A 40 Mb/s VLC System Reusing an Existing Large LED Panel in an Indoor Office Environment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
764461
H2020 Marie Skłodowska-Curie Actions
PubMed
33801195
PubMed Central
PMC7957907
DOI
10.3390/s21051697
PII: s21051697
Knihovny.cz E-zdroje
- Klíčová slova
- LED, LED driver, bias-tee, carrierless amplitude and phase modulation (CAP), lighting infrastructure, visible light communication,
- Publikační typ
- časopisecké články MeSH
With advances in solid-state lighting, visible light communication (VLC) has emerged as a promising technology to enhance existing light-emitting diode (LED)-based lighting infrastructure by adding data communication capabilities to the illumination functionality. The last decade has witnessed the evolution of the VLC concept through global standardisation and product launches. Deploying VLC systems typically requires replacing existing light sources with new luminaires that are equipped with data communication functionality. To save the investment, it is clearly desirable to make the most of the existing illumination systems. This paper investigates the feasibility of adding data communication functionality to the existing lighting infrastructure. We do this by designing an experimental system in an indoor environment based on an off-the-shelf LED panel typically used in office environments, with the dimensions of 60 × 60 cm2. With minor modifications, the VLC function is implemented, and all of the modules of the LED panel are fully reused. A data rate of 40 Mb/s is supported at a distance of up to 2 m while using the multi-band carrierless amplitude and phase (CAP) modulation. Two main limiting factors for achieving higher data rates are observed. The first factor is the limited bandwidth of the LED string inside the panel. The second is the flicker due to the residual ripple of the bias current that is generated by the panel's driver. Flicker is introduced by the low-cost driver, which provides bias currents that fluctuate in the low frequency range (less than several kilohertz). This significantly reduces the transmitter's modulation depth. Concurrently, the driver can also introduce an effect that is similar to baseline wander at the receiver if the flicker is not completely filtered out. We also proposed a solution based on digital signal processing (DSP) to mitigate the flicker issue at the receiver side and its effectiveness has been confirmed.
Zobrazit více v PubMed
Ghassemlooy Z., Alves L.N., Zvanovec S., Khalighi M.A. Visible Light Communications: Theory and Applications. CRC Press; Boca Raton, FL, USA: 2017.
Uysal M., Capsoni C., Ghassemlooy Z., Boucouvalas A., Udvary E. Optical Wireless Communications: An Emerging Technology. Springer; Berlin/Heidelberg, Germany: 2016.
Rehman S.U., Ullah S., Chong P.H.J., Yongchareon S., Komosny D. Visible Light Communication: A System Perspective—Overview and Challenges. Sensors. 2019;19:1153. doi: 10.3390/s19051153. PubMed DOI PMC
Steigerwald D.A., Bhat J.C., Collins D., Fletcher R.M., Holcomb M.O., Ludowise M.J., Martin P.S., Rudaz S.L. Illumination with solid state lighting technology. IEEE J. Sel. Top. Quantum Electron. 2002;8:310–320. doi: 10.1109/2944.999186. DOI
Haigh P.A., Ghassemlooy Z., Le Minh H., Rajbhandari S., Arca F., Tedde S.F., Hayden O., Papakonstantinou I. Exploiting Equalization Techniques for Improving Data Rates in Organic Optoelectronic Devices for Visible Light Communications. J. Lightwave Technol. 2012;30:3081–3088. doi: 10.1109/JLT.2012.2210028. DOI
Haigh P.A., Ghassemlooy Z., Rajbhandari S., Papakonstantinou I. Visible light communications using organic light emitting diodes. IEEE Commun. Mag. 2013;51:148–154. doi: 10.1109/MCOM.2013.6576353. DOI
Nazari Chaleshtori Z., Ghassemlooy Z., Eldeeb H.B., Uysal M., Zvanovec S. Utilization of an OLED-Based VLC System in Office, Corridor, and Semi-Open Corridor Environments. Sensors. 2020;20:6869. doi: 10.3390/s20236869. PubMed DOI PMC
Chi Y.C., Hsieh D.H., Lin C.Y., Chen H.Y., Huang C.Y., He J.H., Ooi B., DenBaars S.P., Nakamura S., Kuo H.C., et al. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication. Sci. Rep. 2015;5:18690. doi: 10.1038/srep18690. PubMed DOI PMC
Zafar F., Bakaul M., Parthiban R. Laser-Diode-Based Visible Light Communication: Toward Gigabit Class Communication. IEEE Commun. Mag. 2017;55:144–151. doi: 10.1109/MCOM.2017.1500672CM. DOI
Liu C.B., Sadeghi B., Knightly E.W. Proceedings of the Eighth ACM International Workshop on Vehicular Inter-Networking, Las Vegas, NV, USA, September 2011. Association for Computing Machinery; New York, NY, USA: 2011. Enabling vehicular visible light communication (V2LC) networks; pp. 41–50.
Marabissi D., Mucchi L., Caputo S., Nizzi F., Pecorella T., Fantacci R., Nawaz T., Seminara M., Catani J. Experimental Measurements of a Joint 5G-VLC Communication for Future Vehicular Networks. J. Sens. Actuator Netw. 2020;9:32. doi: 10.3390/jsan9030032. DOI
Caputo S., Mucchi L., Cataliotti F., Seminara M., Nawaz T., Catani J. Measurement-based VLC channel characterization for I2V communications in a real urban scenario. Veh. Commun. 2020:100305. doi: 10.1016/j.vehcom.2020.100305. DOI
Nawaz T., Seminara M., Caputo S., Mucchi L., Catani J. Low-Latency VLC System with Fresnel Receiver for I2V ITS Applications. J. Sens. Actuator Netw. 2020;9:35. doi: 10.3390/jsan9030035. DOI
Khan L.U. Visible light communication: Applications, architecture, standardization and research challenges. Digit. Commun. Netw. 2017;3:78–88. doi: 10.1016/j.dcan.2016.07.004. DOI
Jungnickel V., Hinrichs M., Bober K.L., Kottke C., Corici A.A., Emmelmann M., Rufo J., Bök P., Behnke D., Riege M., et al. Enhance Lighting for the Internet of Things; Proceedings of the Global LIFI Congress (GLC); Paris, France. 12–13 June 2019.
Béchadergue B., Azoulay B. An Industrial View on LiFi Challenges and Future; Proceedings of the 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP); Porto, Portugal. 20–22 July 2020; pp. 1–6.
Haas H., Yin L., Wang Y., Chen C. What is LiFi? J. Lightwave Technol. 2016;34:1533–1544. doi: 10.1109/JLT.2015.2510021. DOI
ITU-T . G.9991: High-Speed Indoor Visible Light Communication Transceiver—System Architecture, Physical Layer and Data Link Layer Specification. ITU-T; Geneva, Switzerland: 2019.
Oksman V., Galli S.G. hn: The new ITU-T home networking standard. IEEE Commun. Mag. 2009;47:138–145. doi: 10.1109/MCOM.2009.5273821. DOI
ITU-T . G.9961: Unified High-Speed Wireline-Based Home Networking Transceivers—Data Link Layer Specification. ITU-T; Geneva, Switzerland: 2018.
Sturniolo A., Cossu G., Messa A., Ciaramella E. Ethernet over commercial lighting by a Visible Light Communication; Proceedings of the 2018 Global LIFI Congress (GLC); Paris, France. 8–9 February 2018; pp. 1–4.
Chvojka P., Burton A., Pesek P., Li X., Ghassemlooy Z., Zvanovec S., Anthony Haigh P. Visible light communications: Increasing data rates with polarization division multiplexing. Opt. Lett. 2020;45:2977–2980. doi: 10.1364/OL.392167. PubMed DOI
Hu F., Li G., Zou P., Hu J., Chen S., Liu Q., Zhang J., Jiang F., Wang S., Chi N. 20.09-Gbit/s Underwater WDM-VLC Transmission based on a Single Si/GaAs-Substrate Multichromatic LED Array Chip; Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC); San Diego, CA, USA. 8–12 March 2020; pp. 1–3.
Bian R., Tavakkolnia I., Haas H. 15.73 Gb/s Visible Light Communication With Off-the-Shelf LEDs. J. Lightwave Technol. 2019;37:2418–2424. doi: 10.1109/JLT.2019.2906464. DOI
Burton A., Bentley E., Minh H.L., Ghassemlooy Z., Aslam N., Liaw S.K. Experimental demonstration of a 10BASE-T Ethernet visible light communications system using white phosphor light-emitting diodes. IET Circuits Devices Syst. 2014;8:322–330. doi: 10.1049/iet-cds.2013.0359. DOI
Sung J.Y., Chow C.W., Yeh C.H. Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications? Opt. Express. 2014;22:20646–20651. doi: 10.1364/OE.22.020646. PubMed DOI
Li H., Chen X., Guo J., Chen H. A 550 Mbit/s real-time visible light communication system based on phosphorescent white light LED for practical high-speed low-complexity application. Opt. Express. 2014;22:27203–27213. doi: 10.1364/OE.22.027203. PubMed DOI
Huang X., Wang Z., Shi J., Wang Y., Chi N. 1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver. Opt. Express. 2015;23:22034–22042. doi: 10.1364/OE.23.022034. PubMed DOI
Li X., Ghassemlooy Z., Zvanovec S., Jimenezz R.P., Haigh P. Should Analogue Pre-equalisers be Avoided in VLC Systems? IEEE Photonics J. 2020;12:1–14. doi: 10.1109/JPHOT.2020.2966875. DOI
Haigh P.A., Darwazeh I. Real-Time Experimental Demonstration of Multi-band CAP Modulation in a VLC System with Off-the-Shelf LEDs; Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS); Paris, France. 29 April–2 May 2019; pp. 1001–1002. DOI
Haigh P.A., Burton A., Werfli K., Minh H.L., Bentley E., Chvojka P., Popoola W.O., Papakonstantinou I., Zvanovec S. A Multi-CAP Visible-Light Communications System With 4.85-b/s/Hz Spectral Efficiency. IEEE J. Sel. Areas Commun. 2015;33:1771–1779. doi: 10.1109/JSAC.2015.2433053. DOI
Haigh P.A., Le S.T., Zvanovec S., Ghassemlooy Z., Luo P., Xu T., Chvojka P., Kanesan T., Giacoumidis E., Canyelles-Pericas P., et al. Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems. IEEE Wirel. Commun. 2015;22:46–53. doi: 10.1109/MWC.2015.7096284. DOI
Wu F.M., Lin C.T., Wei C.C., Chen C.W., Chen Z.Y., Huang H.T., Chi S. Performance Comparison of OFDM Signal and CAP Signal Over High Capacity RGB-LED-Based WDM Visible Light Communication. IEEE Photonics J. 2013;5:7901507. doi: 10.1109/JPHOT.2013.2271637. DOI
Deng X., Arulandu K., Wu Y., Zhou G., Linnartz J.M.G. Performance Analysis for Joint Illumination and Visible Light Communication Using Buck Driver. IEEE Trans. Commun. 2018;66:2065–2078. doi: 10.1109/TCOMM.2018.2792018. DOI
Gao Y., Li L., Mok P.K.T. An AC Input Inductor-Less LED Driver for Efficient Lighting and Visible Light Communication. IEEE J. Solid-State Circuits. 2018;53:2343–2355. doi: 10.1109/JSSC.2018.2829204. DOI
Deng X., Arulandu K., Wu Y., Mardanikorani S., Zhou G., Linnartz J.M.G. Modeling and Analysis of Transmitter Performance in Visible Light Communications. IEEE Trans. Veh. Technol. 2019;68:2316–2331. doi: 10.1109/TVT.2019.2891639. DOI
Li X., Ghassemlooy Z., Zvanovec S., Haigh P.A. Experimental Demonstration of a 40 Mb/s VLC System Using a Large Off-the-Shelf LED Panel; Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP); Porto, Portugal. 20–22 July 2020; pp. 1–5. DOI
Li X., Ghassemlooy Z., Zvanovec S., Zhang M., Burton A. Equivalent Circuit Model of High Power LEDs for VLC Systems; Proceedings of the 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC); Tehran, Iran. 27–28 April 2019; pp. 90–95.
Mana S.M., Hellwig P., Hilt J., Berenguer P.W., Jungnickel V. Experiments in Non-Line-of-Sight Li-Fi Channels; Proceedings of the Global LIFI Congress (GLC); Paris, France. 12–13 June 2019; pp. 1–6.
Eldeeb H.B., Uysal M., Mana S.M., Hellwig P., Hilt J., Jungnickel V. Channel Modelling for Light Communications: Validation of Ray Tracing by Measurements; Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP); Porto, Portugal. 20–22 July 2020; pp. 1–6. DOI
Olmedo M.I., Zuo T., Jensen J.B., Zhong Q., Xu X., Popov S., Monroy I.T. Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links. J. Lightwave Technol. 2014;32:798–804. doi: 10.1109/JLT.2013.2284926. DOI
IEEE Power Electronics Society . IEEE Recommended Practices for Modulating Current in High-Brightness LEDs for Mitigating Health Risks to Viewers. IEEE; New York, NY, USA: 2015. DOI
European Committee for Standardisation . Light and Lighting—Lighting of Work Places—Part 1: Indoor Work Places. Volume 12464. BSI Standard Publication; Brussels, Belgium: 2011. p. 10.
Editorial to the Special Issue on "Visible Light Communications, Networking, and Sensing"