Performance of Vehicular Visible Light Communications under the Effects of Atmospheric Turbulence with Aperture Averaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
764461
H2020 Marie Skłodowska-Curie Actions
PubMed
33924686
PubMed Central
PMC8069771
DOI
10.3390/s21082751
PII: s21082751
Knihovny.cz E-zdroje
- Klíčová slova
- aperture averaging, atmospheric turbulence, incoherent light source, vehicular, visible light communication,
- Publikační typ
- časopisecké články MeSH
In this paper, we investigate the performance of a vehicular visible light communications (VVLC) link with a non-collimated and incoherent light source (a light-emitting diode) as the transmitter (Tx), and two different optical receiver (Rx) types (a camera and photodiode (PD)) under atmospheric turbulence (AT) conditions with aperture averaging (AA). First, we present simulation results indicating performance improvements in the signal-to-noise ratio (SNR) under AT with AA with increasing size of the optical concentrator. Experimental investigations demonstrate the potency of AA in mitigating the induced signal fading due to the weak to moderate AT regimes in a VVLC system. The experimental results obtained with AA show that the link's performance was stable in terms of the average SNR and the peak SNR for the PD and camera-based Rx links, respectively with <1 dB SNR penalty for both Rxs, as the strength of AT increases compared with the link with no AT.
Zobrazit více v PubMed
Gao S., Lim A., Bevly D. An empirical study of DSRC V2V performance in truck platooning scenarios. Digit. Commun. Netw. 2016;2:233–244. doi: 10.1016/j.dcan.2016.10.003. DOI
Shen W.-H., Tsai H.-M. Testing vehicle-to-vehicle visible light communications in real-world driving scenarios; Proceedings of the 2017 IEEE Vehicular Networking Conference (VNC); Torino, Italy. 27–29 November 2017; pp. 187–194.
Vivek N., Srikanth S.V., Saurabh P., Vamsi T.P., Raju K. On field performance analysis of IEEE 802.11p and WAVE protocol stack for V2V & V2I communication; Proceedings of the International Conference on Information Communication and Embedded Systems (ICICES2014); Chennai, India. 27–28 February 2014; pp. 1–6.
Xu Z., Li X., Zhao X., Zhang M.H., Wang Z. DSRC versus 4G-LTE for Connected Vehicle Applications: A Study on Field Experiments of Vehicular Communication Performance. J. Adv. Transp. 2017;2017:1–10. doi: 10.1155/2017/2750452. DOI
Bazzi A., Masini B.M., Zanella A., Calisti A. Visible light communications as a complementary technology for the internet of vehicles. Comput. Commun. 2016;93:39–51. doi: 10.1016/j.comcom.2016.07.004. DOI
Car Lighting District Halogen vs. HID vs. LED—Which is Best? [(accessed on 1 April 2019)];2018 Available online: https://www.carlightingdistrict.com/blogs/news/halogen-vs-hid-vs-led-which-is-best.
Karunatilaka D., Zafar F., Kalavally V., Parthiban R. LED Based Indoor Visible Light Communications: State of the Art. IEEE Commun. Surv. Tutor. 2015;17:1649–1678. doi: 10.1109/COMST.2015.2417576. DOI
Pathak P.H., Feng X., Hu P., Mohapatra P. Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges. IEEE Commun. Surv. Tutor. 2015;17:2047–2077. doi: 10.1109/COMST.2015.2476474. DOI
Cailean A.M., Dimian M. Impact of IEEE 802.15. 7 Standard on Visible Light Communications Usage In Automotive Applications. IEEE Commun. Mag. 2017;55:169–175. doi: 10.1109/MCOM.2017.1600206. DOI
Cailean A.-M., Dimian M. Current Challenges for Visible Light Communications Usage in Vehicle Applications: A Survey. IEEE Commun. Surv. Tutor. 2017;19:2681–2703. doi: 10.1109/COMST.2017.2706940. DOI
Eso E., Younus O.I., Ghassemlooy Z., Zvanovec S., Abadi M.M. Performances of Optical Camera-based Vehicular Communications under Turbulence Conditions; Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP); Porto, Portugal. 20–22 July 2020; pp. 1–5.
Guo L.-D., Cheng M.-J. Visible light propagation characteristics under turbulent atmosphere and its impact on communication performance of traffic system; Proceedings of the 14th National Conference on Laser Technology and Optoelectronics (LTO 2019); Shanghai, China. 17 May 2019; 2019. p. 1117047.
Martinek R., Danys L., Jaros R. Visible Light Communication System Based on Software Defined Radio: Performance Study of Intelligent Transportation and Indoor Applications. Electron. 2019;8:433. doi: 10.3390/electronics8040433. DOI
Zheng X.-T., Guo L.-X., Cheng M.-J., Li J.-T. Average BER of Maritime Visible Light Communication System in Atmospheric Turbulent Channel *; Proceedings of the 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC); Xuzhou, China. 21–24 July 2018; pp. 1–3. DOI
Matus V., Eso E., Teli S.R., Perez-Jimenez R., Zvanovec S. Experimentally Derived Feasibility of Optical Camera Communications under Turbulence and Fog Conditions. Sensors. 2020;20:757. doi: 10.3390/s20030757. PubMed DOI PMC
Cahyadi W.A., Chung Y.H., Ghassemlooy Z., Hassan N.B. Optical Camera Communications: Principles, Modulations, Potential and Challenges. Electronics. 2020;9:1339. doi: 10.3390/electronics9091339. DOI
Teli S.R., Zvanovec S., Ghassemlooy Z. Performance evaluation of neural network assisted motion detection schemes implemented within indoor optical camera based communications. Opt. Express. 2019;27:24082–24092. doi: 10.1364/OE.27.024082. PubMed DOI
Saeed N., Guo S., Park K.-H., Al-Naffouri T.Y., Alouini M.-S. Optical camera communications: Survey, use cases, challenges, and future trends. Phys. Commun. 2019;37:100900. doi: 10.1016/j.phycom.2019.100900. DOI
Teli S.R., Matus V., Zvanovec S., Perez-Jimenez R., Vitek S., Ghassemlooy Z. Optical Camera Communications for IoT–Rolling-Shutter Based MIMO Scheme with Grouped LED Array Transmitter. Sensors. 2020;20:3361. doi: 10.3390/s20123361. PubMed DOI PMC
Younus. O.I., Hassan N.B., Ghassemlooy Z., Haigh P.A., Zvanovec S., Alves L.N., Le Minh H. Data Rate Enhancement in Optical Camera Communications Using an Artificial Neural Network Equaliser. IEEE Access. 2020;8:42656–42665. doi: 10.1109/ACCESS.2020.2976537. DOI
Lee H.-Y., Lin H.-M., Wei Y.-L., Wu H.-I., Tsai H.-M., Lin K.C.-J. RollingLight: Enabling Line-of-Sight Light-to-Camera Communications; Proceedings of the 13th Annual International Conference on Mobile Systems; Applications, and Services, Florence, Italy. 19–22 May 2015; pp. 167–180.
Nguyen T., Islam A., Hossan T., Jang Y.M. Current Status and Performance Analysis of Optical Camera Communication Technologies for 5G Networks. IEEE Access. 2017;5:4574–4594. doi: 10.1109/ACCESS.2017.2681110. DOI
Hassan N.B., Ghassemlooy Z., Zvanovec S., Biagi M., Vegni A.M., Zhang M., Luo P. Non-Line-of-Sight MIMO Space-Time Division Multiplexing Visible Light Optical Camera Communications. J. Lightw. Technol. 2019;37:2409–2417. doi: 10.1109/JLT.2019.2906097. DOI
Eso E., Teli S., Hassan N.B., Vitek S., Ghassemlooy Z., Zvanovec S. 400 m rolling-shutter-based optical camera communications link. Opt. Lett. 2020;45:1059–1062. doi: 10.1364/OL.385423. PubMed DOI
Ghassemlooy Z., Popoola W., Rajbhandari S. Optical Wireless Communication: System and Channel Modelling with MATLAB. 2nd ed. CRC Press; Boca Raton, FL, USA: 2019.
Nor N.A.M., Fabiyi E., Abadi M.M., Tang X., Ghassemlooy Z., Burton A., Mohd N.N.A. Investigation of moderate-to-strong turbulence effects on free space optics A laboratory demonstration; Proceedings of the 2015 13th International Conference on Telecommunications (ConTEL); Graz, Austria. 13–15 July 2015; pp. 1–5.
Andrews L.C., Phillips R.L. Laser Beam Propagation through Random Media. 2nd ed. SPIE Press; Washington, DC, USA: 2005.
Ghassemlooy Z., Le Minh H., Rajbhandari S., Perez J., Ijaz M. Performance Analysis of Ethernet/Fast-Ethernet Free Space Optical Communications in a Controlled Weak Turbulence Condition. J. Light. Technol. 2012;30:2188–2194. doi: 10.1109/JLT.2012.2194271. DOI
Andrews L., Phillips R., Hopen C. Theory of Optical Scintillation with Applications. 1st ed. SPIE Optical Engineering Press; Bellingham, WA, USA: 2001.
Al-Habash M., Phillips R., Andrews L. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Opt. Eng. 2001;40:1554–1562. doi: 10.1117/1.1386641. DOI
Sandalidis H.G., Chatzidiamantis N.D., Karagiannidis G.K. A Tractable Model for Turbulence- and Misalignment-Induced Fading in Optical Wireless Systems. IEEE Commun. Lett. 2016;20:1904–1907. doi: 10.1109/LCOMM.2016.2584612. DOI
Jurado-Navas A., Garrido-Balsells J.M., Paris J.F., Castillo-Vazquez M., Puerta-Notario A. Further insights on Málaga distribution for atmospheric optical communications; Proceedings of the 2012 International Workshop on Optical Wireless Communications (IWOW); Pisa, Italy. 22 October 2012; pp. 1–3.
Kahn J.M., Barry J.R. Wireless infrared communications. Proc. IEEE. 1997;85:265–298. doi: 10.1109/5.554222. DOI
Komine T., Nakagawa M. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 2004;50:100–107. doi: 10.1109/TCE.2004.1277847. DOI
Hui R. Introduction to Fiber-Optic Communications. Academic Press; Cambridge, MA, USA: 2020. pp. 125–154.
Haddad O., Khalighi A., Zvanovec S. Channel Characterization for Optical Extra-WBAN Links Considering Local and Global User Mobility. SPIE OPTO; San Francisco, CA, USA: 2020.
Farahneh H., Kamruzzaman S.M., Fernando X. Differential Receiver as a Denoising Scheme to Improve the Performance of V2V-VLC Systems; Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops); Kansas City, MO, USA. 20–24 May 2018; pp. 1–6.
Paudel R. Ph.D. Thesis. Northumbria University; Newcastle upon Tyne, UK: 2014. Modelling and Analysis of Free Space Optical Link for Ground-to-Train Communications.
O’Brien D.C., Faulkner G., Le Minh H., Bouchet O., El Tabach M., Wolf M., Walewski J.W., Randel S., Nerreter S., Franke M., et al. Gigabit optical wireless for a Home Access Network; Proceedings of the 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications; Tokyo, Japan. 13–16 September 2009; pp. 1–5.
Khalighi M.-A., Schwartz N., Aitamer N., Bourennane S. Fading Reduction by Aperture Averaging and Spatial Diversity in Optical Wireless Systems. J. Opt. Commun. Netw. 2009;1:580–593. doi: 10.1364/JOCN.1.000580. DOI
Huynh-Thu Q., Ghanbari M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008;44:800–801. doi: 10.1049/el:20080522. DOI
Yang G., Khalighi M.-A., Ghassemlooy Z., Bourennane S. Performance evaluation of receive-diversity free-space optical communications over correlated Gamma–Gamma fading channels. Appl. Opt. 2013;52:5903–5911. doi: 10.1364/AO.52.005903. PubMed DOI
Nationwide Vehicle Contracts Understanding Car Size and Dimensions. [(accessed on 1 March 2021)];2020 Available online: www.nationwidevehiclecontracts.co.uk/blog/understanding-car-size-and-dimensions.
Lee I.E., Ghassemlooy Z., Ng W.P., Khalighi M.-A., Liaw S.-K. Effects of aperture averaging and beam width on a partially coherent Gaussian beam over free-space optical links with turbulence and pointing errors. Appl. Opt. 2015;55:1–9. doi: 10.1364/AO.55.000001. PubMed DOI
Uysal M., Li J., Yu M. Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels. IEEE Trans. Wirel. Commun. 2006;5:1229–1233. doi: 10.1109/TWC.2006.1638639. DOI
IDS Imaging and Development Systems GmbH: Brighter Images Thanks to gain- How to work with gain. [(accessed on 13 January 2020)]; Available online: https://en.ids-imaging.com/tl_files/downloads/techtip/TechTip_Gain_EN.pdf.
Editorial to the Special Issue on "Visible Light Communications, Networking, and Sensing"