Optical Camera Communications for IoT-Rolling-Shutter Based MIMO Scheme with Grouped LED Array Transmitter
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
764461
H2020 Marie Skłodowska-Curie Actions
PubMed
32545751
PubMed Central
PMC7348962
DOI
10.3390/s20123361
PII: s20123361
Knihovny.cz E-zdroje
- Klíčová slova
- Internet of things, light-emitting diodes, multiple-input multiple-output, optical camera communications, rolling-shutter camera,
- Publikační typ
- časopisecké články MeSH
In optical camera communications (OCC), the provision of both flicker-free illumination and high data rates are challenging issues, which can be addressed by utilizing the rolling-shutter (RS) property of the image sensors as the receiver (Rx). In this paper, we propose an RS-based multiple-input multiple-output OCC scheme for the Internet of things (IoT) application. A simplified design of multi-channel transmitter (Tx) using a 7.2 × 7.2 cm2 small 8 × 8 distributed light emitting diode (LED) array, based on grouping of LEDs, is proposed for flicker-free transmission. We carry out an experimental investigation of the indoor OCC system by employing a Raspberry Pi camera as the Rx, with RS capturing mode. Despite the small area of the display, flicker-free communication links within the range of 20-100 cm are established with data throughput of 960 to 120 bps sufficient for IoT. A method to extend link spans up to 1.8 m and the data throughput to 13.44 kbps using different configurations of multi-channel Tx is provided. The peak signal-to-noise ratio of ~14 and 16 dB and the rate of successfully received bits of 99.4 and 81% are measured for the shutter speeds of 200 and 800 µs for a link span of 1 m, respectively.
Zobrazit více v PubMed
Boccardi F., Heath R.W., Lozano A., Marzetta T.L., Popovski P. Five disruptive technology directions for 5G. IEEE Commun. Mag. 2014;52:74–80. doi: 10.1109/MCOM.2014.6736746. DOI
Al-Fuqaha A., Guizani M., Mohammadi M., Aledhari M., Ayyash M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015;17:2347–2376. doi: 10.1109/COMST.2015.2444095. DOI
Aksu H., Babun L., Conti M., Tolomei G., Uluagac A.S. Advertising in the IoT Era: Vision and Challenges. IEEE Commun. Mag. 2018;56:138–144. doi: 10.1109/MCOM.2017.1700871. DOI
Tercero M., von Wrycza P., Amah A., Widmer J., Fresia M., Frascolla V., Vijay A. 5G Sstems: The mmMAGIC Project Perspective on Use Cases and Challenges between 6–100 GHz; Proceedings of the IEEE Wireless Communications and Networking Conference Workshops (WCNCW); Doha, Qatar. 29 August 2016; pp. 200–205.
Kashima T., Qiu J., Shen H., Tang C., Tian T., Wang X., Kishiyama Y. Large-scale massive MIMO field trial for 5G mobile communications system; Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP); Okinawa, Japan. 24–28 September 2016; pp. 602–603.
Ayyash M., Elgala H., Khreishah A., Jungnickel V., Little T., Shao S., Rahaim M., Schulz D., Hilt J., Freund R. Coexistence of WiFi and LiFi toward 5G: Concepts, opportunities, and challenges. IEEE Commun. Mag. 2016;54:64–71. doi: 10.1109/MCOM.2016.7402263. DOI
Ghassemlooy Z., Popoola W., Rajbhandari S. Optical Wireless Communications. Informa UK Limited; Colchester, UK: 2019. Visible Light Communications; pp. 397–468.
Ghassemlooy Z., Popoola W., Rajbhandari S. Optical Wireless Communications. Informa UK Limited; Colchester, UK: 2019.
Jang M.J. IEEE 802.15 WPAN 15.7 Amendment-Optical Camera Communications Study Group (SG 7a) [(accessed on 18 November 2019)]; Available online: http://www.ieee802.org/15/pub/IEEE%20802_15%20WPAN%2015_7%20Revision1%20Task%20GroupOLD.htm.
Nguyen T., Islam A., Hossan T., Chowdhury M.Z. Current Status and Performance Analysis of Optical Camera Communication Technologies for 5G Networks. IEEE Access. 2017;5:4574–4594. doi: 10.1109/ACCESS.2017.2681110. DOI
Le N.T., Hossain M.A., Jang Y.M. A survey of design and implementation for optical camera communication. Signal Process. Image Commun. 2017;53:95–109. doi: 10.1016/j.image.2017.02.001. DOI
Liu W., Xu Z. Some practical constraints and solutions for optical camera communication. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020;378:20190191. doi: 10.1098/rsta.2019.0191. PubMed DOI PMC
Huang W., Tian P., Xu Z. Design, and implementation of a real-time CIM-MIMO optical camera communication system. Opt. Express. 2016;24:24567. doi: 10.1364/OE.24.024567. PubMed DOI
IEEE Approved Draft Standard for Local and Metropolitan Area Networks—Part 15.7: Short-Range Optical Wireless Communications. In IEEE P802.15.7/D3a, pp. 1–428, 4 December 2018. [(accessed on 23 April 2019)]; Available online: https://standards.ieee.org/standard/802_15_7-2018.html.
Luo P., Zhang M., Ghassemlooy Z., Le Le Minh H., Tsai H.-M., Tang X., Png L.C., Han D. Experimental Demonstration of RGB LED-Based Optical Camera Communications. IEEE Photon. J. 2015;7:1–12. doi: 10.1109/JPHOT.2015.2486680. DOI
Rachim V.P., Chung W.-Y. Multilevel Intensity-Modulation for Rolling Shutter-Based Optical Camera Communication. IEEE Photon-Technol. Lett. 2018;30:903–906. doi: 10.1109/LPT.2018.2823784. DOI
Wang W.-C., Chow C.-W., Chen C.-W., Hsieh H.-C., Chen Y.-T. Beacon Jointed Packet Reconstruction Scheme for Mobile-Phone Based Visible Light Communications Using Rolling Shutter. IEEE Photon. J. 2017;9:1–6. doi: 10.1109/JPHOT.2017.2762460. DOI
Yang Y., Hao J., Luo J. CeilingTalk: Lightweight Indoor Broadcast Through LED-Camera Communication. IEEE Trans. Mob. Comput. 2017;16:3308–3319. doi: 10.1109/TMC.2017.2694834. DOI
Hassan N.B., Ghassemlooy Z., Zvanovec S., Biagi M., Vegni A.M., Zhang M., Luo P. Non-Line-of-Sight MIMO Space-Time Division Multiplexing Visible Light Optical Camera Communications. J. Light Technol. 2019;37:2409–2417. doi: 10.1109/JLT.2019.2906097. DOI
Hasan M.K., Chowdhury M.Z., Shahjalal, Nguyen V.T., Jang Y.M. Performance Analysis, and Improvement of Optical Camera Communication. Appl. Sci. 2018;8:2527. doi: 10.3390/app8122527. DOI
Burgess P. Adafruit Neopixel Uberguide, WS2812B Datasheet; Philips, The Netherlands, 2019. [(accessed on 13 June 2020)]; Available online: https://cdn-learn.adafruit.com/downloads/pdf/adafruit-neopixel-uberguide.pdf.
Fujihashi T., Koike-Akino T., Orlik P., Watanabe T. High-Throughput Visual MIMO Systems for Screen-Camera Communications. IEEE Trans. Mob. Comput. 2020:1. doi: 10.1109/TMC.2020.2977042. DOI
Jerkovits T., Liva G., I Amat A.G. Improving the Decoding Threshold of Tailbiting Spatially Coupled LDPC Codes by Energy Shaping. IEEE Commun. Lett. 2018;22:660–663. doi: 10.1109/LCOMM.2018.2802488. DOI
Fang Y., Chen P., Cai G., Lau F.C.M., Liew S.-C., Han G. Outage-Limit-Approaching Channel Coding for Future Wireless Communications: Root-Protograph Low-Density Parity-Check Codes. IEEE Veh. Technol. Mag. 2019;14:85–93. doi: 10.1109/MVT.2019.2903343. DOI
Elshabrawy T., Robert J. Interleaved Chirp Spreading LoRa-Based Modulation. IEEE Internet Things J. 2019;6:3855–3863. doi: 10.1109/JIOT.2019.2892294. DOI
Shahjalal, Hasan M.K., Chowdhury M.Z., Jang Y.M. Smartphone Camera-Based Optical Wireless Communication System: Requirements and Implementation Challenges. Electronics. 2019;8:913. doi: 10.3390/electronics8080913. DOI
Teli S.R., Zvanovec S., Ghassemlooy Z. Proceedings of the 2019 15th International Conference on Telecommunications (ConTEL), Graz, Austria, 3–5 July 2019. Institute of Electrical and Electronics Engineers (IEEE); Piscataway, NJ, USA: 2019. The first tests of smartphone camera exposure effect on optical camera communication links; pp. 1–6.
Chua J.B.Y. System and Method for Enhancing Light Emissions from Light Packages by Adjusting the index of Refraction at the Surface of the Encapsulation Material. 8,089,083. U.S. Patent. 2012 Jan 3;
Cahyadi W.A., Kim Y.H., Chung Y.H., Ahn C.-J. Mobile Phone Camera-Based Indoor Visible Light Communications with Rotation Compensation. IEEE Photon. J. 2016;8:1–8. doi: 10.1109/JPHOT.2016.2545643. DOI
Cahyadi W.A., Chung Y.H. Wide receiver orientation using diffuse reflection in camera-based indoor visible light communication. Opt. Commun. 2019;431:19–28. doi: 10.1016/j.optcom.2018.09.009. DOI
Gancarz J., Elgala H., Little T.D. Impact of lighting requirements on VLC systems. IEEE Commun. Mag. 2013;51:34–41. doi: 10.1109/MCOM.2013.6685755. DOI
Zafar F., Karunatilaka D., Parthiban R. Dimming schemes for visible light communication: The state of research. IEEE Wirel. Commun. 2015;22:29–35. doi: 10.1109/MWC.2015.7096282. DOI
Pergoloni S., Biagi M., Cusani R., Scarano G. Space-time multichannel adaptive filtering scheme for VLC color crosstalk equalization. Opt. Express. 2018;26:19750–19761. doi: 10.1364/OE.26.019750. PubMed DOI
Ghassemlooy Z., Uysal M., Khalighi M.A., Ribeiro V., Moll F., Zvanovec S., Belmonte A. An Overview of Optical Wireless Communications. Springer Science and Business Media LLC; Berlin/Heidelberg, Germany: 2016. pp. 1–23.
Le T., Le N.T., Jang Y.M., Thithanhnhan L., Nam-Tuan L., Min J.Y. Proceedings of the 2015 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 28–30 October 2015. Institute of Electrical and Electronics Engineers (IEEE); Piscataway, NJ, USA: 2015. Performance of rolling shutter and global shutter camera in optical camera communications; pp. 124–128.
Thieu M.D., Pham L., Nguyen T., Chowdhury M.Z. Optical-RoI-Signaling for Vehicular Communications. IEEE Access. 2019;7:69873–69891. doi: 10.1109/ACCESS.2019.2918338. DOI
Atmel Corporation . 8-bit Microcontroller with 4/8/16/32K Bytes in System Programmable Flash. Atmel Corporation; San Jose, CA, USA: 2009. Atmel Datasheet.
Sony Corporation IMX219PQHS-C Datasheet; 2014. [(accessed on 13 June 2020)]; Available online: https://datasheetspdf.com/pdf/1404029/Sony/IMX219PQH5-C/1.
Teli S.R., Zvanovec S., Ghassemlooy Z. Performance evaluation of neural network assisted motion detection schemes implemented within indoor optical camera-based communications. Opt. Express. 2019;27:24082–24092. doi: 10.1364/OE.27.024082. PubMed DOI
Huynh-Thu Q., Ghanbari M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008;44:800. doi: 10.1049/el:20080522. DOI
Editorial to the Special Issue on "Visible Light Communications, Networking, and Sensing"
Utilization of an OLED-Based VLC System in Office, Corridor, and Semi-Open Corridor Environments