Visible Light Communication: A System Perspective-Overview and Challenges

. 2019 Mar 07 ; 19 (5) : . [epub] 20190307

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30866473

Visible light communication (VLC) is a new paradigm that could revolutionise the future of wireless communication. In VLC, information is transmitted through modulating the visible light spectrum (400⁻700 nm) that is used for illumination. Analytical and experimental work has shown the potential of VLC to provide high-speed data communication with the added advantage of improved energy efficiency and communication security/privacy. VLC is still in the early phase of research. There are fewer review articles published on this topic mostly addressing the physical layer research. Unlike other reviews, this article gives a system prespective of VLC along with the survey on existing literature and potential challenges toward the implementation and integration of VLC.

Zobrazit více v PubMed

Cho J., Park J.H., Kim J.K., Schubert E.F. White light-emitting diodes: History, progress, and future. Laser Photonics Rev. 2017;11:1600147. doi: 10.1002/lpor.201600147. DOI

Nardelli A., Deuschle E., de Azevedo L.D., Pessoa J.L.N., Ghisi E. Assessment of Light Emitting Diodes technology for general lighting: A critical review. Renew. Sustain. Energy Rev. 2017;75:368–379. doi: 10.1016/j.rser.2016.11.002. DOI

Aslan J., Mayers K., Koomey J.G., France C. Electricity intensity of Internet data transmission: Untangling the estimates. J. Ind. Ecol. 2018;22:785–798. doi: 10.1111/jiec.12630. DOI

Belkhir L., Elmeligi A. Assessing ICT global emissions footprint: Trends to 2040 and recommendations. J. Clean. Prod. 2018;177:448–463. doi: 10.1016/j.jclepro.2017.12.239. DOI

Andrae A.S., Edler T. On global electricity usage of communication technology: Trends to 2030. Challenges. 2015;6:117–157. doi: 10.3390/challe6010117. DOI

Yusof S.S.S., Thamrin N.M., Nordin M.K., Yusoff A.S.M., Sidik N.J. Effect of artificial lighting on typhonium flagelliforme for indoor vertical farming; Proceedings of the 2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS); Selangor, Malaysia. 22 October 2016; pp. 7–10.

Yeh N., Ding T.J., Yeh P. Light-emitting diodes? light qualities and their corresponding scientific applications. Renew. Sustain. Energy Rev. 2015;51:55–61. doi: 10.1016/j.rser.2015.04.177. DOI

Barolet D. Light-emitting diodes (LEDs) in dermatology. Semin. Cutan. Med. Surg. 2008;27:227–238. doi: 10.1016/j.sder.2008.08.003. PubMed DOI

Desmet K.D., Paz D.A., Corry J.J., Eells J.T., Wong-Riley M.T., Henry M.M., Buchmann E.V., Connelly M.P., Dovi J.V., Liang H.L., et al. Clinical and experimental applications of NIR-LED photobiomodulation. Photomed. Laser Ther. 2006;24:121–128. doi: 10.1089/pho.2006.24.121. PubMed DOI

Chen C., Tsonev D., Haas H. Joint transmission in indoor visible light communication downlink cellular networks; Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps); Atlanta, GA, USA. 9–13 December 2013; pp. 1127–1132.

Arnon S. Optimised optical wireless car-to-traffic-light communication. Trans. Emerg. Telecommun. Technol. 2014;25:660–665. doi: 10.1002/ett.2817. DOI

Tang X., Le Minh H., Viriyasitavat W., Ghassemlooy Z., Tsai H.M., Luo P. Visible Light Communications. CRC Press; Boca Raton, FL, USA: 2017. Car-to-Car Visible Light Communications; pp. 275–304.

Yaqoob I., Hashem I.A.T., Mehmood Y., Gani A., Mokhtar S., Guizani S. Enabling communication technologies for smart cities. IEEE Commun. Mag. 2017;55:112–120. doi: 10.1109/MCOM.2017.1600232CM. DOI

Luo J., Fan L., Li H. Indoor positioning systems based on visible light communication: State of the art. IEEE Commun. Surv. Tutor. 2017;19:2871–2893. doi: 10.1109/COMST.2017.2743228. DOI

Ashok A. Position: DroneVLC: Visible Light Communication for Aerial Vehicular Networking; Proceedings of the 4th ACM Workshop on Visible Light Communication Systems; Snowbird, UT, USA. 16–20 October 2017; pp. 29–30.

Patil D., Shah K., Patadia U., Sheth N., Solanki R., Singh A. International Symposium on Signal Processing and Intelligent Recognition Systems. Springer; Berlin/Heidelberg, Germany: 2017. Swarm Robots in a Closed Loop Visual Odometry System by Using Visible Light Communication; pp. 201–212.

Li T., An C., Tian Z., Campbell A.T., Zhou X. Human sensing using visible light communication; Proceedings of the ACM 21st Annual International Conference on Mobile Computing and Networking; Paris, France. 7–11 September 2015; pp. 331–344.

Khan L.U. Visible light communication: Applications, architecture, standardization and research challenges. Digit. Commun. Netw. 2017;3:78–88. doi: 10.1016/j.dcan.2016.07.004. DOI

Schmid S., von Deschwanden B., Mangold S., Gross T.R. Adaptive software-defined visible light communication networks; Proceedings of the 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI); Pittsburgh, PA, USA. 18–21 April 2017; pp. 109–120.

Sarwar M., Soomro T.R. Impact of Smartphones on Society. Eur. J. Sci. Res. 2013;98:216–226.

David K., Berndt H. 6G Vision and Requirements: Is There Any Need for Beyond 5G? EEE Veh. Technol. Mag. 2018;13:72–80. doi: 10.1109/MVT.2018.2848498. DOI

MIMS F.M., III Alexander Graham Bell and the photophone: the centennial of the invention of light-wave communications, 1880–1980. Opt. News. 1980;6:8–16. doi: 10.1364/ON.6.1.000008. DOI

Visible Light Communications Association. [(accessed on 10 October 2018)]; Available online: http://vlca.net/standard.

Liang K., Chow C.W., Liu Y. RGB visible light communication using mobile-phone camera and multi-input multi-output. Opt. Express. 2016;24:9383–9388. doi: 10.1364/OE.24.009383. PubMed DOI

Chow C.W., Shiu R.J., Liu Y.C., Yeh C.H., Liao X.L., Lin K.H., Wang Y.C., Chen Y.Y. Secure mobile-phone based visible light communications with different noise-ratio light-panel. IEEE Photonics J. 2018;10:1–6. doi: 10.1109/JPHOT.2018.2807582. DOI

Chow C.W., Chen C.Y., Chen S.H. Visible light communication using mobile-phone camera with data rate higher than frame rate. Opt. Express. 2015;23:26080–26085. doi: 10.1364/OE.23.026080. PubMed DOI

Chow C.W., Shiu R.J., Liu Y.C., Liu Y., Yeh C.H. Non-flickering 100 m RGB visible light communication transmission based on a CMOS image sensor. Opt. Express. 2018;26:7079–7084. doi: 10.1364/OE.26.007079. PubMed DOI

Lee C., Zhang C., Cantore M., Farrell R.M., Oh S.H., Margalith T., Speck J.S., Nakamura S., Bowers J.E., DenBaars S.P. 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. Opt. Express. 2015;23:16232–16237. doi: 10.1364/OE.23.016232. PubMed DOI

Tsonev D., Chun H., Rajbhandari S., McKendry J.J., Videv S., Gu E., Haji M., Watson S., Kelly A.E., Faulkner G., et al. A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED. IEEE Photon. Technol. Lett. 2014;26:637–640. doi: 10.1109/LPT.2013.2297621. DOI

Viola S., Islim M.S., Watson S., Videv S., Haas H., Kelly A.E. 15 Gb/s OFDM-based VLC using direct modulation of 450 GaN laser diode; Proceedings of the Advanced Free-Space Optical Communication Techniques and Applications III, International Society for Optics and Photonics; Warsaw, Poland. 11–14 September 2017; p. 104370E.

Zafar F., Bakaul M., Parthiban R. Laser-diode-based visible light communication: Toward gigabit class communication. IEEE Commun. Mag. 2017;55:144–151. doi: 10.1109/MCOM.2017.1500672CM. DOI

Watson S., Viola S., Giuliano G., Najda S., Perlin P., Suski T., Marona L., Leszczyński M., Wisniewski P., Czernecki R., et al. High speed visible light communication using blue GaN laser diodes; Proceedings of the Advanced Free-Space Optical Communication Techniques and Applications II, International Society for Optics and Photonics; Edinburgh, UK. 26–29 September 2016; p. 99910A.

IEEE Standard Association . IEEE Standard for Local and Metropolitan Area Networks-Part 15.7: Short-Rang Wireless Optical Communication Using Visible Light. IEEE; Piscataway, NZ, USA: 2011. pp. 1–309. DOI

Roberts R.D., Rajagopal S., Lim S.K. IEEE 802.15. 7 physical layer summary; Proceedings of the 2011 IEEE GLOBECOM Workshops (GC Wkshps); Houston, TX, USA. 5–9 December 2011; pp. 772–776.

Wang Q., Giustiniano D., Puccinelli D. OpenVLC: Software-defined visible light embedded networks; Proceedings of the 1st ACM MobiCom Workshop on Visible Light Communication Systems; Maui, HI, USA. 7 September 2014; pp. 15–20.

Galisteo A., Juara D., Giustiniano D. Research in Visible Light Communication Systems with OpenVLC1.3. arXiv. 2018. 1812.06788

Galisteo A., Wang Q., Deshpande A., Zuniga M., Giustiniano D. Follow that Light: Leveraging LEDs for Relative Two-Dimensional Localization; Proceedings of the ACM 13th International Conference on emerging Networking EXperiments and Technologies; Incheon, Korea. 12–15 December 2017; pp. 187–198.

Wang Q., Giustiniano D., Zuniga M. In light and in darkness, in motion and in stillness: A reliable and adaptive receiver for the internet of lights. IEEE J. Sel. Areas Commun. 2018;36:149–161. doi: 10.1109/JSAC.2017.2774422. DOI

Laych K. Global Status Report on Road Safety. [(accessed on 10 October 2018)]; Available online: https://www.unece.org/fileadmin/DAM/trans/doc/2018/SafeFITS/S3_Iaych.pdf.

Abualhoul M. Ph.D. Thesis. MINES ParisTech; Paris, France: 2016. Visible Light and Radio Communication for Cooperative Autonomous Driving: Applied to Vehicle Convoy.

Căilean A.M., Dimian M. Current challenges for visible light communications usage in vehicle applications: A survey. IEEE Commun. Surv. Tutor. 2017;19:2681–2703. doi: 10.1109/COMST.2017.2706940. DOI

Ucar S., Ergen S.C., Ozkasap O. IEEE 802.11 p and Visible Light Hybrid Communication based Secure Autonomous Platoon. IEEE Trans. Veh. Technol. 2018;67:8667–8681. doi: 10.1109/TVT.2018.2840846. DOI

Kumar N., Lourenço N., Terra D., Alves L.N., Aguiar R.L. Visible light communications in intelligent transportation systems; Proceedings of the 2012 IEEE Intelligent Vehicles Symposium; Alcala de Henares, Spain. 3–7 June 2012; pp. 748–753.

Uysal M., Ghassemlooy Z., Bekkali A., Kadri A., Menouar H. Visible light communication for vehicular networking: Performance study of a V2V system using a measured headlamp beam pattern model. IEEE Veh. Technol. Mag. 2015;10:45–53. doi: 10.1109/MVT.2015.2481561. DOI

Wang N., Liu C., Lu Y., Shen J. A Visible Light Communication (VLC) based Intelligent Transportation System for lorry fleet; Proceedings of the IEEE 2017 16th International Conference on Optical Communications and Networks (ICOCN); Wuzhen, China. 7–10 August 2017; pp. 1–3.

Yamazato T., Takai I., Okada H., Fujii T., Yendo T., Arai S., Andoh M., Harada T., Yasutomi K., Kagawa K., et al. Image-sensor-based visible light communication for automotive applications. IEEE Commun. Mag. 2014;52:88–97. doi: 10.1109/MCOM.2014.6852088. DOI

Ayub S., Kariyawasam S., Honary M., Honary B. A practical approach of VLC architecture for smart city; Proceedings of the IEEE 2013 Loughborough Antennas and Propagation Conference (LAPC); Loughborough, UK. 11–12 November 2013; pp. 106–111.

Boubakri W., Abdallah W., Boudriga N. A light-based communication architecture for smart city applications; Proceedings of the IEEE 2015 17th International Conference on Transparent Optical Networks (ICTON); Budapest, Hungary. 5–9 July 2015; pp. 1–6.

Sun G., Liu Y., Yang M., Wang A., Liang S., Zhang Y. Coverage optimization of VLC in smart homes based on improved cuckoo search algorithm. Comput. Netw. 2017;116:63–78. doi: 10.1016/j.comnet.2017.02.014. DOI

Mai D.H., Pham A.T. Implementation and Evaluation of VLC-Based Indoor Positioning Systems for Smart Supermarkets; Proceedings of the IEEE 2018 9th International Conference on Awareness Science and Technology (iCAST); Fukuoka, Japan. 19–21 September 2018; pp. 273–278.

Tippenhauer N.O., Giustiniano D., Mangold S. Toys communicating with leds: Enabling toy cars interaction; Proceedings of the 2012 IEEE Consumer Communications and Networking Conference; Las Vegas, NV, USA. 14–17 January 2012; pp. 48–49.

Xu X., Shen Y., Yang J., Xu C., Shen G., Chen G., Ni Y. Passivevlc: Enabling practical visible light backscatter communication for battery-free iot applications; Proceedings of the ACM 23rd Annual International Conference on Mobile Computing and Networking; Snowbird, UT, USA. 16–20 October 2017; pp. 180–192.

Ding W., Yang F., Yang H., Wang J., Wang X., Zhang X., Song J. A hybrid power line and visible light communication system for indoor hospital applications. Comput. Ind. 2015;68:170–178. doi: 10.1016/j.compind.2015.01.006. DOI

Abdaoui R., Zhang X., Xu F. Potentiality of a bi-directional system based on 60 GHz and VLC technologies for e-health applications; Proceedings of the 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB); Nanjing, China. 16–19 October 2016; pp. 1–3.

Wang Q., Zuniga M., Giustiniano D. Passive communication with ambient light; Proceedings of the ACM 12th International on Conference on Emerging Networking EXperiments and Technologies; Irvine, CA, USA. 12–15 December 2016; pp. 97–104.

Maiga A., Baudais J.Y., Hélard J.F. Very high bit rate power line communications for home networks; Proceedings of the 2009 IEEE International Symposium on Power Line Communications and Its Applications; Dresden, Germany. 29 March–1 April 2009; pp. 313–318.

Tonello A.M., Versolatto F., Pittolo A. In-home power line communication channel: Statistical characterization. IEEE Trans. Commun. 2014;62:2096–2106. doi: 10.1109/TCOMM.2014.2317790. DOI

Wang Y., Chi N., Wang Y., Tao L., Shi J. Network architecture of a high-speed visible light communication local area network. IEEE Photonics Technol. Lett. 2015;27:197–200. doi: 10.1109/LPT.2014.2364955. DOI

Danakis C., Afgani M., Povey G., Underwood I., Haas H. Using a CMOS camera sensor for visible light communication; Proceedings of the IEEE Globecom Workshops (GC Wkshps); Anaheim, CA, USA. 3–7 December 2012; pp. 1244–1248.

Chen Y.T. Achieve user authentication and seamless connectivity on wifi and wimax interworked wireless city; Proceedings of the 2007 IFIP International Conference on Wireless and Optical Communications Networks; Singapore. 2–4 July 2007; pp. 1–5.

Khan M.A., Cherif W., Filali F., Hamila R. Wi-Fi Direct Research-Current Status and Future Perspectives. J. Netw. Comput. Appl. 2017;93:245–258. doi: 10.1016/j.jnca.2017.06.004. DOI

Haas H., Yin L., Wang Y., Chen C. What is lifi? J. Lightw. Technol. 2016;34:1533–1544. doi: 10.1109/JLT.2015.2510021. DOI

Shao S., Khreishah A., Rahaim M.B., Elgala H., Ayyash M., Little T.D., Wu J. An indoor hybrid WiFi-VLC internet access system; Proceedings of the 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems; Philadelphia, PA, USA. 28–30 October 2014; pp. 569–574.

Naribole S., Chen S., Heng E., Knightly E. LiRa: A WLAN architecture for visible light communication with a Wi-Fi uplink; Proceedings of the 2017 14th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON); San Diego, CA, USA. 12–14 June 2017; pp. 1–9.

Boucouvalas A., Chatzimisios P., Ghassemlooy Z., Uysal M., Yiannopoulos K. Standards for indoor optical wireless communications. IEEE Commun. Mag. 2015;53:24–31. doi: 10.1109/MCOM.2015.7060515. DOI

Khreishah A., Shao S., Gharaibeh A., Ayyash M., Elgala H., Ansari N. A Hybrid RF-VLC System for Energy Efficient Wireless Access. arXiv. 2018. 1806.05265 DOI

Kashef M., Ismail M., Abdallah M., Qaraqe K.A., Serpedin E. Energy efficient resource allocation for mixed RF/VLC heterogeneous wireless networks. IEEE J. Sel. Areas Commun. 2016;34:883–893. doi: 10.1109/JSAC.2016.2544618. DOI

Shao S., Khreishah A., Ayyash M., Rahaim M.B., Elgala H., Jungnickel V., Schulz D., Little T.D., Hilt J., Freund R. Design and analysis of a visible-light-communication enhanced WiFi system. J. Opt. Commun. Netw. 2015;7:960–973. doi: 10.1364/JOCN.7.000960. DOI

Liverman S., Wang Q., Chu Y.J., Borah A., Wang S., Natarajan A., Wang A.X., Nguyen T. WiFO: A hybrid communication network based on integrated free-space optical and WiFi femtocells. Comput. Commun. 2018;132:74–83. doi: 10.1016/j.comcom.2018.10.005. DOI

Basnayaka D.A., Haas H. Design and analysis of a hybrid radio frequency and visible light communication system. IEEE Trans. Commun. 2017;65:4334–4347. doi: 10.1109/TCOMM.2017.2702177. DOI

Hammouda M., Akın S., Vegni A.M., Haas H., Peissig J. Hybrid RF/VLC Systems under QoS Constraints. arXiv. 2018. 1804.05211

Li Z., Shao S., Khreishah A., Ayyash M., Abdalla I., Elgala H., Rahaim M., Little T. Design and Implementation of a Hybrid RF-VLC System with Bandwidth Aggregation; Proceedings of the 2018 14th International Wireless Communications and Mobile Computing Conference (IWCMC); Limassol, Cyprus. 25–29 June 2018; pp. 194–200.

Basnayaka D.A., Haas H. Hybrid RF and VLC systems: Improving user data rate performance of VLC systems; Proceedings of the 2015 IEEE 81st Vehicular Technology Conference (VTC Spring); Glasgow, UK. 11–14 May 2015; pp. 1–5.

Alresheedi M.T., Hussein A.T., Elmirghani J.M. Uplink design in VLC systems with IR sources and beam steering. IET Commun. 2017;11:311–317. doi: 10.1049/iet-com.2016.0495. DOI

Quintana C., Guerra V., Rufo J., Rabadan J., Perez-Jimenez R. Ethernet to Visible-Light Communications Adapter for In-Flight Passenger Data Networking; Proceedings of the World Congress on Engineering and Technology 2011; Shanghai, China. 28 October–2 November 2011.

IEEE Standards Association IEEE standard for broadband over power line networks: Medium access control and physical layer specifications. IEEE Std. 1901. 2010;2010:1–1586.

Ferreira H.C., Lampe L., Newbury J., Swart T.G. Power Line Communications: Theory and Applications For Narrowband and Broadband Communications Over Power Lines. John Wiley and Sons; Hoboken, NJ, USA: 2011.

Galli S., Scaglione A., Wang Z. For the grid and through the grid: The role of power line communications in the smart grid. Proc. IEEE. 2011;99:998–1027. doi: 10.1109/JPROC.2011.2109670. DOI

Hu P., Pathak P.H., Das A.K., Yang Z., Mohapatra P. PLiFi: Hybrid WiFi-VLC networking using power lines; Proceedings of the 3rd ACM Workshop on Visible Light Communication Systems; New York, NY, USA. 3–7 October 2016; pp. 31–36.

Ndjiongue A.R., Ferreira H.C., Song J., Yang F., Cheng L. Hybrid PLC-VLC channel model and spectral estimation using a nonparametric approach. Trans. Emerg. Telecommun. Technol. 2017;28:e3224. doi: 10.1002/ett.3224. DOI

Yan Y., Ding W., Yang H., Song J. The video transmission platform for The PLC and VLC integrated system; Proceedings of the 2015 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting; Ghent, Belgium. 17–19 June 2015; pp. 1–5.

Song J., Liu S., Zhou G., Yu B., Ding W., Yang F., Zhang H., Zhang X., Amara A. A cost-effective approach for ubiquitous broadband access based on hybrid PLC-VLC system; Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS); Montreal, QC, Canada. 22–25 May 2016; pp. 2815–2818.

Seal A., Bhutani S., Sangeetha A. Performance Analysis of Radio over Fiber (RoF) System for Indoor Applications; Proceedings of the 2017 International Conference on Technical Advancements in Computers and Communications (ICTACC); Melmaurvathur, India. 10–11 April 2017; pp. 73–76.

Gomez A., Shi K., Quintana C., Maher R., Faulkner G., Bayvel P., Thomsen B.C., O’Brien D. Design and demonstration of a 400 Gb/s indoor optical wireless communications link. J. Lightw. Technol. 2016;34:5332–5339. doi: 10.1109/JLT.2016.2616844. DOI

Schmid S., Corbellini G., Mangold S., Gross T.R. LED-to-LED visible light communication networks; Proceedings of the fourteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing; Bangalore, India. 29 July–1 August 2013; pp. 1–10.

Schmid S., Ziegler J., Corbellini G., Gross T.R., Mangold S. Using consumer LED light bulbs for low-cost visible light communication systems; Proceedings of the 1st ACM MobiCom Workshop on Visible Light Communication Systems; Maui, HI, USA. 7 September 2014; pp. 9–14.

Dietz P., Yerazunis W., Leigh D. International Conference on Ubiquitous Computing. Springer; Berlin/Heidelberg, Germany: 2003. Very low-cost sensing and communication using bidirectional LEDs; pp. 175–191.

Schmid S., Ziegler J., Gross T.R., Hitz M., Psarra A., Corbellini G., Mangold S. (In) visible light communication: Combining illumination and communication; Proceedings of the ACM SIGGRAPH 2014 Emerging Technologies; Vancouver, BC, Canada. 10–14 August 2014; p. 13.

Li S., Pandharipande A., Willems F.M. Two-Way Visible Light Communication and Illumination With LEDs. IEEE Trans. Commun. 2017;65:740–750. doi: 10.1109/TCOMM.2016.2626362. DOI

Yeh C.H., Wei L.Y., Chow C.W. Using a single VCSEL source employing OFDM downstream signal and remodulated OOK upstream signal for bi-directional visible light communications. Sci. Rep. 2017;7:15846. doi: 10.1038/s41598-017-15856-x. PubMed DOI PMC

Heydariaan M., Yin S., Gnawali O., Puccinelli D., Giustiniano D. Embedded Visible Light Communication: Link Measurements and Interpretation; Proceedings of the 2016 International Conference on Embedded Wireless Systems and Networks (EWSN’16); Graz, Austria. 15–17 February 2016; pp. 341–346.

Wang Q., Giustiniano D. Intra-frame bidirectional transmission in networks of visible LEDs. IEEE/ACM Trans. Netw. 2016;24:1–13. doi: 10.1109/TNET.2016.2530874. DOI

Giustiniano D., Tippenhauer N.O., Mangold S. Low-complexity visible light networking with LED-to-LED communication; Proceedings of the 2012 IFIP Wireless Days; Dublin, Ireland. 21–23 November 2012; pp. 1–8.

Wu H., Wang Q., Xiong J., Zuniga M. SmartVLC: When Smart Lighting Meets VLC; Proceedings of the ACM 13th International Conference on emerging Networking EXperiments and Technologies; Incheon, Korea. 12–15 December 2017; pp. 212–223.

Kim D.R., Yang S.H., Kim H.S., Son Y.H., Han S.K. Outdoor visible light communication for inter-vehicle communication using controller area network; Proceedings of the 2012 Fourth International Conference on Communications and Electronics (ICCE); Hue, Vietnam. 1–3 August 2012; pp. 31–34.

Rajagopal S., Roberts R.D., Lim S.K. IEEE 802.15. 7 visible light communication: modulation schemes and dimming support. IEEE Commun. Mag. 2012;50:72–82. doi: 10.1109/MCOM.2012.6163585. DOI

Noshad M., Brandt-Pearce M. Can visible light communications provide Gb/s service? arXiv. 2013. 1308.3217

Beysens J., Galisteo A., Wang Q., Juara D., Giustiniano D., Pollin S. DenseVLC: A cell-free massive MIMO system with distributed LEDs; Proceedings of the ACM 14th International Conference on emerging Networking EXperiments and Technologies; Heraklion, Greece. 4–7 December 2018; pp. 320–332.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...