Molecular and Cytogenetic Characterization of Wild Musa Species

. 2015 ; 10 (8) : e0134096. [epub] 20150807

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26252482

The production of bananas is threatened by rapid spreading of various diseases and adverse environmental conditions. The preservation and characterization of banana diversity is essential for the purposes of crop improvement. The world's largest banana germplasm collection maintained at the Bioversity International Transit Centre (ITC) in Belgium is continuously expanded by new accessions of edible cultivars and wild species. Detailed morphological and molecular characterization of the accessions is necessary for efficient management of the collection and utilization of banana diversity. In this work, nuclear DNA content and genomic distribution of 45S and 5S rDNA were examined in 21 diploid accessions recently added to ITC collection, representing both sections of the genus Musa. 2C DNA content in the section Musa ranged from 1.217 to 1.315 pg. Species belonging to section Callimusa had 2C DNA contents ranging from 1.390 to 1.772 pg. While the number of 45S rDNA loci was conserved in the section Musa, it was highly variable in Callimusa species. 5S rRNA gene clusters were found on two to eight chromosomes per diploid cell. The accessions were genotyped using a set of 19 microsatellite markers to establish their relationships with the remaining accessions held at ITC. Genetic diversity done by SSR genotyping platform was extended by phylogenetic analysis of ITS region. ITS sequence data supported the clustering obtained by SSR analysis for most of the accessions. High level of nucleotide diversity and presence of more than two types of ITS sequences in eight wild diploids pointed to their origin by hybridization of different genotypes. This study significantly expands the number of wild Musa species where nuclear genome size and genomic distribution of rDNA loci is known. SSR genotyping identified Musa species that are closely related to the previously characterized accessions and provided data to aid in their classification. Sequence analysis of ITS region provided further information about evolutionary relationships between individual accessions and suggested that some of analyzed accessions were interspecific hybrids and/or backcross progeny.

Zobrazit více v PubMed

Simmonds NW, Shepherd K. Taxonomy and origin of cultivated bananas. Botanical Journal of Linnean Society. 1955; 55: 302–312.

Carreel F. Etude de la diversité génétique des bananiers (genre Musa) à l'aide des margueurs RFLP, PhD Thesis, Institut National Agronomique, Paris-Grignon; 1994.

Carreel F, Fauré S, González de León D, Lagoda PJL, Perrier X, Bakry F, et al. Evaluation of the genetic diversity in diploid bananas (Musa sp.). Genet Sel Evol. 1994; 26 (Suppl 1): 125s–136s.

Katholieke Universiteit Leuven in Belgium. Available: http://www.crop-diversity.org/banana.

International Plant Genetic Resources Institute-International Network for the Improvement of Banana and Plantain/Centre de Coopération internationale en recherche agronomique pour le développement [IPGRI-INIBAP/CIRAD]. 1996. Description for Banana (Musa spp.) Int. Network for the Improvement of Banana and Plantain, Montpellier, France; Centre de coopération int. en recherche agronomique pour le développement, Montpellier, France; International Plant Genetic Resources Institute Press, Rome.

Cheesman EE. Classification of the bananas. II. The genus Musa L. Kew Bulletin 2: 106–117; 1947.

Argent GCG. The wild bananas of Papua New Guinea. Notes Royal Botanic Garden Edinburgh. 1976; 35: 77–114.

Wong C, Kiew R, Argent GCG, Set O, Lee SK, Gan YY. Assessment of the validity of the sections in Musa (Musaceae) using AFLP. Ann Bot-London. 2002; 90: 231–238. PubMed PMC

Bartoš J, Alkhimova O, Doleželová M, De Langhe E, Doležel J. Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae): taxonomic implications. Cytogenet Genome Res. 2005; 109: 50–57. PubMed

Li L-F, Häkkinen M, Yuan Y-M, Hao G, Ge X-J. Molecular phylogeny and systematics of the banana family (Musaceae) inferred from multiple nuclear and chloroplast DNA fragments, with a special reference to the genus Musa . Mol Phylogenet and Evol. 2010; 57: 1–10. PubMed

Liu AZ, Kress WJ, Li DZ. Phylogenetic analyses of the banana family (Musaceae) based on nuclear ribosomal (ITS) and chloroplast (trnL-F) evidence. Taxon. 2010; 59: 20–28.

Christelová P, Valárik M, Hřibová E, Van den Houwe I, Channeliere S, Roux N, et al. A platform for efficient genotyping in Musa using microsatellite markers. AoB PLANTS. 2011; plr024, 10.1093/aobpla/plr024 PubMed DOI PMC

Häkkinen M. Reappraisal of sectional taxonomy in Musa (Musaceae). Taxon. 2013; 62: 809–813.

Doležel J, Doleželová M, Novák FJ. Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Plantarum. 1994; 36: 351–357.

Lysák MA, Doleželová M, Horry JP, Swennen R, Doležel J. Flow cytometric analysis of nuclear DNA content in Musa . Theor Appl Genet. 1999; 98: 1344–1350.

Čížková J, Hřibová E, Humplíková L, Christelová P, Suchánková P, Doležel J. Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.). PLoS ONE. 2013; 8: e54808 10.1371/journal.pone.0054808 PubMed DOI PMC

Doleželová M, Valárik M, Swennen R, Horry JP, Doležel J. Physical mapping of the 18S-25S and 5S ribosomal RNA genes in diploid bananas. Biol Plantarum. 1998; 41: 497–505.

Osuji JO, Crouch J, Harrison G, Heslop-Harrison JS. Molecular cytogenetics of Musa species, cultivars and hybrids: location of 18S-5.8S-25S and 5S rDNA and telomere-like sequences. Ann Bot-London. 1998; 82: 243–248.

Pillay M, Ogundiwin E, Nwakanma DC, Ude G, Tenkouano A. Analysis of genetic diversity and relationships in East African banana germplasm. Theor Appl Genet. 2001; 102: 965–970.

Gawel NJ, Jarret RL, Whittemore AP. Restriction fragment length polymorphism (RFLP)-based phylogenetic analysis of Musa . Theor Appl Genet 1992; 84: 286–290. 10.1007/BF00229484 PubMed DOI

Nwakanma DC, Pillay M, Okoli BE, Tenkouano A. Sectional relationships in the genus Musa L. inferred from the PCR-RFLP of organelle DNA sequences. Theor Appl Genet. 2003; 107: 850–856. PubMed

Wong C, Kiew R, Loh JP, et al. Genetic diversity of wild banana Musa acuminata Colla in Malaysia as evidenced by AFLP. Ann Bot-London. 2001; 88: 1017–1025.

Ude G, Pillay M, Nwakanma D, Tenkouano A. Analysis of genetic diversity and sectional relationships in Musa using AFLP markers. Theor Appl Genet. 2002; 104: 1239–1245. PubMed

Risterucci AM, Hippolyte I, Perrier X, Xia L, Caig V, Evers M, et al. Development and assessment of Diversity ArraysTechnology for high-throughput DNA analysis in Musa . Theor Appl Genet. 2009; 119: 1093–1103. 10.1007/s00122-009-1111-5 PubMed DOI

This P, Jung A, Boccaccii P, Borrego J, Botta R, Costantini L, et al. Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet. 2004; 109: 1448–1458. PubMed

Hayden MJ, Nguyen TM, Waterman A, McMichael GL, Chalmers KJ. Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Mol breeding. 2007; 21: 271–281.

Pessoa-Filho M, Beló A, Alcochete AAN, Rangel PHN, Ferreira ME. A set of multiplex panels of microsatellite markers for rapid molecular characterization of rice accessions. BMC Plant Biol. 2007; 7: 23 PubMed PMC

Crouch HK, Crouch JH, Jarret RL, Cregan PB, Ortiz R. Segregation of microsatellite loci in haploid and diploid gametes of Musa . Crop Sci. 1998; 38: 211–217.

Lagoda PJL, Noyer JL, Dambier D, Baurens FC, Grapin A, Lanaud C. Sequence tagged microsatellite site (STMS) markers in the Musaceae. Mol Ecol. 1998; 7: 657–666. PubMed

Hippolyte I, Bakry F, Sequin M, Gardes L, Rivallan R, Risterucci AM, et al. A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas. BMC Plant Biol. 2010; 10: 65 10.1186/1471-2229-10-65 PubMed DOI PMC

Musa Genotyping Centre was established at the Institute of Experimental Botany in Olomouc, Czech Republic. Available: http://musagenomics.org/genomics-tools/genotyping-centre/.

Alvarez I, Wendel JF. Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol. 2003; 29: 417–434. PubMed

Hřibová E, Čížková J, Christelová P, Taudien S, De Langhe E, Doležel J. The ITS-5.8S-ITS2 sequence region in the Musaceae: structure, diversity and use in molecular phylogeny. PLoS ONE. 2011; 6: e17863 10.1371/journal.pone.0017863 PubMed DOI PMC

Otto F. 1990. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA In: Crissman HA, Darzynkiewicz Z, ed. Methods in Cell Biology. Academic Press, New York. PubMed

Doležel J, Bartoš J, Voglmayr H, Greilhuber J. Nuclear DNA content and genome size of trout and human. Cytometry A. 2003; 51: 127–128. PubMed

Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA. 1973; 70: 3321–3323. PubMed PMC

Liu K, Muse SV. PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics. 2005; 21: 2128–2129. PubMed

Michener CD, Sokal RR. A quantitative approach to a problem of classification. Evolution 1957; 11: 490–499.

FigTree v1.4.0. Available: http://tree.bio.ed.ac.uk/software/figtree/.

Nwakanma DC, Pillay M, Okoli BE, Tenkouano A. PCR-RFLP of the ribosomal DNA internal transcribed spacers (ITS) provides markers for the A and B genomes in Musa L. Theor Appl Genet. 2003; 108: 154–159. PubMed

Staden R. The Staden sequence analysis package. Mol Biotechnol. 1996; 5: 233–241. PubMed

Eckert AJ, Liechty JD, Tearse BR, Pande, Neale DB. DnaSAM: Software to perform neutrality testing for large datasets with complex null models. Mol Ecol Resour. 2010; 10: 542–545. 10.1111/j.1755-0998.2009.02768.x PubMed DOI

Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006; 23: 254–267. PubMed

Valárik M, Šimková H, Hřibová E, Šafář J, Doleželová M, Doležel J. Isolation, characterization and chromosome localization of repetitive DNA sequences in bananas (Musa spp.). Chromosome Res. 2002; 10: 89–100. PubMed

Harpke D, Peterson A. 5.8S motifs for the identification of pseudogenic ITS regions. Botany. 2008; 86: 300–305.

Kamaté K, Brown S, Durand P, Bureau JM, De Nay D, Trinh TH. Nuclear DNA content and base composition in 28 taxa of Musa . Genome 2001; 44: 622–627. PubMed

Shepherd K. Cytogenetics of the genus Musa (International Network for the Improvement of Banana and Plantain, Montpellier). 1999.

Häkkinen M, Suchánková P, Doleželová M, Hřibová E, Doležel J. Karyological observations in Musa beccarii var. hottana (Musaceae). Acta Phytotax Geobot. 2007; 58: 112–118.

Simmonds NW. The evolution of the Bananas. Longmans, London. 1962.

Bekele E, Shigeta M. Phylogenetic relationships between Ensete and Musa species as revealed by the trnT trnF region of cpDNA. Genet Resour Crop Ev. 2011; 58: 259–269.

Kovařík A, Matyášek R, Lim KY, Skalická K, Koukalová B, Knapp S, et al. Concerted evolution of 18–5.8-26S rDNA repeats in Nicotiana allotetraploids. Biol J Linn Soc. 2004; 82: 615–625.

Lim KY, Matyášek R, Kovařík A, Leitch A. Genome evolution in allotetraploid Nicotiana . Biol J Linn Soc. 2004; 82: 599–606.

Kovařík A, Pires JC, Leitch AR, Lim KY, Sherwood AM, Matyasek R, et al. Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics. 2005; 169: 931–944. PubMed PMC

De Langhe E, Hřibová E, Carpentier S, Doležel J, Swennen R. Did backcrossing contribute to the origin of hybrid edible bananas? Ann Bot-London. 2010; 106: 849–857. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...