Advances in the Molecular Cytogenetics of Bananas, Family Musaceae
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
19-20303S
Czech Science Foundation
LTT19009
Ministry of Education, Youth, and Sports of the Czech Republic
PubMed
35214815
PubMed Central
PMC8879896
DOI
10.3390/plants11040482
PII: plants11040482
Knihovny.cz E-zdroje
- Klíčová slova
- BAC clones, DNA repeats, chromosomes, flow cytometry, fluorescence in situ hybridization, karyotyping, oligo painting, rRNA genes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The banana is a staple food crop and represents an important trade commodity for millions of people living in tropical and subtropical countries. The most important edible banana clones originated from natural crosses between diploid Musa balbisiana and various subspecies of M. acuminata. It is worth mentioning that evolution and speciation in the Musaceae family were accompanied by large-scale chromosome structural changes, indicating possible reasons for lower fertility or complete sterility of these vegetatively propagated clones. Chromosomal changes, often accompanied by changes in genome size, are one of the driving forces underlying speciation in plants. They can clarify the genomic constitution of edible bananas and shed light on their origin and on diversification processes in members of the Musaceae family. This article reviews the development of molecular cytogenetic approaches, ranging from classical fluorescence in situ hybridization (FISH) using common cytogenetic markers to oligo painting FISH. We discuss differences in genome size and chromosome number across the Musaceae family in addition to the development of new chromosome-specific cytogenetic probes and their use in genome structure and comparative karyotype analysis. The impact of these methodological advances on our knowledge of Musa genome evolution at the chromosomal level is demonstrated. In addition to citing published results, we include our own new unpublished results and outline future applications of molecular cytogenetics in banana research.
Zobrazit více v PubMed
Häkkinen M. Reappraisal of sectional taxonomy in Musa (Musaceae) Taxon. 2013;62:809–813. doi: 10.12705/624.3. DOI
Janssens S.B., Vandelook F., de Langhe E., Verstraete B., Smets E., van den Houwe I., Swennen R. Evolutionary dynamics and biogeography of Musaceae reveal a correlation between the diversification of the banana family and the geological and climatic history of Southeast Asia. New Phytol. 2016;210:1453–1465. doi: 10.1111/nph.13856. PubMed DOI PMC
FAOSTAT Agriculture Organization of the United Nations, FAO. 2019. [(accessed on 5 June 2021)]. Available online: http://www.fao.org/home/en/
Cheesman E.E. Classification of the bananas. The genus Ensete Horan. Kew Bull. 1947;2:97–117. doi: 10.2307/4109206. DOI
International Plant Genetic Resources Institute-International Network for the Improvement of Banana and Plantain/Centre de Coopération internationale en recherche agronomique pour le développement [IPGRI-INIBAP/CIRAD] Description for Banana (Musa spp.) Int. Network for the Improvement of Banana and Plantain; Montpellier, France: Centre de coopération int. en recherche agronomique pour le développement; Montpellier, France: International Plant Genetic Resources Institute Press; Rome, Italy: 1996.
Argent G.C.G. The wild bananas of Papua New Guinea. Notes R. Bot. Gard. Edinb. 1976;35:77–114.
Carreel F., Fauré S., de León D.G., Lagoda P.J.L., Perrier X., Bakry F., Dumontcel H.T., Lanaud C., Horry J.P. Evaluation of the genetic diversity in diploid bananas (Musa sp.) Genet. Sel. Evol. 1994;26:125–136. doi: 10.1186/1297-9686-26-S1-S125. DOI
Čížková J., Hřibová E., Humplíková L., Christelová P., Suchánková P., Doležel J. Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.) PLoS ONE. 2013;8:e54808. doi: 10.1371/journal.pone.0054808. PubMed DOI PMC
Christelová P., de Langhe E., Hřibová E., Čížková J., Sardos J., Hušáková M., van den houwe I., Sutanto A., Kepler A.K., Swennen R., et al. Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodivers. Conserv. 2017;26:801–824. doi: 10.1007/s10531-016-1273-9. DOI
Němečková A., Christelová P., Čížková J., Nyine M., van den houwe I., Svačina R., Uwimana B., Swennen R., Doležel J., Hřibová E. Molecular and cytogenetic study of East African Highland Banana. Front. Plant. Sci. 2018;9:1371. doi: 10.3389/fpls.2018.01371. PubMed DOI PMC
De Langhe E., Vrydaghs L., de Maret P., Perrier X., Denham T.P. Why bananas matter: An introduction to the history of banana domestication. Ethnobot. Res. Appl. 2009;7:165–177. doi: 10.17348/era.7.0.165-177. DOI
Perrier X., de Langhe E., Donohue M., Lentfer C., Vrydaghs L., Bakry F., Carreel F., Hippolyte I., Horry J.P., Jenny C., et al. Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc. Natl. Acad. Sci. USA. 2011;108:11311–11318. doi: 10.1073/pnas.1102001108. PubMed DOI PMC
Simmonds N.W., Shepherd K. The taxonomy and origins of the cultivated bananas. J. Linn. Soc. Bot. 1955;55:302–312. doi: 10.1111/j.1095-8339.1955.tb00015.x. DOI
Bennett M.D., Johnston S., Hodnett G.L., Price H.J. Allium cepa L. cultivars from four continents compared by flow cytometry show nuclear DNA constancy. Ann. Bot. 2000;85:351–357. doi: 10.1006/anbo.1999.1071. DOI
Loureiro J., Trávníček P., Rauchová J., Urfus T., Vit P., Štech M., Castro S., Suda J. The use of flow cytometry in the biosystematics, ecology and population biology of homoploid plants. Preslia. 2010;82:3–21.
Doležel J., Bartoš J., Voglmayr H., Greilhuber J. Nuclear DNA content and genome size of trout and human. Cytometry A. 2003;51:127–128. doi: 10.1002/cyto.a.10013. PubMed DOI
Doležel J., Doleželová M., Novák F.J. Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana) Biol. Plant. 1994;36:351–357. doi: 10.1007/BF02920930. DOI
Lysák M.A., Doleželová M., Horry J.P., Swennen R., Doležel J. Flow cytometric analysis of nuclear DNA content in Musa. Theor. Appl. Genet. 1999;98:1344–1350. doi: 10.1007/s001220051201. DOI
D′Hont A., Goy A.P., Jenny C., Noyer J.L., Baurens F.C., Lagoda P., Carreel F. Investigation of the Complex Genome Structure of Cultivated Banana (Musa spp.) by Flow Cytometry, Genomic DNA In Situ Hybridisation and Repeated Sequence Analysis. Boyce Thompson Institute for Plant Research; New York, NY, USA: 1999.
Bartoš J., Alkhimova O., Doleželová M., de Langhe E., Doležel J. Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae): Taxonomic implications. Cytogenet. Genome Res. 2005;109:50–57. doi: 10.1159/000082381. PubMed DOI
Čížková J., Hřibová E., Christelová P., van den Houwe I., Häkkinen M., Roux N., Swennen R., Doležel J. Molecular and cytogenetic characterization of wild Musa species. PLoS ONE. 2015;10:e0134096. doi: 10.1371/journal.pone.0134096. PubMed DOI PMC
Roux N., Toloza A., Radecki Z., Zapata-Arias F.J., Doležel J. Rapid detection of aneuploidy in Musa using flow cytometry. Plant Cell Rep. 2003;21:483–490. doi: 10.1007/s00299-002-0512-6. PubMed DOI
MacDaniels L.H. A Study of the Fe’i Banana and its Distribution With Reference to Polynesian Migrations. Bernice P. Bishop Museum; Honolulu, HI, USA: 1947. pp. 1–56.
Gouy M., Guindon S., Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 2010;27:221–224. doi: 10.1093/molbev/msp259. PubMed DOI
Doleželová M., Valárik M., Swennen R., Horry J.P., Doležel J. Physical mapping of the 18S–25S and 5S ribosomal RNA genes in diploid bananas. Biol. Plant. 1998;41:497–505. doi: 10.1023/A:1001880030275. DOI
Osuji J.O., Crouch J., Harrison G., Heslop-Harrison J.S. Molecular cytogenetics of Musa species, cultivars and hybrids: Location of 18S–5.8S–25S and 5S rDNA and telomere-like sequences. Ann. Bot. 1998;82:243–248. doi: 10.1006/anbo.1998.0674. DOI
Valárik M., Šimková H., Hřibová E., Šafář J., Doleželová M., Doležel J. Isolation, characterization and chromosome localization of repetitive DNA sequences in bananas (Musa spp.) Chromosome Res. 2002;10:89–100. doi: 10.1023/A:1014945730035. PubMed DOI
Sandoval J.A., Côte F.X., Escoute J. Chromosome number variations in micropropagated true-to-type and off-type banana plants (Musa AAA Grande Naine cv.) In Vitro Cell. Dev. Biol. Plant. 1996;32:14–17. doi: 10.1007/BF02823007. DOI
Shepherd K., da Silva K.M. Mitotic instability in banana varieties. Aberrations in conventional triploid plants. Fruits. 1996;51:99–103.
Pardue M.L., Gall J.G. Chromosomal localization of mouse satellite DNA. Science. 1970;168:1356–1358. doi: 10.1126/science.168.3937.1356. PubMed DOI
Arrighi F.E., Hsu T.C. Localization of heterochromatin in human chromosomes. Cytogenet. Genome Res. 1971;10:81–86. doi: 10.1159/000130130. PubMed DOI
Comings D.E. Mechanisms of chromosome banding and implications for chromosome structure. Ann. Rev. Genet. 1978;12:25–46. doi: 10.1146/annurev.ge.12.120178.000325. PubMed DOI
Gill B.S., Friebe B., Endo T.R. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum) Genome. 1991;34:830–839. doi: 10.1139/g91-128. DOI
Gill B.S., Kimber G. Recognition of translocations and alien chromosome transfers in wheat by the giemsa C-banding technique. Crop. Sci. 1977;17:264–266. doi: 10.2135/cropsci1977.0011183X001700020008x. DOI
Song Y.C., Liu L.H., Ding Y., Tian X.B., Yao Q., Meng L., He C.R., Xu M.S. Comparisons of G-banding patterns in six species of the Poaceae. Hereditas. 1994;121:31–38. doi: 10.1111/j.1601-5223.1994.00031.x. DOI
Lim K.B., Wennekes J., de Jong H., Jacobsen E., Tuyl J.M. Karyotype analysis of Lilium longiflorum and Lilium rubellum by chromosome banding and fluorescence in situ hybridisation. Genome. 2001;44:911–918. doi: 10.1139/g01-066. PubMed DOI
Langer-Safer P.R., Levine M., Ward D.C. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc. Natl. Acad. Sci. USA. 1982;79:4381–4385. doi: 10.1073/pnas.79.14.4381. PubMed DOI PMC
Jiang J.M., Gill B.S. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome. 2006;49:1057–1068. doi: 10.1139/g06-076. PubMed DOI
Koo D.H., Zhao H., Jiang J. Chromatin-associated transcripts of tandemly repetitive DNA sequences revealed by RNA-FISH. Chromosome Res. 2016;24:467–480. doi: 10.1007/s10577-016-9537-5. PubMed DOI
Křivánková A., Kopecký D., Stočes Š., Doležel J., Hřibová E. Repetitive DNA: A versatile tool for karyotyping in Festuca pratensis Huds. Cytogenet. Genome Res. 2017;151:96–105. doi: 10.1159/000462915. PubMed DOI
Ruban A., Badaeva E.D. Evolution of the S-genomes in Triticum-Aegilops alliance: Evidences from chromosome analysis. Front. Plant Sci. 2018;9:1756. doi: 10.3389/fpls.2018.01756. PubMed DOI PMC
Deng H., Tang G., Xu N., Gao Z., Lin L., Liang D., Xia H., Deng Q., Wang J., Cai Z., et al. Integrated karyotypes of diploid and tetraploid Carrizo Citrange (Citrus sinensis L. Osbeck × Poncirus trifoliata L. Raf.) as determined by dequential multicolor fluorescence in situ hybridization with tandemly repeated DNA sequences. Front. Plant Sci. 2020;11:569. doi: 10.3389/fpls.2020.00569. PubMed DOI PMC
Lysák M.A., Fransz P.F., Ali H.B.M., Schubert I. Chromosome painting in A. thaliana. Plant J. 2001;28:689–697. doi: 10.1046/j.1365-313x.2001.01194.x. PubMed DOI
Bielski W., Książkiwicz M., Šimoníková D., Hřibová E., Susek K., Naganowska B. The puzzling fate of a lupin chromosome revealed by reciprocal oligo-FISH and BAC FISH mapping. Genes. 2020;11:e1489. doi: 10.3390/genes11121489. PubMed DOI PMC
Jiang J., Gill B.S. Different species-specific chromosome translocations in Triticum timopheevii and T. turgidum support the diphyletic origin of polyploid wheats. Chromosom. Res. 1994;2:59–64. doi: 10.1007/BF01539455. PubMed DOI
Hřibová E., Doleželová M., Doležel J. Localization of BAC clones on mitotic chromosomes of Musa acuminata using fluorescence in situ hybridization. Biol. Plant. 2008;52:445–452. doi: 10.1007/s10535-008-0089-1. DOI
Zwyrtková J., Němečková A., Čížková J., Holušová K., Kapustová V., Svačina R., Kopecký D., Till B.J., Doležel J., Hřibová E. Comparative analyses of DNA repeats and identification of a novel Fesreba centromeric element in fescues and ryegrasses. BMC Plant Biol. 2020;20:280. doi: 10.1186/s12870-020-02495-0. PubMed DOI PMC
Danilova T.V., Friebe B., Gill B.S. Single-copy gene Fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma. 2012;121:597–611. doi: 10.1007/s00412-012-0384-7. PubMed DOI
Karafiátová M., Bartoš J., Doležel J. Localization of Low-Copy DNA Sequences on Mitotic Chromosomes by FISH. In: Kianian S., Kianian P., editors. Plant Cytogenetics. Methods in Molecular Biology. Volume 1429. Humana Press; New York, NY, USA: 2016. pp. 49–64. PubMed DOI
Said M., Hřibová E., Danilova T.V., Karafiátová M., Čížková J., Friebe B., Doležel J., Gill B.S., Vrána J. The Agropyron cristatum karyotype, chromosome structure and crossgenome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theor. Appl. Genet. 2018;131:2213–2227. doi: 10.1007/s00122-018-3148-9. PubMed DOI PMC
Badaeva E.D., Friebe B., Gill B.S. Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S–26S ribosomal RNA gene families in diploid species. Genome. 1996;39:1150–1158. doi: 10.1139/g96-145. PubMed DOI
Hasterok R., Jenkins G., Langdon T., Jones R.N., Maluszynska J. Ribosomal DNA is an effective marker of Brassica chromosomes. Theor. Appl. Genet. 2001;103:486–490. doi: 10.1007/s001220100653. DOI
Liu B., Davis T.M. Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae) BMC Plant Biol. 2011;11:157. doi: 10.1186/1471-2229-11-157. PubMed DOI PMC
Šimoníková D., Němečková A., Karafiátová M., Uwimana B., Swennen R., Doležel J., Hřibová E. Chromosome painting facilitates anchoring reference genome sequence to chromosomes in situ and integrated karyotyping in banana (Musa spp.) Front. Plant Sci. 2019;10:1503. doi: 10.3389/fpls.2019.01503. PubMed DOI PMC
Pedersen C., Langridge P. Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome. 1997;40:589–593. doi: 10.1139/g97-077. PubMed DOI
Badaeva E.D., Amosova A.V., Goncharov N.P., Macas J., Ruban A.S., Grechishnikova I.V., Zoshchuk S.A., Houben A. A Set of Cytogenetic Markers Allows the Precise Identification of All A-Genome Chromosomes in Diploid and Polyploid Wheat. Cytogenet. Genome Res. 2015;146:71–79. doi: 10.1159/000433458. PubMed DOI
Liu W., Rouse M., Friebe B., Jin Y., Gill B., Pumphrey M.O. Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosom. Res. 2011;19:669–682. doi: 10.1007/s10577-011-9226-3. PubMed DOI
Balint-Kurti P., Clendennen S., Doleželová M., Valárik M., Doležel J., Beetham P.R., May G.D. Identification and chromosomal localization of the monkey retrotransposon in Musa sp. Mol. Gen. Genet. 2000;263:908–915. doi: 10.1007/s004380000265. PubMed DOI
Hřibová E., Doleželová M., Town C.D., Macas J., Doležel J. Isolation and characterization of the highly repeated fraction of the banana genome. Cytogenet. Genome Res. 2007;119:268–274. doi: 10.1159/000112073. PubMed DOI
Hřibová E., Neumann P., Matsumoto T., Roux N., Macas J., Doležel J. Repetitive part of the banana (Musa acuminata) genome investigated by lowdepth 454 sequencing. BMC Plant Biol. 2010;10:204. doi: 10.1186/1471-2229-10-204. PubMed DOI PMC
Novák P., Hřibová E., Neumann P., Koblížková A., Doležel J., Macas J. Genome-wide analysis of repeat diversity across the family Musaceae. PLoS ONE. 2014;9:e98918. doi: 10.1371/journal.pone.0098918. PubMed DOI PMC
Neumann P., Navrátilová A., Koblížková A., Kejnovský E., Hřibová E., Hobza R., Widmer A., Doležel J., Macas J. Plant centromeric retrotransposoms: A structural and cytogenetic perspective. Mob. DNA. 2011;2:4. doi: 10.1186/1759-8753-2-4. PubMed DOI PMC
Jiang J.M., Gill B.S., Wang G.L., Ronald P.C., Ward D.C. Metaphase and interphase fluorescence in-situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc. Nat. Acad. Sci. USA. 1995;92:4487–4491. doi: 10.1073/pnas.92.10.4487. PubMed DOI PMC
Lapitan N.L.V., Brown S.E., Kennard W., Stephens J.L., Knudson D.L. FISH physical mapping with barley BAC clones. Plant J. 1997;11:149–156. doi: 10.1046/j.1365-313X.1997.11010149.x. DOI
Kim J.S., Childs K.L., Islam-Faridi M.N., Menz M.A., Klein R.R., Klein P.E., Price H.J., Mullet J.E., Stelly D.M. Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome. 2002;45:402–412. doi: 10.1139/g01-141. PubMed DOI
Idziak D., Hazuka I., Poliwczak B., Wiszynska A., Wolny E., Hasterok R. Insight into the karyotype evolution of Brachypodium species using comparative chromosome barcoding. PLoS ONE. 2014;9:e93503. doi: 10.1371/journal.pone.0093503. PubMed DOI PMC
Vilarinhos A., Carreel F., Rodier M., Hippolyte I., Benabdelmouna A., Triaire D., Bakry F. Abstracts of Plant and Animal Genomes XIVth Conference. Sherago International; San Diego, CA, USA: 2006. Characterization of translocations in banana by FISH of BAC clones anchored to a genetic map.
De Capdeville G., Souza M.T., Jr., Szinay D., Diniz L.E.C., Wijnker E., Swennen R., Kema G.H.J., de Jong H. The potential of high-resolution BAC-FISH in banana breeding. Euphytica. 2009;166:431–443. doi: 10.1007/s10681-008-9830-2. DOI
D’Hont A., Denoeud F., Aury J.M., Baurens F.C., Carreel F., Garsmeur O., Noel B., Bocs S., Droc G., Rouard M., et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature. 2012;488:213–217. doi: 10.1038/nature11241. PubMed DOI
Martin G., Carreel F., Coriton O., Hervouet C., Cardi C., Derouault P., Roques D., Salmon F., Rouard M., Sardos J., et al. Evolution of the banana genome (Musa acuminata) is impacted by large chromosomal translocations. Mol. Biol. Evol. 2017;34:2140–2152. doi: 10.1093/molbev/msx164. PubMed DOI PMC
Martin G., Baurens F.C., Hervouet C., Salmon F., Delos J.M., Labadie K., Perdereau A., Mournet P., Blois L., Dupouy M., et al. Chromosome reciprocal translocations have accompanied subspecies evolution in bananas. Plant J. 2020;104:1698–1711. doi: 10.1111/tpj.15031. PubMed DOI PMC
Jiang J. Fluorescence in situ hybridization in plants: Recent developments and future applications. Chromosom. Res. 2019;27:153–165. doi: 10.1007/s10577-019-09607-z. PubMed DOI
Qu M., Li K., Han Y., Chen L., Li Z., Han Y. Integrated karyotyping of woodland strawberry (Fragaria vesca) with oligopaint FISH probes. Cytogenet. Genome Res. 2017;153:158–164. doi: 10.1159/000485283. PubMed DOI
Bačovský V., Čegan R., Šimoníková D., Hřibová E., Hobza R. The formation of sex chromosomes in Silene latifolia and S. dioica was accompanied by multiple chromosomal rearrangements. Front. Plant Sci. 2020;11:205. doi: 10.3389/fpls.2020.00205. PubMed DOI PMC
Han Y., Zhang T., Thammapichai P., Weng Y., Jiang J. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics. 2015;200:771–779. doi: 10.1534/genetics.115.177642. PubMed DOI PMC
Liu G., Zhang T. Single copy oligonucleotide fluorescence in situ hybridization probe design platforms: Development, application and evolution. Int. J. Mol. Sci. 2021;22:7124. doi: 10.3390/ijms22137124. PubMed DOI PMC
Hou L., Xu M., Zhang T., Xu Z., Wang W., Zhang J., Yu M., Ji W., Zhu C., Gong Z., et al. Chromosome painting and its applications in cultivated and wild rice. BMC Plant Biol. 2018;18:110. doi: 10.1186/s12870-018-1325-2. PubMed DOI PMC
Meng Z., Zhang Z.L., Yan T.Y., Lin Q.F., Wang Y., Huang W., Huang Y., Li Z., Yu Q., Wang J., et al. Comprehensively characterizing the cytological features of Saccharum spontaneum by the development of a complete set of chromosome-specific oligo probes. Front. Plant. Sci. 2018;9:1624. doi: 10.3389/fpls.2018.01624. PubMed DOI PMC
Meng Z., Han J., Lin Y., Zhao Y., Lin Q., Ma X., Wang J., Zhang M., Zhang L., Yang Q., et al. Characterization of a Saccharum spontaneum with a basic chromosome number of x = 10 provides new insights on genome evolution in genus Saccharum. Theoret. Appl. Genet. 2020;133:187–199. doi: 10.1007/s00122-019-03450-w. PubMed DOI
Albert P.S., Zhang T., Semrau K., Rouillard J.M., Kao Y.H., Wang C.R., Danilova T.V., Jiang J., Birchler J.A. Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proc. Natl. Acad. Sci. USA. 2019;116:1679–1685. doi: 10.1073/pnas.1813957116. PubMed DOI PMC
Do Vale Martins L., Yu F., Zhao H., Dennison T., Lauter N., Wang H., Deng Z., Thompson A., Semrau K., Rouilard J.M., et al. Meiotic crossovers characterized by haplotype-specific chromosome painting in maize. Nat. Commun. 2019;10:4604. doi: 10.1038/s41467-019-12646-z. PubMed DOI PMC
Liu X., Sun S., Wu Y., Zhou Y., Gu S., Yu H., Yi C., Gu M., Jiang J., Liu B., et al. Dual-color oligo-FISH can reveal chromosomal variations and evolution in Oryza species. Plant J. 2020;101:112–121. doi: 10.1111/tpj.14522. PubMed DOI
Braz G.T., Martins L.D., Zhang T., Albert P.S., Birchler J.A., Jiang J. A universal chromosome identification system for maize and wild Zea species. Chromosome Res. 2020;28:183–194. doi: 10.1007/s10577-020-09630-5. PubMed DOI
Song X., Song R., Zhou J., Yan W., Zhang T., Sun H., Xiao J., Wu Y., Xi M., Lou Q., et al. Development and application of oligonucleotide-based chromosome painting for chromosome 4D of Triticum aestivum L. Chromosome Res. 2020;28:171–182. doi: 10.1007/s10577-020-09627-0. PubMed DOI
Braz G.T., He L., Zhao H., Zhang T., Semrau K., Rouillard J.M., Torres G.A., Jiang J. Comparative oligo-FISH mapping: An efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics. 2018;208:513–523. doi: 10.1534/genetics.117.300344. PubMed DOI PMC
He L., Braz G.T., Torres G.A., Jiang J.M. Chromosome painting in meiosis reveals pairing of specific chromosomes in polyploid Solanum species. Chromosoma. 2018;127:505–513. doi: 10.1007/s00412-018-0682-9. PubMed DOI
Do Vale Martins L., de Oliveira Bustamante F., da Silva Oliveira A.R., da Costa A.F., de Lima Feitoza L., Liang Q., Zhao H., Benko-Iseppon A.M., Munoz-Amatriaín M., Pedrosa-Harand A., et al. BAC- and oligo-FISH mapping reveals chromosome evolution among Vigna angularis, V. unguiculata, and Phaseolus vulgaris. Chromosoma. 2021;130:133–147. doi: 10.1007/s00412-021-00758-9. PubMed DOI
Martin G., Baurens F.C., Droc G., Rouard M., Cenci A., Kilian A., Hastie A., Doležel J., Aury J.B., Alberti A., et al. Improvement of the banana “Musa acuminata” reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics. 2016;17:243. doi: 10.1186/s12864-016-2579-4. PubMed DOI PMC
Šimoníková D., Němečková A., Čížková J., Brown A., Swennen R., Doležel J., Hřibová E. Chromosome painting in cultivated bananas and their wild relatives (Musa spp.) reveals differences in chromosome structure. Int. J. Mol. Sci. 2020;21:7915. doi: 10.3390/ijms21217915. PubMed DOI PMC
Schwarzacher T., Leitch A.R., Bennett M.D., Heslop-Harrison J.S. In situ localization of parental genomes in a wide hybrid. Ann. Bot. 1989;64:315–324. doi: 10.1093/oxfordjournals.aob.a087847. DOI
Haider Ali S., Ramanna M., Jacobsen E., Visser R.G.F. Genome differentiation between Lycopersicon esculentum and L. pennellii as revealed by genomic in situ hybridization. Euphytica. 2002;127:227–234. doi: 10.1023/A:1020282311843. DOI
Snowdon R.J. Cytogenetics and genome analysis in Brassica crops. Chromosome Res. 2007;15:85–95. doi: 10.1007/s10577-006-1105-y. PubMed DOI
Benavente E., Cifuentes M., Dusautoir J.C., David J. The use of cytogenetic tools for studies in the crop-to-wild gene transfer scenario. Cytogenet. Genome Res. 2008;120:384–395. doi: 10.1159/000121087. PubMed DOI
Silva G.S., Souza M.M. Genomic in situ hybridization in plants. Genet. Mol. Res. 2013;12:2953–2965. doi: 10.4238/2013.August.12.11. PubMed DOI
Kopecký D., Šimoníková D., Ghesquière M., Doležel J. Stability of genome composition and recombination between homoeologous chromosomes in Festulolium (Festuca × Lolium) cultivars. Cytogenet. Genome Res. 2017;151:106–114. doi: 10.1159/000458746. PubMed DOI
Parokonny A.S., Marshall J.A., Bennett M.D., Cocking E.C., Davey M.R., Power J.B. Homoeologous pairing and recombination in backcross derivatives of tomato somatic hybrids [Lycopersicon esculentum (+) L. peruvianum] Theor. Appl. Genet. 1997;94:713–723. doi: 10.1007/s001220050470. DOI
D’Hont A., Paget-Goy A., Escoute J., Carreel F. The interspecific genome structure of cultivated banana, Musa spp. revealed by genomic DNA in situ hybridization. Theor. Appl. Genet. 2000;100:177–183. doi: 10.1007/s001220050024. DOI
Osuji J.O., Harrisson G., Crouch J., Heslop-Harrison J.S. Identification of the genomic constitution of Musa L. lines (Bananas, Plantains and hybrids) using molecular cytogenetics. Ann. Bot. 1997;80:787–793. doi: 10.1006/anbo.1997.0516. DOI
Jeridi M., Bakry F., Escoute J., Fondi E., Carreel F., Ferchichi A., D’Hont A., Rodier-Goud M. Homoeologous chromosome pairing between the A and B genomes of Musa spp. revealed by genomic in situ hybridization. Ann. Bot. 2011;108:975–981. doi: 10.1093/aob/mcr207. PubMed DOI PMC