Wireless Sensor Networks Using Sub-Pixel Optical Camera Communications: Advances in Experimental Channel Evaluation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
764461
H2020 Marie Skłodowska-Curie Actions
CA19111
European Cooperation in Science and Technology
PubMed
33924508
PubMed Central
PMC8069996
DOI
10.3390/s21082739
PII: s21082739
Knihovny.cz E-zdroje
- Klíčová slova
- channel characterization, farming 4.0, intelligent transportation systems (ITS), optical camera communication (OCC), visible light communication (VLC), wireless sensor networks (WSNs),
- Publikační typ
- časopisecké články MeSH
Optical wireless communications in outdoor scenarios are challenged by uncontrollable atmospheric conditions that impair the channel quality. In this paper, different optical camera communications (OCC) equipment are experimentally studied in the laboratory and the field, and a sub-pixel architecture is raised as a potential solution for outdoor wireless sensor networks (WSN) applications, considering its achievable data throughput, the spatial division of sources, and the ability of cameras to overcome the attenuation caused by different atmospheric conditions such as rain, turbulence and the presence of aerosols. Sub-pixel OCC shows particularly adequate capabilities for some of the WSN applications presented, also in terms of cost-effectiveness and scalability. The novel topology of sub-pixel projection of multiple transmitters over the receiver using small optical devices is presented as a solution using OCC that re-uses camera equipment for communication purposes on top of video-monitoring.
Zobrazit více v PubMed
Cahyadi W.A., Chung Y.H., Ghassemlooy Z., Hassan N.B. Optical Camera Communications: Principles, Modulations, Potential and Challenges. Electronics. 2020;9:1339. doi: 10.3390/electronics9091339. DOI
Pathak P.H., Feng X., Hu P., Mohapatra P. Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Commun. Surv. Tutor. 2015;17:2047–2077. doi: 10.1109/COMST.2015.2476474. DOI
Almadani Y., Plets D., Bastiaens S., Joseph W., Ijaz M., Ghassemlooy Z., Rajbhandari S. Visible Light Communications for Industrial Applications—Challenges and Potentials. Electronics. 2020;9:2157. doi: 10.3390/electronics9122157. DOI
Saeed N., Guo S., Park K.H., Al-Naffouri T.Y., Alouini M.S. Optical camera communications: Survey, use cases, challenges, and future trends. Phys. Commun. 2019;37:100900. doi: 10.1016/j.phycom.2019.100900. DOI
Saha N., Ifthekhar M.S., Le N.T., Jang Y.M. Survey on optical camera communications: Challenges and opportunities. IET Optoelectron. 2015;9:172–183. doi: 10.1049/iet-opt.2014.0151. DOI
Le N.T., Hossain M., Jang Y.M. A survey of design and implementation for optical camera communication. Signal Process. Image Commun. 2017;53:95–109. doi: 10.1016/j.image.2017.02.001. DOI
Jang M. IEEE 802.15 WPAN 15.7 Amendment-Optical Camera Communications Study Group (SG 7a) [(accessed on 12 April 2021)];2019 Available online: https://www.ieee802.org/15/pub/SG7a.html.
Kim Y.H., Cahyadi W.A., Chung Y.H. Experimental Demonstration of VLC-Based Vehicle-to-Vehicle Communications Under Fog Conditions. IEEE Photonics J. 2015;7:1–9. doi: 10.1109/JPHOT.2015.2499542. DOI
Chaudhary N., Alves L.N., Ghassemlooy Z. Current Trends on Visible Light Positioning Techniques; Proceedings of the 2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC); Tehran, Iran. 27–28 April 2019; pp. 100–105.
Chaudhary N., Younus O.I., Alves L.N., Ghassemlooy Z., Zvanovec S., Le-Minh H. An Indoor Visible Light Positioning System Using Tilted LEDs with High Accuracy. Sensors. 2021;21:920. doi: 10.3390/s21030920. PubMed DOI PMC
Palacios Játiva P., Román Cañizares M., Azurdia-Meza C.A., Zabala-Blanco D., Dehghan Firoozabadi A., Seguel F., Montejo-Sánchez S., Soto I. Interference Mitigation for Visible Light Communications in Underground Mines Using Angle Diversity Receivers. Sensors. 2020;20:367. doi: 10.3390/s20020367. PubMed DOI PMC
Jurado-Verdu C., Matus V., Rabadan J., Guerra V., Perez-Jimenez R. Correlation-based receiver for optical camera communications. OSA Opt. Express. 2019;27:19150–19155. doi: 10.1364/OE.27.019150. PubMed DOI
Jurado-Verdu C., Guerra V., Rabadan J., Perez-Jimenez R., Chavez-Burbano P. RGB Synchronous VLC modulation scheme for OCC; Proceedings of the 2018 11th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP); Budapest, Hungary. 18–20 July 2018; pp. 1–6.
Matus V., Teli S.R., Guerra V., Jurado-Verdu C., Zvanovec S., Perez-Jimenez R. Evaluation of Fog Effects on Optical Camera Communications Link; Proceedings of the 2020 3rd West Asian Symposium on Optical Wireless Communications (WASOWC); Tehran, Iran. 24–25 November 2020; pp. 1–5.
Matus V., Eso E., Teli S.R., Perez-Jimenez R., Zvanovec S. Experimentally Derived Feasibility of Optical Camera Communications under Turbulence and Fog Conditions. Sensors. 2020;20:757. doi: 10.3390/s20030757. PubMed DOI PMC
Matus V., Guerra V., Jurado-Verdu C., Teli S., Zvanovec S., Rabadan J., Perez-Jimenez R. Experimental Evaluation of an Analog Gain Optimization Algorithm in Optical Camera Communications; Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP); Porto, Portugal. 20–22 July 2020; pp. 1–5.
Matus V., Guerra V., Zvanovec S., Rabadan J., Perez-Jimenez R. Sandstorm effect on experimental optical camera communication. OSA Appl. Opt. 2021;60:75–82. doi: 10.1364/AO.405952. PubMed DOI
Kuroda T. Essential Principles of Image Sensors. CRC Press; Boca Raton, FL, USA: 2017.
Khalighi M.A., Uysal M. Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Commun. Surv. Tutor. 2014;16:2231–2258. doi: 10.1109/COMST.2014.2329501. DOI
Teli S.R., Zvanovec S., Perez-Jimenez R., Ghassemlooy Z. Spatial frequency-based angular behavior of a short-range flicker-free MIMO–OCC link. OSA Appl. Opt. 2020;59:10357–10368. doi: 10.1364/AO.404378. PubMed DOI
Teli S.R., Matus V., Zvanovec S., Perez-Jimenez R., Vitek S., Ghassemlooy Z. The First Study of MIMO Scheme Within Rolling-shutter Based Optical Camera Communications; Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP); Porto, Portugal. 20–22 July 2020; pp. 1–5.
Le N.-T., Jang Y.M. Performance evaluation of MIMO Optical Camera Communications based rolling shutter image sensor; Proceedings of the 2016 8th International Conference on Ubiquitous and Future Networks (ICUFN); Vienna, Austria. 5–8 July 2016; pp. 140–144.
Gonçalves A.L.R., Maia Á.H.A., Santos M.R., de Lima D.A., de Miranda Neto A. Visible Light Positioning and Communication Methods and Their Applications in the Intelligent Mobility. IEEE Lat. Am. Trans. 2021;100:2174–2185.
Iturralde D., Azurdia-Meza C., Krommenacker N., Soto I., Ghassemlooy Z., Becerra N. A new location system for an underground mining environment using visible light communications; Proceedings of the 2014 9th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP); Manchester, UK. 23–25 July 2014; pp. 1165–1169.
Hossan M., Chowdhury M.Z., Hasan M., Shahjalal M., Nguyen T., Le N.T., Jang Y.M. A new vehicle localization scheme based on combined optical camera communication and photogrammetry. Mob. Inf. Syst. 2018;2018:8501898. doi: 10.1155/2018/8501898. DOI
Karbalayghareh M., Miramirkhani F., Eldeeb H.B., Kizilirmak R.C., Sait S.M., Uysal M. Channel Modelling and Performance Limits of Vehicular Visible Light Communication Systems. IEEE Trans. Veh. Technol. 2020;69:6891–6901. doi: 10.1109/TVT.2020.2993294. DOI
Marè R.M., Marte C.L., Cugnasca C.E., Sobrinho O.G., dos Santos A.S. Feasibility of a Testing Methodology for Visible Light Communication Systems Applied to Intelligent Transport Systems. IEEE Lat. Am. Trans. 2020;100:515–523.
Elamassie M., Karbalayghareh M., Miramirkhani F., Kizilirmak R.C., Uysal M. Effect of Fog and Rain on the Performance of Vehicular Visible Light Communications; Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC-Spring); Porto, Portugal. 3–6 June 2018; pp. 1–6.
Kuutti S., Bowden R., Jin Y., Barber P., Fallah S. A Survey of Deep Learning Applications to Autonomous Vehicle Control. IEEE Trans. Intell. Transp. Syst. 2021;22:712–733. doi: 10.1109/TITS.2019.2962338. DOI
Ashok A., Jain S., Gruteser M., Mandayam N., Yuan W., Dana K. Capacity of pervasive camera based communication under perspective distortions; Proceedings of the 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom); Budapest, Hungary. 24–28 March 2014; pp. 112–120.
Shi J., He J., Jiang Z., Zhou Y., Xiao Y. Enabling user mobility for optical camera communication using mobile phone. OSA Opt. Express. 2018;26:21762–21767. doi: 10.1364/OE.26.021762. PubMed DOI
Beshr M., Michie C., Andonovic I. Evaluation of Visible Light Communication system performance in the presence of sunlight irradiance; Proceedings of the 2015 17th International Conference on Transparent Optical Networks (ICTON); Budapest, Hungary. 5–9 July 2015; pp. 1–4.
Georlette V., Bette S., Brohez S., Pérez-Jiménez R., Point N., Moeyaert V. Outdoor Visible Light Communication Channel Modeling under Smoke Conditions and Analogy with Fog Conditions. Optics. 2020;1:259–281. doi: 10.3390/opt1030020. DOI
Eso E., Teli S., Hassan N.B., Vitek S., Ghassemlooy Z., Zvanovec S. 400 m rolling-shutter-based optical camera communications link. OSA Opt. Lett. 2020;45:1059–1062. doi: 10.1364/OL.385423. PubMed DOI
Chavez-Burbano P., Guerra V., Rabadan J., Perez-Jimenez R. Optical camera communication for smart cities; Proceedings of the 2017 IEEE/CIC International Conference on Communications in China (ICCC Workshops); Qingdao, China. 22–24 October 2017; pp. 1–4.
Ghassemlooy Z., Popoola W., Rajbhandari S. Optical Wireless Communications: System and Channel Modelling with Matlab. CRC Press; Boca Raton, FL, USA: 2019.
Ishimaru A. Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications. John Wiley & Sons; Hoboken, NJ, USA: 2017.
Kedar D., Arnon S. Urban optical wireless communication networks: The main challenges and possible solutions. IEEE Commun. Mag. 2004;42:S2–S7. doi: 10.1109/MCOM.2004.1299334. DOI
Kedar D., Arnon S. The positive contribution of fog to the mitigation of pointing errors in optical wireless communication. Appl. Opt. 2003;42:4946–4954. doi: 10.1364/AO.42.004946. PubMed DOI
Yamazato T., Kinoshita M., Arai S., Souke E., Yendo T., Fujii T., Kamakura K., Okada H. Vehicle Motion and Pixel Illumination Modeling for Image Sensor Based Visible Light Communication. IEEE J. Sel. Areas Commun. 2015;33:1793–1805. doi: 10.1109/JSAC.2015.2432511. DOI
Guerra V., Ticay-Rivas J.R., Alonso-Eugenio V., Perez-Jimenez R. Characterization and Performance of a Thermal Camera Communication System. Sensors. 2021;20:3288. doi: 10.3390/s20113288. PubMed DOI PMC
Bohata J., Zvanovec S., Korinek T., Abadi M.M., Ghassemlooy Z. Characterization of dual-polarization LTE radio over a free-space optical turbulence channel. OSA Appl. Opt. 2015;54:7082–7087. doi: 10.1364/AO.54.007082. PubMed DOI
Libich J., Perez J., Zvanovec S., Ghassemlooy Z., Nebuloni R., Capsoni C. Combined effect of turbulence and aerosol on free-space optical links. OSA Appl. Opt. 2017;56:336–341. doi: 10.1364/AO.56.000336. PubMed DOI
Nor N.A.M., Fabiyi E., Abadi M.M., Tang X., Ghassemlooy Z., Burton A. Investigation of moderate-to-strong turbulence effects on free space optics—A laboratory demonstration; Proceedings of the 2019 15th International Conference on Telecommunications (ConTEL); Graz, Austria. 13–15 July 2019.
Andrews L.C., Phillips R.L. Laser Beam Propagation through Random Media. Volume 152 SPIE Press; Bellingham, WA, USA: 2005.
Ayaz M., Ammad-Uddin M., Sharif Z., Mansour A., Aggoune E.M. Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk. IEEE Access. 2019;7:129551–129583. doi: 10.1109/ACCESS.2019.2932609. DOI
Zhu N., Xia Y., Liu Y., Zang C., Deng H., Ma Z. Temperature and Humidity Monitoring System for Bulk Grain Container Based on LoRa Wireless Technology. In: Sun X., Pan Z., Bertino E., editors. Lecture Notes in Computer Science, Proceedings of the Cloud Computing and Security, Haikou, China, 8–10 June 2018. Springer International Publishing; Cham, Switzerland: 2018. pp. 102–110.
Mekki K., Bajic E., Chaxel F., Meyer F. Overview of Cellular LPWAN Technologies for IoT Deployment: Sigfox, LoRaWAN, and NB-IoT; Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops); Athens, Greece. 19–23 March 2018; pp. 197–202.
Atmel Corporation . ATmega328p, 8-bit AVR Microcontroller with 32K Bytes In-System Programmable Flash, Datasheet. Atmel Corporation; San Jose, CA, USA: 2015.
IMX219PQH5-C Datasheet. [(accessed on 7 April 2021)]; Available online: https://datasheetspdf.com/pdf/1404029/Sony/IMX219PQH5-C/1.
Eso E.F., Burton A., Hassan N.B., Abadi M.M., Ghassemlooy Z., Zvanovec S. Experimental Investigation of the Effects of Fog on Optical Camera-based VLC for a Vehicular Environment; Proceedings of the 2019 15th International Conference on Telecommunications (ConTEL); Graz, Austria. 13–15 July 2019.
Cleveland W.S., Devlin S.J. Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. J. Am. Stat. Assoc. 1988;83:596–610. doi: 10.1080/01621459.1988.10478639. DOI
Cartográfica de Canarias (GRAFCAN) Sistema de Información Territorial de Canarias. [(accessed on 12 April 2021)]; Available online: https://grafcan.es/v0kq90T.
Editorial to the Special Issue on "Visible Light Communications, Networking, and Sensing"