová O., Račanská E., Muselík J., Valentová J. Antiradical activity of different copper(II) Schiff base complexes and their effect on alloxan-induced diabetes. J. Trace Elem. Med. Biol. 2004;18:155–161. doi: 10.1016/j.jtemb.2004.07.003. PubMed DOI

Štarha P., Trávníček Z., Herchel R., Popa I., Suchý P., Vančo J. Dinuclear copper(II) complexes containing 6-(benzylamino)purines as bridging ligands: Synthesis, characterization, and in vitro and in vivo antioxidant activities. J. Inorg. Biochem. 2009;103:432–440. doi: 10.1016/j.jinorgbio.2008.12.009. PubMed DOI

Klanicová A., Trávníček Z., Vančo J., Popa I., Šindelář Z. Dinuclear copper(II) perchlorate complexes with 6-(benzylamino)purine derivatives: Synthesis, X-ray structure, magnetism and antiradical activity. Polyhedron. 2010;29:2582–2589. doi: 10.1016/j.poly.2010.06.007. DOI

Novotná R., Trávníček Z., Herchel R. SOD-Mimic Cu(II) dimeric complexes involving kinetin and its derivative: Preparation and characterization. Bioinorg. Chem. Appl. 2012;2012 doi: 10.1155/2012/704329. PubMed DOI PMC

Bantia S., Miller P.J., Parker C.D., Ananth S.L., Horn L.L., Kilpatrick J.M., Morris P.E., Hutchison T.L., Montgomery J.A., Sandhu J.S. Purine phosphorylase inhibitor BCX-1777 (Immucillin-H)–a novel potent and orally active immunosuppressive agent. Int. Immunopharmacol. 2001;1:1199–1210. doi: 10.1016/S1567-5769(01)00056-X. PubMed DOI

Dummer R., Duvic M., Scarisbrick J., Olsen E.A., Rozati S., Eggmann N., Oldinger S.M., Hutchinson K., Geskin L., Illidge T.M., et al. Final results of a multicenter phase II study of the purine nucleoside phosphorylase (PNP) inhibitor forodesine in patients with advanced cutaneous t-cell lymphomas (CTCL) (Mycosis fungoides and Sézary syndrome) Ann. Oncol. 2014;25:1807–1812. doi: 10.1093/annonc/mdu231. PubMed DOI

Gáliková J., Trávníček Z. Effect of different reaction conditions on the structural diversity of zinc (II) complexes with 9-deazahypoxanthine. Polyhedron. 2014;79:269–276. doi: 10.1016/j.poly.2014.05.008. DOI

Vančo J., Gáliková J., Hošek J., Dvořák Z., Paráková L., Trávníček Z. Gold(I) complexes of 9-deazahypoxanthine as selective antitumor and anti-inflammatory agents. PLoS ONE. 2014;9:e109901. doi: 10.1371/journal.pone.0109901. PubMed DOI PMC

Gáliková J., Hošek J., Trávníček Z. Synthesis, X-ray crystal structure and biological evaluation of zinc(II)-dichlorido complexes with 9-deazahypoxathine derivatives. Inorg. Chim. Acta. 2015;434:67–73. doi: 10.1016/j.ica.2015.05.013. DOI

Novotná R., Trávníček Z. Infinite ladder-like chains organized into a three-dimensional zigzag supra-molecular architecture in 9-deazahypoxanthine. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2013;C69:158–161. doi: 10.1107/S0108270112050767. PubMed DOI

Kamath V.P., Juarez-Brambila J.J., Morris C.B., Winslow C.D., Morris P.E., Jr. Development of a practical synthesis of a purine nucleoside phosphorylase inhibitor: BCX-4208. Org. Process Res. Dev. 2009;13:928–932. doi: 10.1021/op9001142. DOI

Geary W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 1971;7:81–122. doi: 10.1016/S0010-8545(00)80009-0. DOI

Nakamoto K., Margoshes M., Rundle R.E. Stretching frequencies as a function of distances in hydrogen bonds. J. Am. Chem. Soc. 1955;77:6480–6486. doi: 10.1021/ja01629a013. DOI

Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Orgametallic and Bioinorganic Chemistry. 5th ed. Wiley; New York, NY, USA: 1997.

Solomon E.I., Lever A.B.P. Inorganic Electronic Structure and Spectroscopy, Applications and Case Studies. Volume 2 Wiley; New York, NY, USA: 1999.

Allen F.H. The Cambridge Structural Database: A quarter of a million crystal structures and rising. Acta Crystallogr. Sect. B Struct. Sci. 2002;58:380–388. doi: 10.1107/S0108768102003890. PubMed DOI

Jitsukawa K., Harata M., Arii H., Sakurai H., Masuda H. SOD activities of the copper complexes with tripodal polypyridylamine ligands having a hydrogen bonding site. Inorg. Chim. Acta. 2001;324:108–116. doi: 10.1016/S0020-1693(01)00567-9. DOI

Zhou Y.H., Sun D.L., Tao J., Chen L.Q., Huang Y.F., Li Y.K., Cheng Y. Synthesis, crystal structure, and SOD-like activity of two copper(II) complexes with hydroxymethyl pendants. J. Coord. Chem. 2014;67:2393–2404. doi: 10.1080/00958972.2014.940335. DOI

Klanicová A., Houck J.D., Baran P., Trávníček Z. Synthesis, X-ray structures, properties and SOD-like activity of ternary copper(II) complexes showing the N4O2 coordination with a combination of monodentate and bidentate N-donor ligands. Inorg. Chim. Acta. 2012;384:47–53. doi: 10.1016/j.ica.2011.11.021. DOI

Bóka B., Myari A., Sóvágó I., Hadjiliadis N. Copper(II) and zinc(II) complexes of the peptides Ac-HisValHis-NH2 and Ac-HisValGlyAsp-NH2 related to the active site of the enzyme CuZnSOD. J. Inorg. Biochem. 2004;98:113–122. doi: 10.1016/j.jinorgbio.2003.09.012. PubMed DOI

Zoski C.G. Handbook of Electrochemistry. 1st ed. Elsevier; Oxford, UK: 2007.

Oxford Diffraction . CrysAlis RED and CrysAlis CCD Software (Ver. 1.171.33.52) Oxford Diffraction Ltd.; Abingdon, Oxfordshire, UK: 2009.

Sheldrick G.M. A short history of SHELX. Acta Crystallogr. 2008;A64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI

Brandenburg K. DIAMOND. Crystal Impact GbR; Bonn, Germany: 2011. Release 3.2i.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...