The Puzzling Fate of a Lupin Chromosome Revealed by Reciprocal Oligo-FISH and BAC-FISH Mapping
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33322080
PubMed Central
PMC7764521
DOI
10.3390/genes11121489
PII: genes11121489
Knihovny.cz E-zdroje
- Klíčová slova
- FISH, chromosome evolution, comparative-mapping, cytogenetics, karyotype evolution, lupin, oligo-painting, oligonucleotide probes, wild species,
- MeSH
- chromozomy rostlin genetika MeSH
- genom rostlinný * MeSH
- hybridizace in situ fluorescenční MeSH
- Lupinus genetika MeSH
- mapování chromozomů * MeSH
- umělé bakteriální chromozomy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Old World lupins constitute an interesting model for evolutionary research due to diversity in genome size and chromosome number, indicating evolutionary genome reorganization. It has been hypothesized that the polyploidization event which occurred in the common ancestor of the Fabaceae family was followed by a lineage-specific whole genome triplication (WGT) in the lupin clade, driving chromosome rearrangements. In this study, chromosome-specific markers were used as probes for heterologous fluorescence in situ hybridization (FISH) to identify and characterize structural chromosome changes among the smooth-seeded (Lupinus angustifolius L., Lupinus cryptanthus Shuttlew., Lupinus micranthus Guss.) and rough-seeded (Lupinus cosentinii Guss. and Lupinus pilosus Murr.) lupin species. Comparative cytogenetic mapping was done using FISH with oligonucleotide probes and previously published chromosome-specific bacterial artificial chromosome (BAC) clones. Oligonucleotide probes were designed to cover both arms of chromosome Lang06 of the L. angustifolius reference genome separately. The chromosome was chosen for the in-depth study due to observed structural variability among wild lupin species revealed by BAC-FISH and supplemented by in silico mapping of recently released lupin genome assemblies. The results highlighted changes in synteny within the Lang06 region between the lupin species, including putative translocations, inversions, and/or non-allelic homologous recombination, which would have accompanied the evolution and speciation.
Zobrazit více v PubMed
Gepts P., Beavis W.D., Brummer E.C., Shoemaker R.C., Stalker H.T., Weeden N.F., Young N.D. Legumes as a model plant family. genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol. 2005;137:1228–1235. doi: 10.1104/pp.105.060871. PubMed DOI PMC
Doyle J.J., Luckow M.A. The rest of the iceberg. legume diversity and evolution in a phylogenetic context. Plant Physiol. 2003;131:900–910. doi: 10.1104/pp.102.018150. PubMed DOI PMC
Schmid R., Lewis G., Schrire B., Mackinder B., Lock M. Legumes of the world. TAXON. 2006;55:251. doi: 10.2307/25065563. DOI
Bertioli D., Moretzsohn M.C., Madsen L.H., Sandal N., Leal-Bertioli S.C.M., Guimarães P.M., Hougaard B.K., Fredslund J., Schauser L., Nielsen A.M., et al. An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genom. 2009;10:45. doi: 10.1186/1471-2164-10-45. PubMed DOI PMC
Schmutz J., Cannon S.B., Schlueter J.A., Ma J., Mitros T., Nelson W., Hyten D.L., Song Q., Thelen J.J., Cheng J., et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463:178–183. doi: 10.1038/nature08670. PubMed DOI
Soltis D.E., Visger C.J., Marchant D.B., Soltis P.S. Polyploidy: Pitfalls and paths to a paradigm. Am. J. Bot. 2016;103:1146–1166. doi: 10.3732/ajb.1500501. PubMed DOI
Cannon S.B., McKain M.R., Harkess A., Nelson M.N., Dash S., Deyholos M.K., Peng Y., Joyce B., Stewart C.N., Rolf M., et al. Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Mol. Biol. Evol. 2015;32:193–210. doi: 10.1093/molbev/msu296. PubMed DOI PMC
Drummond C.S., Eastwood R.J., Miotto S.T.S., Hughes C.E. Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): Testing for key innovation with incomplete Taxon sampling. Syst. Biol. 2012;61:443–460. doi: 10.1093/sysbio/syr126. PubMed DOI PMC
LPWG A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: The Legume Phylogeny Working Group (LPWG) TAXON. 2017;66:44–77. doi: 10.12705/661.3. DOI
Ren R., Wang H., Guo C., Zhang N., Zeng L., Chen Y., Zhang X., Qi J. Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Mol. Plant. 2018;11:414–428. doi: 10.1016/j.molp.2018.01.002. PubMed DOI
Petterson D.S. The use of Lupins in feeding systems—Review. Asian-Australas. J. Anim. Sci. 2000;13:861–882. doi: 10.5713/ajas.2000.861. DOI
Lucas M.M., Stoddard F.L., Annicchiarico P., Frias J., Emartinez-Villaluenga C., Esussmann D., Duranti M.M., Eseger A., Zander P., Pueyo J. The future of lupin as a protein crop in Europe. Front. Plant Sci. 2015;6:705. doi: 10.3389/fpls.2015.00705. PubMed DOI PMC
Xu W., Zhang Q., Yuan W., Xu F., Aslam M.M., Miao R., Li Y., Wang Q., Li X., Zhang X., et al. The genome evolution and low-phosphorus adaptation in white lupin. Nat. Commun. 2020;11:1–13. doi: 10.1038/s41467-020-14891-z. PubMed DOI PMC
Iqbal M.M., Erskine W., Berger J.D., Udall J.A., Nelson M.N. Genomics of Yellow Lupin (Lupinus luteus L.) Springer Science and Business Media LLC; Berlin, Germany: 2020. pp. 151–159.
Hufnagel B., Marques A., Soriano A., Marquès L., Divol F., Doumas P., Sallet E., Mancinotti D., Carrère S., Marande W., et al. High-quality genome sequence of white lupin provides insight into soil exploration and seed quality. Nat. Commun. 2020;11:1–12. doi: 10.1038/s41467-019-14197-9. PubMed DOI PMC
Wyrwa K., Książkiewicz M., Koczyk G., Szczepaniak A., Podkowiński J., Naganowska B. A tale of two families: Whole genome and segmental duplications underlie glutamine synthetase and phosphoenolpyruvate carboxylase diversity in narrow-leafed Lupin (Lupinus angustifolius L.) Int. J. Mol. Sci. 2020;21:2580. doi: 10.3390/ijms21072580. PubMed DOI PMC
Susek K., Bielski W., Wyrwa K., Hasterok R., Jackson S.A., Wolko B., Naganowska B. Impact of chromosomal rearrangements on the interpretation of Lupin Karyotype evolution. Genes. 2019;10:259. doi: 10.3390/genes10040259. PubMed DOI PMC
Zhou G., Jian J., Wang P., Li C., Tao Y., Li X., Renshaw D., Clements J., Sweetingham M., Yang H. Construction of an ultra-high density consensus genetic map, and enhancement of the physical map from genome sequencing in Lupinus angustifolius. Theor. Appl. Genet. 2018;131:209–223. doi: 10.1007/s00122-017-2997-y. PubMed DOI
Gladstones J. Distribution, origin, taxonomy, history and importance. In: Gladstones J.S., Atkins C.A., Hamblin J., editors. Lupins as Crop Plants: Biology, Production, and Utilization. CAB International; Wallingford, CT, USA: 1998. pp. 1–36.
Pazy B., Heyn C., Herrnstadt I., Plitmann U. Studies in populations of the old world Lupinus species. I. chromosomes of the East Mediterranean lupines. Isr. J. Bot. 1977
Naganowska B., Wolko B., Śliwińska E., Kaczmarek Z. Nuclear DNA content variation and species relationships in the genus Lupinus (Fabaceae) Ann. Bot. 2003;92:349–355. doi: 10.1093/aob/mcg145. PubMed DOI PMC
Masterson J. Stomatal size in fossil plants: Evidence for polyploidy in majority of angiosperms. Science. 1994;264:421–424. doi: 10.1126/science.264.5157.421. PubMed DOI
Plitmann U., Pazy B. Cytogeographical distribution of the Old World Lupinus. Webbia. 1984;38:531–540. doi: 10.1080/00837792.1984.10670323. DOI
Gladstones J. Lupins of the Mediterranean Region and Africa. Western Australian Department of Agriculture; Kensington, Australia: 1974.
Mahé F., Pascual H., Coriton O., Huteau V., Perris A.N., Misset M.-T., Ainouche A. New data and phylogenetic placement of the enigmatic Old World lupin: Lupinus mariae-josephi H. Pascual. Genet. Resour. Crop. Evol. 2010;58:101–114. doi: 10.1007/s10722-010-9580-6. DOI
Jiang J., Gill B.S. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome. 2006;49:1057–1068. doi: 10.1139/g06-076. PubMed DOI
Langer-Safer P.R., Levine M., Ward D.C. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc. Natl. Acad. Sci. USA. 1982;79:4381–4385. doi: 10.1073/pnas.79.14.4381. PubMed DOI PMC
Jiang J. Fluorescence in situ hybridization in plants: Recent developments and future applications. Chromosom. Res. 2019;27:153–165. doi: 10.1007/s10577-019-09607-z. PubMed DOI
Han Y., Zhang T., Thammapichai P., Weng Y., Jiang J. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics. 2015;200:771–779. doi: 10.1534/genetics.115.177642. PubMed DOI PMC
Qu M., Li K., Han Y., Chen L., Li Z., Han Y. Integrated karyotyping of Woodland Strawberry (Fragaria vesca) with Oligopaint FISH probes. Cytogenet. Genome Res. 2017;153:158–164. doi: 10.1159/000485283. PubMed DOI
Braz G.T., He L., Zhao H., Marand A.P., Semrau K., Rouillard J.-M., Torres G.A., Jiang J. Comparative Oligo-FISH mapping: An efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics. 2017;208:513–523. doi: 10.1534/genetics.117.300344. PubMed DOI PMC
Šimoníková D., Němečková A., Karafiátová M., Uwimana B., Swennen R., Doležel J., Hřibová E. Chromosome painting facilitates anchoring reference genome sequence to chromosomes in situ and integrated karyotyping in banana (Musa Spp.) Front. Plant. Sci. 2019;10:10. doi: 10.3389/fpls.2019.01503. PubMed DOI PMC
Kasprzak A., Šafář J., Janda J., Doležel J., Wolko B., Naganowska B. The bacterial artificial chromosome (BAC) library of the narrow-leafed lupin (Lupinus angustifolius L.) Cell. Mol. Biol. Lett. 2006;11:396–407. doi: 10.2478/s11658-006-0033-3. PubMed DOI PMC
Wyrwa K., Książkiewicz M., Szczepaniak A., Susek K., Podkowiński J., Naganowska B. Integration of Lupinus angustifolius L. (narrow-leafed lupin) genome maps and comparative mapping within legumes. Chromosom. Res. 2016;24:355–378. doi: 10.1007/s10577-016-9526-8. PubMed DOI PMC
Susek K., Bielski W., Hasterok R., Naganowska B., Wolko B. A first glimpse of Wild Lupin karyotype variation as revealed by comparative cytogenetic mapping. Front. Plant. Sci. 2016;7:1152. doi: 10.3389/fpls.2016.01152. PubMed DOI PMC
Książkiewicz M., Nazzicari N., Yang H., Nelson M.N., Renshaw D., Rychel S., Ferrari B., Carelli M., Tomaszewska M., Stawiński S., et al. A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits. Sci. Rep. 2017;7:1–15. doi: 10.1038/s41598-017-15625-w. PubMed DOI PMC
Bertioli D.J., Cannon S.B., Froenicke L., Huang G., Farmer A.D., Cannon E.K.S., Liu X., Gao D., Clevenger J., Dash S., et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 2016;48:438–446. doi: 10.1038/ng.3517. PubMed DOI
Hane J.K., Ming Y., Kamphuis L.G., Nelson M.N., Garg G., Atkins C.A., Bayer P.E., Bravo A., Bringans S., Cannon S., et al. A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: Insights into plant-microbe interactions and legume evolution. Plant. Biotechnol. J. 2016;15:318–330. doi: 10.1111/pbi.12615. PubMed DOI PMC
Smit A., Hubley R., Green P. RepeatMasker Open-4.0. 2013–2015. [(accessed on 8 December 2020)]; Available online: http://www.repeatmasker.org.
Kohany O., Gentles A.J., Hankus L., Jurka J. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinform. 2006;7:474. doi: 10.1186/1471-2105-7-474. PubMed DOI PMC
Kamphuis L.G., Hane J.K., Nelson M.N., Gao L., Atkins C.A., Singh K.B. Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers. Plant. Biotechnol. J. 2015;13:14–25. doi: 10.1111/pbi.12229. PubMed DOI PMC
Murgha Y.E., Rouillard J.-M., Gulari E. Methods for the preparation of large quantities of complex single-stranded oligonucleotide libraries. PLoS ONE. 2014;9:e94752. doi: 10.1371/journal.pone.0094752. PubMed DOI PMC
Beliveau B., Joyce E., Apostolopoulos N., Yilmaz F., Fonseka C., McCole R., Chang Y., Li J., Senaratne T., Williams B. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl. Acad. Sci. USA. 2012;109:21301–21306. doi: 10.1073/pnas.1213818110. PubMed DOI PMC
Eastwood R., Drummond C., Schifino-Wittmann M., Hughes C. Diversity and Evolutionary History of Lupins-Insights from New Phylogenies. Lupins for Health and Wealth. International Lupin Association; Canterbury, New Zealand: 2008. pp. 346–354.
Albert P.S., Marand A.P., Semrau K., Rouillard J.-M., Kao Y.-H., Wang C.-J.R., Danilova T.V., Jiang J., Birchler J.A. Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proc. Natl. Acad. Sci. USA. 2019;116:1679–1685. doi: 10.1073/pnas.1813957116. PubMed DOI PMC
Jiang J., Gill B.S. Nonisotopic in situ hybridization and plant genome mapping: The first 10 years. Genome. 1994;37:717–725. doi: 10.1139/g94-102. PubMed DOI
Książkiewicz M., Rychel S., Nelson M.N., Wyrwa K., Naganowska B., Wolko B. Expansion of the phosphatidylethanolamine binding protein family in legumes: A case study of Lupinus angustifolius L. Flowering Locus T homologs, LanFTc1 and LanFTc2. BMC Genom. 2016;17:820. doi: 10.1186/s12864-016-3150-z. PubMed DOI PMC
Nelson M.N., Książkiewicz M., Rychel S., Besharat N., Taylor C.M., Wyrwa K., Jost R., Erskine W., Cowling W.A., Berger J., et al. The loss of vernalization requirement in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of a Flowering Locus T(FT) homologue. New Phytol. 2016;213:220–232. doi: 10.1111/nph.14094. PubMed DOI
Advances in the Molecular Cytogenetics of Bananas, Family Musaceae