Utilization of an OLED-Based VLC System in Office, Corridor, and Semi-Open Corridor Environments
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
764461
H2020 Marie Skłodowska-Curie Actions
PubMed
33271783
PubMed Central
PMC7731414
DOI
10.3390/s20236869
PII: s20236869
Knihovny.cz E-zdroje
- Klíčová slova
- delay spread, flexible OLED, optical path loss, visible light communications,
- Publikační typ
- časopisecké články MeSH
Organic light emitting diodes (OLEDs) have recently received growing interest for their merits as soft light and large panels at a low cost for the use in public places such as airports, shopping centers, offices, and train or bus stations. Moreover, the flexible substrate-based OLEDs provide an attractive feature of having curved or rolled lighting sources for the use in wearable devices and display panels. This technology can be implemented in visible light communications (VLC) for several applications such as visual display, data communications, and indoor localization. This article aims to investigate the use of flexible OLED-based VLC in indoor environments (i.e., office, corridor and semi-open corridor in shopping malls). We derive a two-term power series model to be match with the root-mean-square delay spread and optical path loss (OPL). We show that, for OLED positioned on outer-wall of shops, the channel gain is enhanced in contrast to them being positioned on the inner-wall. Moreover, the channel gain in empty environments is higher compare with the furnished rooms. We show that, the OPL for a 10 m link span are lower by 4.4 and 6.1 dB for the empty and semi-open corridors compared with the furnished rooms, when OLED is positioned on outer-wall of shops. Moreover, the channel gain in the corridor is higher compared with the semi-open corridor. We also show that, in furnished and semi-open corridors the OPL values are 55.6 and 57.2 dB at the center of corridor increasing to 87.6 and 90.7 dB at 20 m, respectively, when OLED is positioned on outer-wall of shops.
Zobrazit více v PubMed
Ghassemlooy Z., Alves L.N., Zvanovec S., Khalighi M.A. Visible Light Communications: Theory and Applications. CRC Press; Boca Raton, FL, USA: 2017.
Karunatilaka D., Zafar F., Kalavally V., Parthiban R. LED based indoor visible light communications: State of the art. IEEE Commun. Surv. Tutor. 2015;17:1649–1678. doi: 10.1109/COMST.2015.2417576. DOI
Wu S., Wang H., Youn C.H. Visible light communications for 5G wireless networking systems: From fixed to mobile communications. IEEE Netw. 2014;28:41–45. doi: 10.1109/MNET.2014.6963803. DOI
Aguiar L., de Saa P., Guerra V., Perez-Jimenez R. Survey of VLC and OCC Applications on Tourism Industry: Potentials & Challenges; Proceedings of the 2020 South American Colloquium on Visible Light Communications (SACVC); Santiago, Chile. 1–6 June 2020.
Ji R., Wang S., Liu Q., Lu W. High-speed visible light communications: Enabling technologies and state of the art. Appl. Sci. 2018;8:589. doi: 10.3390/app8040589. DOI
Pathak P.H., Feng X., Hu P., Mohapatra P. Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Commun. Surv. Tutor. 2015;17:2047–2077. doi: 10.1109/COMST.2015.2476474. DOI
Karbalayghareh M., Miramirkhani F., Eldeeb H.B., Kizilirmak R.C., Sait S.M., Uysal M. Channel Modelling and Performance Limits of Vehicular Visible Light Communication Systems. IEEE Trans. Veh. Technol. 2020;69:6891–6901. doi: 10.1109/TVT.2020.2993294. DOI
Cheong Y.K., Ng X.W., Chung W.Y. Hazardless biomedical sensing data transmission using VLC. IEEE Sens. J. 2013;13:3347–3348. doi: 10.1109/JSEN.2013.2274329. DOI
Quintana C., Guerra V., Rufo J., Rabadan J., Perez-Jimenez R. Reading lamp-based visible light communication system for in-flight entertainment. IEEE Trans. Consum. Electron. 2013;59:31–37. doi: 10.1109/TCE.2013.6490238. DOI
Zhuang Y., Hua L., Qi L., Yang J., Cao P., Cao Y., Wu Y., Thompson J., Haas H. A survey of positioning systems using visible LED lights. IEEE Commun. Surv. Tutor. 2018;20:1963–1988. doi: 10.1109/COMST.2018.2806558. DOI
Nuwanpriya A., Ho S.W., Chen C.S. Indoor MIMO visible light communications: Novel angle diversity receivers for mobile users. IEEE J. Sel. Areas Commun. 2015;33:1780–1792. doi: 10.1109/JSAC.2015.2432514. DOI
Eldeeb H.B., Selmy H.A., Elsayed H.M., Badr R.I. Interference mitigation and capacity enhancement using constraint field of view ADR in downlink VLC channel. IET Commun. 2018;12:1968–1978. doi: 10.1049/iet-com.2017.1174. DOI
Chen C., Zhong W.D., Yang H., Zhang S., Du P. Reduction of SINR fluctuation in indoor multi-cell VLC systems using optimized angle diversity receiver. J. Lightw. Technol. 2018;36:3603–3610. doi: 10.1109/JLT.2018.2842080. DOI
Hassan N.B., Ghassemlooy Z., Zvanovec S., Biagi M., Vegni A.M., Zhang M., Luo P. Non-line-of-sight mimo space-time division multiplexing visible light optical camera communications. J. Lightw. Technol. 2019;37:2409–2417. doi: 10.1109/JLT.2019.2906097. DOI
Teli S.R., Matus V., Zvanovec S., Perez-Jimenez R., Vitek S., Ghassemlooy Z. Optical Camera Communications for IoT–Rolling-Shutter Based MIMO Scheme with Grouped LED Array Transmitter. Sensors. 2020;20:3361 PubMed PMC
Strobel N., Droseros N., Köntges W., Seiberlich M., Pietsch M., Schlisske S., Lindheimer F., Schröder R.R., Lemmer U., Pfannmöller M., et al. Color-Selective Printed Organic Photodiodes for Filterless Multichannel Visible Light Communication. Adv. Mater. 2020;32:1908258. doi: 10.1002/adma.201908258. PubMed DOI
Ghassemlooy Z., Arnon S., Uysal M., Xu Z., Cheng J. Emerging optical wireless communications-advances and challenges. IEEE J. Sel. Areas Commun. 2015;33:1738–1749. doi: 10.1109/JSAC.2015.2458511. DOI
Ghassemlooy Z., Popoola W., Rajbhandari S. Optical Wireless Communications: System and Channel Modelling with Matlab®. CRC Press; Boca Raton, FL, USA: 2019.
Kalinowski J. Organic Light-Emitting Diodes: Principles, Characteristics & Processes. CRC Press; Boca Raton, FL, USA: 2018.
Kafafi Z.H. Organic Electroluminescence. CRC Press; Boca Raton, FL, USA: 2018.
Ghassemlooy Z., Khalighi M.-A., Dehao W. Visible Light Communications: Theory and Applications. CRC Press; Boca Raton, FL, USA: 2017. Channel Modeling; pp. 71–92.
Chun H., Chiang C.-J., O’Brien D.C. Visible light communication using OLEDs: Illumination and channel modeling; Proceedings of the 2012 International Workshop on Optical Wireless Communications (IWOW); Pisa, Italy. 22 October 2012; pp. 1–3.
Lee K., Park H., Barry J.R. Indoor channel characteristics for visible light communications. IEEE Commun. Lett. 2011;15:217–219. doi: 10.1109/LCOMM.2011.010411.101945. DOI
Ramirez-Aguilera A., Luna-Rivera J., Guerra V., Rabadán J., Perez-Jimenez R., Lopez-Hernandez F.J. A generalized multi-wavelength propagation model for VLC indoor channels using Monte Carlo simulation. Trans. Emerg. Telecommun. Technol. 2019;30:e3490. doi: 10.1002/ett.3490. DOI
Rodríguez S.P., Jiménez R.P., Mendoza B.R., Hernández F.J.L., Alfonso A.J.A. Simulation of impulse response for indoor visible light communications using 3D CAD models. EURASIP J. Wirel. Commun. Netw. 2013;2013:7. doi: 10.1186/1687-1499-2013-7. DOI
Zemax OpticStudio 18.9. [(accessed on 10 October 2020)]; Available online: http://www.zemax.com/products/opticstudio.
Miramirkhani F., Uysal M. Channel modeling and characterization for visible light communications. IEEE Photonics J. 2015;7:1–16. doi: 10.1109/JPHOT.2015.2504238. DOI
Uysal M., Miramirkhani F., Narmanlioglu O., Baykas T., Panayirci E. IEEE 802.15. 7r1 reference channel models for visible light communications. IEEE Commun. Mag. 2017;55:212–217. doi: 10.1109/MCOM.2017.1600872CM. DOI
Eldeeb H.B., Uysal M., Mana S.M., Hellwig P., Hilt J., Jungnickel V. Channel modelling for light communications: Validation of ray tracing by measurements; Proceedings of the 12th IEEE/IET International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP); Porto, Portugal. 20–22 July 2020.
Chen H., Xu Z. OLED panel radiation pattern and its impact on VLC channel characteristics. IEEE Photonics J. 2017;10:1–10. doi: 10.1109/JPHOT.2017.2774241. DOI
Chaleshtori Z.N., Zvanovec S., Ghassemlooy Z., Eldeeb H.B., Uysal M. A Flexible OLED VLC System for an Office Environment; Proceedings of the 12th IEEE/IET International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP); Porto, Portugal. 20–22 July 2020.
Chaleshtori Z.N., Zvanovec S., Ghassemlooy Z., Eldeeb H.B., Uysal M. Coverage of a shopping mall with flexible OLED-based visible light communications. Opt. Express. 2020;28:10015–10026. doi: 10.1364/OE.389814. PubMed DOI
Pinho P. Optical Communication Technology. IntechOpen; London, UK: 2017.
Proakis J.G., Salehi M. Digital Communications. McGraw-Hill; New York, NY, USA: 2001.
Editorial to the Special Issue on "Visible Light Communications, Networking, and Sensing"
A 40 Mb/s VLC System Reusing an Existing Large LED Panel in an Indoor Office Environment
An Indoor Visible Light Positioning System Using Tilted LEDs with High Accuracy