Experimentally Derived Feasibility of Optical Camera Communications under Turbulence and Fog Conditions

. 2020 Jan 30 ; 20 (3) : . [epub] 20200130

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32019126

Grantová podpora
764461 H2020 Marie Skłodowska-Curie Actions
TEC 2017-84065-C3-1-R Agencia Estatal de Investigación

Optical camera communications (OCC) research field has grown recently, aided by ubiquitous digital cameras; however, atmospheric conditions can restrict their feasibility in outdoor scenarios. In this work, we studied an experimental OCC system under environmental phenomena emulated in a laboratory chamber. We found that the heat-induced turbulence does not affect our system significantly, while the attenuation caused by fog does decrease the signal quality. For this reason, a novel strategy is proposed, using the camera's built-in amplifier to overcome the optical power loss and to decrease the quantization noise induced by the analog-digital converter of the camera. The signal quality has been evaluated using the Pearson's correlation coefficient with respect to a reference template signal, along with the signal-to-noise ratio that has been empirically evaluated. The amplification mechanism introduced allows our system to receive the OCC signal under heavy fog by gradually increasing the camera gain up to 16 dB, for meteorological visibility values down to 10 m, with a correlation coefficient of 0.9 with respect to clear conditions.

Zobrazit více v PubMed

Cahyadi W.A., Kim Y.H., Chung Y.H., Ahn C.J. Mobile phone camera-based indoor visible light communications with rotation compensation. IEEE Photonics J. 2016;8:1–8. doi: 10.1109/JPHOT.2016.2545643. DOI

Teli S.R., Zvanovec S., Ghassemlooy Z. Performance evaluation of neural network assisted motion detection schemes implemented within indoor optical camera based communications. Opt. Express. 2019;27:24082–24092. doi: 10.1364/OE.27.024082. PubMed DOI

Chavez-Burbano P., Vitek S., Teli S., Guerra V., Rabadan J., Perez-Jimenez R., Zvanovec S. Optical camera communication system for Internet of Things based on organic light emitting diodes. Electron. Lett. 2019;55:334–336. doi: 10.1049/el.2018.8037. DOI

Tiwari S.V., Sewaiwar A., Chung Y.H. Optical bidirectional beacon based visible light communications. Opt. Express. 2015;23:26551–26564. doi: 10.1364/OE.23.026551. PubMed DOI

Pergoloni S., Biagi M., Colonnese S., Cusani R., Scarano G. Coverage optimization of 5G atto-cells for visible light communications access; Proceedings of the 2015 IEEE International Workshop on Measurements & Networking (M&N); Coimbra, Portugal. 12–13 October 2015; pp. 1–5.

Boban M., Kousaridas A., Manolakis K., Eichinger J., Xu W. Connected roads of the future: Use cases, requirements, and design considerations for vehicle-to-everything communications. IEEE Veh. Technol. Mag. 2018;13:110–123. doi: 10.1109/MVT.2017.2777259. DOI

Yamazato T., Takai I., Okada H., Fujii T., Yendo T., Arai S., Andoh M., Harada T., Yasutomi K., Kagawa K., et al. Image-sensor-based visible light communication for automotive applications. IEEE Commun. Mag. 2014;52:88–97. doi: 10.1109/MCOM.2014.6852088. DOI

Takai I., Ito S., Yasutomi K., Kagawa K., Andoh M., Kawahito S. LED and CMOS image sensor based optical wireless communication system for automotive applications. IEEE Photonics J. 2013;5:6801418. doi: 10.1109/JPHOT.2013.2277881. DOI

Ghassemlooy Z., Alves L.N., Zvanovec S., Khalighi M.A. Visible Light Communications: Theory and Applications. CRC Press; Borarton, FL, USA: 2017.

Boubezari R., Le Minh H., Ghassemlooy Z., Bouridane A. Smartphone camera based visible light communication. J. Lightwave Technol. 2016;34:4121–4127. doi: 10.1109/JLT.2016.2590880. DOI

Nguyen T., Islam A., Hossan T., Jang Y.M. Current status and performance analysis of optical camera communication technologies for 5G networks. IEEE Access. 2017;5:4574–4594. doi: 10.1109/ACCESS.2017.2681110. DOI

Nguyen T., Hong C.H., Le N.T., Jang Y.M. High-speed asynchronous Optical Camera Communication using LED and rolling shutter camera; Proceedings of the 2015 Seventh International Conference on Ubiquitous and Future Networks; Sapporo, Japan. 7–10 July 2015; pp. 214–219.

Chavez-Burbano P., Guerra V., Rabadan J., Perez-Jimenez R. Optical camera communication for smart cities; Proceedings of the 2017 IEEE/CIC International Conference on Communications in China (ICCC Workshops); Qingdao, China. 22–24 October 2017; pp. 1–4. DOI

Chavez-Burbano P., Guerra V., Rabadan J., Rodriguez-Esparragon D., Perez-Jimenez R. Experimental characterization of close-emitter interference in an optical camera communication system. Sensors. 2017;17:1561. doi: 10.3390/s17071561. PubMed DOI PMC

Cui Z., Wang C., Tsai H.M. Characterizing channel fading in vehicular visible light communications with video data; Proceedings of the 2014 IEEE Vehicular Networking Conference (VNC); Paderborn, Germany. 3–5 December 2014; pp. 226–229.

Wu L.C., Tsai H.M. Modeling vehicle-to-vehicle visible light communication link duration with empirical data; Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps); Atlanta, GA, USA. 9–13 December 2013; pp. 1103–1109.

Mobility and Transport (European Comission) Current Speed Limit Policies. [(accessed on 28 January 2020)]; Available online: https://ec.europa.eu/transport/road_safety/specialist/knowledge/speed/speed_limits/current_speed_limit_policies_en.

Road Safety Authority (Government of Ireland) The Two-Second Rule. [(accessed on 28 January 2020)]; Available online: http://www.rotr.ie/rules-for-driving/speed-limits/speed-limits_2-second-rule.html.

Kim Y.H., Chung Y.H. Experimental outdoor visible light data communication system using differential decision threshold with optical and color filters. Opt. Eng. 2015;54:040501. doi: 10.1117/1.OE.54.4.040501. DOI

Islam A., Hossan M.T., Jang Y.M. Convolutional neural networkscheme–based optical camera communication system for intelligent Internet of vehicles. Int. J. Distrib. Sens. Netw. 2018;14:1550147718770153. doi: 10.1177/1550147718770153. DOI

Elamassie M., Karbalayghareh M., Miramirkhani F., Kizilirmak R.C., Uysal M. Effect of fog and rain on the performance of vehicular visible light communications; Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring); Porto, Portugal. 3–6 June 2018; pp. 1–6.

Tian X., Miao Z., Han X., Lu F. Sea Fog Attenuation Analysis of White-LED Light Sources for Maritime VLC; Proceedings of the 2019 IEEE International Conference on Computational Electromagnetics (ICCEM); Shanghai, China. 20–22 March 2019; pp. 1–3. DOI

Kim Y.H., Cahyadi W.A., Chung Y.H. Experimental demonstration of VLC-based vehicle-to-vehicle communications under fog conditions. IEEE Photonics J. 2015;7:1–9. doi: 10.1109/JPHOT.2015.2499542. DOI

Guo L.-D., Cheng M.-J., Guo L.-X. Visible light propagation characteristics under turbulent atmosphere and its impact on communication performance of traffic system; Proceedings of the 14th National Conference on Laser Technology and Optoelectronics (LTO 2019); Shanghai, China. 17 May 2019; p. 1117047. DOI

Nikishov V.V., Nikishov V.I. Spectrum of Turbulent Fluctuations of the Sea-Water Refraction Index. Int. J. Fluid Mech. Res. 2000;27:82–98. doi: 10.1615/InterJFluidMechRes.v27.i1.70. DOI

Eso E., Burton A., Hassan N.B., Abadi M.M., Ghassemlooy Z., Zvanovec S. Experimental Investigation of the Effects of Fog on Optical Camera-based VLC for a Vehicular Environment; Proceedings of the 2019 15th International Conference on Telecommunications (ConTEL); Graz, Austria. 3–5 July 2019; pp. 1–5.

Bohata J., Zvanovec S., Korinek T., Abadi M.M., Ghassemlooy Z. Characterization of dual-polarization LTE radio over a free-space optical turbulence channel. Appl. Opt. 2015;54:7082–7087. doi: 10.1364/AO.54.007082. PubMed DOI

Kuroda T. Essential Principles of Image Sensors. CRC Press; Borarton, FL, USA: 2017.

IMX219PQH5-C Datasheet. [(accessed on 28 January 2020)]; Available online: https://datasheetspdf.com/pdf/1404029/Sony/IMX219PQH5-C/1.

Weichel H. Laser Beam Propagation in the Atmosphere. Volume 3 SPIE Press; Bellingham, WA, USA: 1990.

Henniger H., Wilfert O. An Introduction to Free-space Optical Communications. Radioengineering. 2010;19:203–212.

Kim I.I., McArthur B., Korevaar E.J. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications; Proceedings of the Optical Wireless Communications III. International Society for Optics and Photonics; Boston, MA, USA. 6 February 2001; pp. 26–37.

Ghassemlooy Z., Popoola W., Rajbhandari S. Optical Wireless Communications: System and Channel Modelling with Matlab. CRC Press; Borarton, FL, USA: 2019.

Nor N.A.M., Fabiyi E., Abadi M.M., Tang X., Ghassemlooy Z., Burton A. Investigation of moderate-to-strong turbulence effects on free space optics—A laboratory demonstration; Proceedings of the 2015 13th International Conference on Telecommunications (ConTEL); Graz, Austria. 13–15 July 2015; pp. 1–5.

Andrews L.C., Phillips R.L. Laser Beam Propagation Through Random Media. Volume 152 SPIE Press; Bellingham, WA, USA: 2005.

Jurado-Verdu C., Matus V., Rabadan J., Guerra V., Perez-Jimenez R. Correlation-based receiver for optical camera communications. Opt. Express. 2019;27:19150–19155. doi: 10.1364/OE.27.019150. PubMed DOI

Atmel Corporation . ATmega328p, 8-bit AVR Microcontroller with 32K Bytes In-System Programmable Flash, Datasheet. Atmel Corporation; San Jose, CA, USA: 2015. 328p

Massey F.J., Jr. The Kolmogorov-Smirnov Test for Goodness of Fit. J. Am. Stat. Assoc. 1951;46:68–78. doi: 10.1080/01621459.1951.10500769. DOI

Cleveland W.S., Devlin S.J. Locally weighted regression: An approach to regression analysis by local fitting. J. Am. Stat. Assoc. 1988;83:596–610. doi: 10.1080/01621459.1988.10478639. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...