The biosynthesis of the lincosamide antibiotics lincomycin A and celesticetin involves the pyridoxal-5'-phosphate (PLP)-dependent enzymes LmbF and CcbF, which are responsible for bifurcation of the biosynthetic pathways. Despite recognizing the same S-glycosyl-L-cysteine structure of the substrates, LmbF catalyses thiol formation through β-elimination, whereas CcbF produces S-acetaldehyde through decarboxylation-coupled oxidative deamination. The structural basis for the diversification mechanism remains largely unexplored. Here we conduct structure-function analyses of LmbF and CcbF. X-ray crystal structures, docking and molecular dynamics simulations reveal that active-site aromatic residues play important roles in controlling the substrate binding mode and the reaction outcome. Furthermore, the reaction selectivity and oxygen-utilization of LmbF and CcbF were rationally engineered through structure- and calculation-based mutagenesis. Thus, the catalytic function of CcbF was switched to that of LmbF, and, remarkably, both LmbF and CcbF variants gained the oxidative-amidation activity to produce an unnatural S-acetamide derivative of lincosamide.
TiO2 nanoparticles (NPs) are extensively used in various applications, highlighting the importance of ongoing research into their effects. This work belongs among rare whole-body inhalation studies investigating the effects of TiO2 NPs on mice. Unlike previous studies, the concentration of TiO2 NPs in the inhalation chamber (130.8 μg/m3) was significantly lower. This 11-week study on mice confirmed in vivo the presence of TiO2 NPs in lung macrophages and type II pneumocytes including their intracellular localization by using the electron microscopy and the state-of-the-art methods detecting NPs' chemical identity/crystal structure, such as the energy-dispersed X-ray spectroscopy (EDX), cathodoluminescence (CL), and detailed diffraction pattern analysis using powder nanobeam diffraction (PNBD). For the first time in inhalation study in vivo, the alterations in erythrocyte morphology with evidence of echinocytes and stomatocytes, accompanied by iron accumulation in spleen, liver, and kidney, are reported following NP's exposure. Together with the histopathological evidence of hyperaemia in the spleen and kidney, and haemosiderin presence in the spleen, the finding of NPs containing iron might suggest the increased decomposition of damaged erythrocytes. The detection of TiO2 NPs on erythrocytes through CL analysis confirmed their potential systemic availability. On the contrary, TiO2 NPs were not confirmed in other organs (spleen, liver, and kidney); Ti was detected only in the kidney near the detection limit.
- MeSH
- Administration, Inhalation MeSH
- Erythrocytes * drug effects pathology MeSH
- Inhalation Exposure * adverse effects MeSH
- Metal Nanoparticles * toxicity MeSH
- Mice MeSH
- Nanoparticles * toxicity MeSH
- Lung * drug effects metabolism pathology MeSH
- Toxicity Tests, Subchronic MeSH
- Titanium * toxicity pharmacokinetics administration & dosage MeSH
- Tissue Distribution MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
INTRODUCTION: Ziziphora clinopodioides subsp. bungeana (Juz.) Rech.f. is used in traditional medicine for various purposes. Previous phytochemical studies focused on phenolic compounds, but triterpenoids were almost overlooked. OBJECTIVE: The study focused on the isolation of compounds with dual antidiabetic activity from the aerial parts of Z. clinopodioides subsp. bungeana. MATERIALS AND METHODS: Separation of CHCl3-soluble fraction by silica gel column chromatography using different mobile phases and purification of compounds by semi-preparative HPLC or preparative TLC. The structures of pure compounds were elucidated by 1D and 2D NMR experiments along with HRMS. Compound 1 was additionally identified by the single crystal X-ray diffraction method. α-Glucosidase inhibitory assay and GLUT4 expression and translocation in C2C12 myotubes were conducted to evaluate antidiabetic potential of isolated compounds. RESULTS: This phytochemical study led to the isolation of 20 compounds, including a unique monoterpene diperoxy dimer (1). Compounds 7 and 9-11 displayed more potent α-glucosidase inhibitory activity (IC50 45.3-135.3 μM) than acarbose used as a positive control (IC50 264.7 μM), while only pomolic acid (5) increased GLUT4 translocation in C2C12 myotubes in a significant manner. CONCLUSION: Extensive chromatographic separation led to the isolation and identification of a unique monoterpene diperoxy dimer (1) from aerial parts of Z. clinopodioides subsp. bungeana. Some triterpenes inhibited α-glucosidase, another increased GLUT4 translocation. Although none of the isolated compounds demonstrated dual antidiabetic activity, selected triterpenes proved to be potent antidiabetic agents in vitro.
- MeSH
- alpha-Glucosidases metabolism MeSH
- Cell Line MeSH
- Lamiaceae * chemistry MeSH
- Hypoglycemic Agents * pharmacology chemistry isolation & purification MeSH
- Glycoside Hydrolase Inhibitors pharmacology isolation & purification chemistry MeSH
- Mice MeSH
- Plant Components, Aerial chemistry MeSH
- Glucose Transporter Type 4 metabolism MeSH
- Plant Extracts chemistry pharmacology MeSH
- Triterpenes * pharmacology chemistry isolation & purification MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Lens epithelium-derived growth factor p75 (LEDGF/p75), member of the hepatoma-derived growth-factor-related protein (HRP) family, is a transcriptional co-activator and involved in several pathologies including HIV infection and malignancies such as MLL-rearranged leukemia. LEDGF/p75 acts by tethering proteins to the chromatin through its integrase binding domain. This chromatin interaction occurs between the PWWP domain of LEDGF/p75 and nucleosomes carrying a di- or trimethylation mark on histone H3 Lys36 (H3K36me2/3). Our aim is to rationally devise small molecule drugs capable of inhibiting such interaction. To bootstrap this development, we resorted to X-ray crystallography-based fragment screening (FBS-X). Given that the LEDGF PWWP domain crystals were not suitable for FBS-X, we employed crystals of the closely related PWWP domain of paralog HRP-2. As a result, as many as 68 diverse fragment hits were identified, providing a detailed sampling of the H3K36me2/3 pocket pharmacophore. Subsequent structure-guided fragment expansion in three directions yielded multiple compound series binding to the pocket, as verified through X-ray crystallography, nuclear magnetic resonance and differential scanning fluorimetry. Our best compounds have double-digit micromolar affinity and optimally sample the interactions available in the pocket, judging by the Kd-based ligand efficiency exceeding 0.5 kcal/mol per non-hydrogen atom. Beyond π-stacking within the aromatic cage of the pocket and hydrogen bonding, the best compounds engage in a σ-hole interaction between a halogen atom and a conserved water buried deep in the pocket. Notably, the binding pocket in LEDGF PWWP is considerably smaller compared to the related PWWP1 domains of NSD2 and NSD3 which feature an additional subpocket and for which nanomolar affinity compounds have been developed recently. The absence of this subpocket in LEDGF PWWP limits the attainable affinity. Additionally, these structural differences in the H3K36me2/3 pocket across the PWWP domain family translate into a distinct selectivity of the compounds we developed. Our top-ranked compounds are interacting with both homologous LEDGF and HRP-2 PWWP domains, yet they showed no affinity for the NSD2 PWWP1 and BRPF2 PWWP domains which belong to other PWWP domain subfamilies. Nevertheless, our developed compound series provide a strong foundation for future drug discovery targeting the LEDGF PWWP domain as they can further be explored through combinatorial chemistry. Given that the affinity of H3K36me2/3 nucleosomes to LEDGF/p75 is driven by interactions within the pocket as well as with the DNA-binding residues, we suggest that future compound development should target the latter region as well. Beyond drug discovery, our compounds can be employed to devise tool compounds to investigate the mechanism of LEDGF/p75 in epigenetic regulation.
- MeSH
- Small Molecule Libraries chemistry pharmacology chemical synthesis MeSH
- Crystallography, X-Ray MeSH
- Humans MeSH
- Intercellular Signaling Peptides and Proteins metabolism chemistry MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Protein Domains MeSH
- Drug Design * MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Several novel copper (II) complexes of reduced Schiff bases containing fluoride substituents were prepared and structurally characterized by single-crystal X-ray diffraction. The complexes exhibited diverse structures, with the central atom in distorted tetrahedral geometry. The biological effects of the products were evaluated, specifically their cytotoxicity, antimicrobial, and antiurease activities, as well as affinity for albumin (BSA) and DNA (ct-DNA). The complexes showed marked cytotoxic activities in the HepG2 hepatocellular carcinoma cell line, considerably higher than the standard cisplatin. The cytotoxicity depended significantly on the substitution pattern. The best activity was observed in the complex with a trifluoromethyl group in position 4 of the benzene ring-the dichloro[(±)-trans-N,N'-bis-(4-trifluoromethylbenzyl)-cyclohexane-1,2-diamine]copper (II) complex, whose activity (IC50 28.7 μM) was higher than that of the free ligand and markedly better than the activity of the standard cisplatin (IC50 336.8 μM). The same complex also showed the highest antimicrobial effect in vitro. The affinity of the complexes towards bovine serum albumin (BSA) and calf thymus DNA (ct-DNA) was established as well, indicating only marginal differences between the complexes. In addition, all complexes were shown to be excellent inhibitors of the enzyme urease, with the IC50 values in the lower micromolar region.
- MeSH
- Hep G2 Cells MeSH
- DNA metabolism chemistry MeSH
- Fluorine chemistry MeSH
- Coordination Complexes * pharmacology chemistry chemical synthesis MeSH
- Humans MeSH
- Ligands MeSH
- Copper * chemistry MeSH
- Antineoplastic Agents * pharmacology chemistry MeSH
- Schiff Bases * chemistry pharmacology MeSH
- Serum Albumin, Bovine chemistry MeSH
- Urease antagonists & inhibitors metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
The insulin-linked polymorphic region is a variable number of tandem repeats region of DNA in the promoter of the insulin gene that regulates transcription of insulin. This region is known to form the alternative DNA structures, i-motifs and G-quadruplexes. Individuals have different sequence variants of tandem repeats and although previous work investigated the effects of some variants on G-quadruplex formation, there is not a clear picture of the relationship between the sequence diversity, the DNA structures formed, and the functional effects on insulin gene expression. Here we show that different sequence variants of the insulin linked polymorphic region form different DNA structures in vitro. Additionally, reporter genes in cellulo indicate that insulin expression may change depending on which DNA structures form. We report the crystal structure and dynamics of an intramolecular i-motif, which reveal sequences within the loop regions forming additional stabilising interactions that are critical to formation of stable i-motif structures. The outcomes of this work reveal the detail in formation of stable i-motif DNA structures, with potential for rational based drug design for compounds to target i-motif DNA.
- MeSH
- DNA * chemistry genetics MeSH
- G-Quadruplexes * MeSH
- Insulin * chemistry genetics MeSH
- Nucleic Acid Conformation MeSH
- Crystallography, X-Ray MeSH
- Humans MeSH
- Models, Molecular MeSH
- Nucleotide Motifs MeSH
- Polymorphism, Genetic MeSH
- Promoter Regions, Genetic * MeSH
- Genes, Reporter MeSH
- Base Sequence MeSH
- Tandem Repeat Sequences genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Our previously reported HDAC6 inhibitor (HDAC6i) Marbostat-100 (4) has provided many arguments for further clinical evaluation. By the substitution of the acidic hydrogen of 4 for different carbon residues, we were able to generate an all-carbon stereocenter, which significantly improves the hydrolytic stability of the inhibitor. Further asymmetric synthesis has shown that the (S)-configured inhibitors preferentially bind to HDAC6. This led to the highly selective and potent methyl-substituted derivative S-29b, which elicited a long-lasting tubulin hyperacetylation in MV4-11 cells. Finally, a crystal structure of the HDAC6/S-29b complex provided mechanistic explanation for the high potency and stereoselectivity of synthesized compound series.
- MeSH
- Histone Deacetylase 6 * antagonists & inhibitors metabolism MeSH
- Histone Deacetylase Inhibitors * chemistry pharmacology chemical synthesis MeSH
- Carbolines * chemistry pharmacology chemical synthesis MeSH
- Crystallography, X-Ray MeSH
- Humans MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Morpholines chemical synthesis chemistry pharmacology MeSH
- Cell Line, Tumor MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Rhomboid intramembrane serine proteases have been implicated in several pathologies, and emerge as attractive pharmacological target candidates. The most potent and selective rhomboid inhibitors available to date are peptidyl α-ketoamides, but their selectivity for diverse rhomboid proteases and strategies to modulate it in relevant contexts are poorly understood. This gap, together with the lack of suitable in vitro models, hinders ketoamide development for relevant eukaryotic rhomboid enzymes. Here we explore the structure-activity relationship principles of rhomboid inhibiting ketoamides by medicinal chemistry and enzymatic in vitro and in-cell assays with recombinant rhomboid proteases GlpG, human mitochondrial rhomboid PARL and human RHBDL2. We use X-ray crystallography in lipidic cubic phase to understand the binding mode of one of the best ketoamide inhibitors synthesized here containing a branched terminal substituent bound to GlpG. In addition, to extend the interpretation of the co-crystal structure, we use quantum mechanical calculations and quantify the relative importance of interactions along the inhibitor molecule. These combined experimental analyses implicates that more extensive exploration of chemical space at the prime side is unexpectedly powerful for the selectivity of rhomboid inhibiting ketoamides. Together with variations in the peptide sequence at the non-prime side, or its non-peptidic alternatives, this strategy enables targeted tailoring of potent and selective ketoamides towards diverse rhomboid proteases including disease-relevant ones such as PARL and RHBDL2.
- MeSH
- Amides * chemistry pharmacology chemical synthesis MeSH
- Protease Inhibitors pharmacology chemistry chemical synthesis metabolism MeSH
- Crystallography, X-Ray MeSH
- Humans MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Monogenic diabetes is a gateway to precision medicine through molecular mechanistic insight. Hepatocyte nuclear factor 1A (HNF-1A) and HNF-4A are transcription factors that engage in crossregulatory gene transcription networks to maintain glucose-stimulated insulin secretion in pancreatic β cells. Variants in the HNF1A and HNF4A genes are associated with maturity-onset diabetes of the young (MODY). Here, we explored 4 variants in the P2-HNF4A promoter region: 3 in the HNF-1A binding site and 1 close to the site, which were identified in 63 individuals from 21 families of different MODY disease registries across Europe. Our goal was to study the disease causality for these variants and to investigate diabetes mechanisms on the molecular level. We solved a crystal structure of HNF-1A bound to the P2-HNF4A promoter and established a set of techniques to probe HNF-1A binding and transcriptional activity toward different promoter variants. We used isothermal titration calorimetry, biolayer interferometry, x-ray crystallography, and transactivation assays, which revealed changes in HNF-1A binding or transcriptional activities for all 4 P2-HNF4A variants. Our results suggest distinct disease mechanisms of the promoter variants, which can be correlated with clinical phenotype, such as age of diagnosis of diabetes, and be important tools for clinical utility in precision medicine.
- MeSH
- Diabetes Mellitus, Type 2 * genetics metabolism MeSH
- Hepatocyte Nuclear Factor 1-alpha * genetics metabolism MeSH
- Hepatocyte Nuclear Factor 4 * genetics metabolism MeSH
- Crystallography, X-Ray MeSH
- Humans MeSH
- Promoter Regions, Genetic * genetics MeSH
- Gene Expression Regulation MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Schistosomiasis, caused by a parasitic blood fluke of the genus Schistosoma, is a global health problem for which new chemotherapeutic options are needed. We explored the scaffold of gallinamide A, a natural peptidic metabolite of marine cyanobacteria that has previously been shown to inhibit cathepsin L-type proteases. We screened a library of 19 synthetic gallinamide A analogs and identified nanomolar inhibitors of the cathepsin B-type protease SmCB1, which is a drug target for the treatment of schistosomiasis mansoni. Against cultured S. mansoni schistosomula and adult worms, many of the gallinamides generated a range of deleterious phenotypic responses. Imaging with a fluorescent-activity-based probe derived from gallinamide A demonstrated that SmCB1 is the primary target for gallinamides in the parasite. Furthermore, we solved the high-resolution crystal structures of SmCB1 in complex with gallinamide A and its two analogs and describe the acrylamide covalent warhead and binding mode in the active site. Quantum chemical calculations evaluated the contribution of individual positions in the peptidomimetic scaffold to the inhibition of the target and demonstrated the importance of the P1' and P2 positions. Our study introduces gallinamides as a powerful chemotype that can be exploited for the development of novel antischistosomal chemotherapeutics.
- MeSH
- Cathepsin B * antagonists & inhibitors metabolism MeSH
- Crystallography, X-Ray MeSH
- Models, Molecular MeSH
- Schistosoma mansoni * enzymology drug effects MeSH
- Schistosomicides pharmacology chemistry MeSH
- Protein Binding MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH