Optimizing Wireless Connectivity: A Deep Neural Network-Based Handover Approach for Hybrid LiFi and WiFi Networks
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38610234
PubMed Central
PMC11014341
DOI
10.3390/s24072021
PII: s24072021
Knihovny.cz E-zdroje
- Klíčová slova
- DNN, HLWNet, WiFi, handover, light fidelity,
- Publikační typ
- časopisecké články MeSH
A Hybrid LiFi and WiFi network (HLWNet) integrates the rapid data transmission capabilities of Light Fidelity (LiFi) with the extensive connectivity provided by Wireless Fidelity (WiFi), resulting in significant benefits for wireless data transmissions in the designated area. However, the challenge of decision-making during the handover process in HLWNet is made more complex due to the specific characteristics of electromagnetic signals' line-of-sight transmission, resulting in a greater level of intricacy compared to previous heterogeneous networks. This research work addresses the problem of handover decisions in the Hybrid LiFi and WiFi networks and treats it as a binary classification problem. Consequently, it proposes a handover method based on a deep neural network (DNN). The comprehensive handover scheme incorporates two sets of neural networks (ANN and DNN) that utilize input factors such as channel quality and the mobility of users to enable informed decisions during handovers. Following training with labeled datasets, the neural-network-based handover approach achieves an accuracy rate exceeding 95%. A comparative analysis of the proposed scheme against the benchmark reveals that the proposed method considerably increases user throughput by approximately 18.58% to 38.5% while reducing the handover rate by approximately 55.21% to 67.15% compared to the benchmark artificial neural network (ANN); moreover, the proposed method demonstrates robustness in the face of variations in user mobility and channel conditions.
College of Science and Engineering Flinders University Adelaide SA 5042 Australia
Department of Telecommunications Brno University of Technology 601 90 Brno Czech Republic
Zobrazit více v PubMed
You X., Wang C.-X., Huang J., Gao X., Zhang Z., Wang M., Huang Y., Zhang C., Jiang Y., Wang J., et al. Towards 6G Wireless Communication Networks: Vision, Enabling Technologies, and New Paradigm Shifts. Sci. China Inf. Sci. 2021;64:110301. doi: 10.1007/s11432-020-2955-6. DOI
Lee I., Lee K. The Internet of Things (IoT): Applications, Investments, and Challenges for Enterprises. Bus. Horiz. 2015;58:431–440. doi: 10.1016/j.bushor.2015.03.008. DOI
Besjedica T., Fertalj K., Lipovac V., Zakarija I. Evolution of Hybrid LiFi–WiFi Networks: A Survey. Sensors. 2023;23:4252. doi: 10.3390/s23094252. PubMed DOI PMC
Dang S., Amin O., Shihada B., Alouini M.-S. What Should 6G Be? Nat. Electron. 2020;3:20–29. doi: 10.1038/s41928-019-0355-6. DOI
Rehman S.U., Ullah S., Chong P.H.J., Yongchareon S., Komosny D. Visible Light Communication: A System Perspective—Overview and Challenges. Sensors. 2019;19:1153. doi: 10.3390/s19051153. PubMed DOI PMC
Rahaim M.B., Vegni A.M., Little T.D.C. A Hybrid Radio Frequency and Broadcast Visible Light Communication System; Proceedings of the 2011 IEEE GLOBECOM Workshops (GC Wkshps); Houston, TX, USA. 5–9 December 2011; pp. 792–796. DOI
Haas H., Yin L., Wang Y., Chen C. What Is LiFi? J. Light. Technol. 2016;34:1533–1544. doi: 10.1109/JLT.2015.2510021. DOI
Islim M.S., Ferreira R.X., He X., Xie E., Videv S., Viola S., Watson S., Bamiedakis N., Penty R.V., White I.H., et al. Towards 10 Gb/s Orthogonal Frequency Division Multiplexing-Based Visible Light Communication Using a GaN Violet Micro-LED. Photon. Res. PRJ. 2017;5:A35–A43. doi: 10.1364/PRJ.5.000A35. DOI
Arfaoui M.A., Soltani M.D., Tavakkolnia I., Ghrayeb A., Assi C.M., Safari M., Haas H. Invoking Deep Learning for Joint Estimation of Indoor LiFi User Position and Orientation. IEEE J. Sel. Areas Commun. 2021;39:2890–2905. doi: 10.1109/JSAC.2021.3064637. DOI
Paramita S., Srivastava A., Bohara V.A., Mitra A., Atluri H.K., Paventhan A. Demo of Hybrid LiFi/WiFi Network for an Indoor Environment; Proceedings of the 2023 15th International Conference on Communication Systems & Networks (COMSNETS); Bangalore, India. 3–8 January 2023; pp. 213–215. DOI
Matheus L.E.M., Vieira A.B., Vieira L.F.M., Vieira M.A.M., Gnawali O. Visible Light Communication: Concepts, Applications and Challenges. IEEE Commun. Surv. Tutor. 2019;21:3204–3237. doi: 10.1109/COMST.2019.2913348. DOI
Elgala H., Mesleh R., Haas H. Indoor Optical Wireless Communication: Potential and State-of-the-Art. IEEE Commun. Mag. 2011;49:56–62. doi: 10.1109/MCOM.2011.6011734. DOI
Soltani M.D., Kazemi H., Safari M., Haas H. Handover Modeling for Indoor Li-Fi Cellular Networks: The Effects of Receiver Mobility and Rotation; Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC); San Francisco, CA, USA. 19–22 March 2017; pp. 1–6. DOI
Wu X., Soltani M.D., Zhou L., Safari M., Haas H. Hybrid LiFi and WiFi Networks: A Survey. IEEE Commun. Surv. Tutor. 2021;23:1398–1420. doi: 10.1109/COMST.2021.3058296. DOI
Wu X., O’Brien D.C. A Novel Machine Learning-Based Handover Scheme for Hybrid LiFi and WiFi Networks; Proceedings of the 2020 IEEE Globecom Workshops; Taipei, Taiwan. 7–11 December 2020; pp. 1–5. DOI
Ma G., Parthiban R., Karmakar N. An Adaptive Handover Scheme for Hybrid LiFi and WiFi Networks. IEEE Access. 2022;10:18955–18965. doi: 10.1109/ACCESS.2022.3151858. DOI
Hou J., O’Brien D.C. Vertical Handover-Decision-Making Algorithm Using Fuzzy Logic for the Integrated Radio-and-OW System. IEEE Trans. Wirel. Commun. 2006;5:176–185. doi: 10.1109/TWC.2006.1576541. DOI
Wang Y., Wu X., Haas H. Fuzzy Logic Based Dynamic Handover Scheme for Indoor Li-Fi and RF Hybrid Network; Proceedings of the 2016 IEEE International Conference on Communications (ICC); Kuala Lumpur, Malaysia. 22–27 May 2016; pp. 1–6. DOI
Wang F., Wang Z., Qian C., Dai L., Yang Z. Efficient Vertical Handover Scheme for Heterogeneous VLC-RF Systems. J. Opt. Commun. Netw. JOCN. 2015;7:1172–1180. doi: 10.1364/JOCN.7.001172. DOI
Stevens-Navarro E., Wong V.W.S., Lin Y. A Vertical Handoff Decision Algorithm for Heterogeneous Wireless Networks; Proceedings of the 2007 IEEE Wireless Communications and Networking Conference; Hong Kong, China. 11–15 March 2007; pp. 3199–3204. DOI
Niyato D., Hossain E. Dynamics of Network Selection in Heterogeneous Wireless Networks: An Evolutionary Game Approach. IEEE Trans. Veh. Technol. 2009;58:2008–2017. doi: 10.1109/TVT.2008.2004588. DOI
Liang S., Zhang Y., Fan B., Tian H. Multi-Attribute Vertical Handover Decision-Making Algorithm in a Hybrid VLC-Femto System. IEEE Commun. Lett. 2017;21:1521–1524. doi: 10.1109/LCOMM.2017.2654252. DOI
Ma G., Parthiban R., Karmakar N. Novel Handover Algorithms Using Pattern Recognition for Hybrid LiFi Networks; Proceedings of the 2022 IEEE Symposium on Computers and Communications (ISCC Rhodes); Rhodes, Greece. 30 June–3 July 2022; pp. 1–7. DOI
Sun Y., Peng M., Zhou Y., Huang Y., Mao S. Application of Machine Learning in Wireless Networks: Key Techniques and Open Issues. IEEE Commun. Surv. Tutor. 2019;21:3072–3108. doi: 10.1109/COMST.2019.2924243. DOI
Ye H., Li G.Y., Juang B.-H.F. Deep Reinforcement Learning Based Resource Allocation for V2V Communications. IEEE Trans. Veh. Technol. 2019;68:3163–3173. doi: 10.1109/TVT.2019.2897134. DOI
Alshaer H., Haas H. SDN-Enabled Li-Fi/Wi-Fi Wireless Medium Access Technologies Integration Framework; Proceedings of the 2016 IEEE Conference on Standards for Communications and Networking (CSCN); Berlin, Germany. 31 October–2 November 2016; pp. 1–6. DOI
Cossu G., Corsini R., Ciaramella E. High-Speed Bi-Directional Optical Wireless System in Non-Directed Line-of-Sight Configuration. J. Light. Technol. 2014;32:2035–2040. doi: 10.1109/JLT.2014.2315667. DOI
Wu X., O’Brien D.C., Deng X., Linnartz J.-P.M.G. Smart Handover for Hybrid LiFi and WiFi Networks. IEEE Trans. Wirel. Commun. 2020;19:8211–8219. doi: 10.1109/TWC.2020.3020160. DOI
Shao S., Liu G., Khreishah A., Ayyash M., Elgala H., Little T.D.C., Rahaim M. Optimizing Handover Parameters by Q-Learning for Heterogeneous Radio-Optical Networks. IEEE Photonics J. 2020;12:1–15. doi: 10.1109/JPHOT.2019.2953863. DOI
Yin L., Wu X., Haas H. Indoor Visible Light Positioning with Angle Diversity Transmitter; Proceedings of the 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall); Boston, MA, USA. 6–9 September 2015; pp. 1–5. DOI
Cybenko G. Approximation by Superpositions of a Sigmoidal Function. Math. Control. Signal Syst. 1989;2:303–314. doi: 10.1007/BF02551274. DOI
Alotaibi N.M., Alwakeel S.S. A Neural Network Based Handover Management Strategy for Heterogeneous Networks; Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA); Miami, FL, USA. 9–11 December 2015; pp. 1210–1214. DOI
Ji H., Wu X., Wang Q., Redmond S.J., Tavakkolnia I. Adaptive Target-Condition Neural Network: DNN-Aided Load Balancing for Hybrid LiFi and WiFi Networks. IEEE Trans. Wirel. Commun. 2023 doi: 10.1109/TWC.2023.3339503. DOI
Ruder S. An Overview of Gradient Descent Optimization Algorithms. arXiv. 2017 doi: 10.48550/arXiv.1609.04747.1609.04747 DOI
Fawcett T. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006;27:861–874. doi: 10.1016/j.patrec.2005.10.010. DOI
Wu X., Safari M., Haas H. Access Point Selection for Hybrid Li-Fi and Wi-Fi Networks. IEEE Trans. Commun. 2017;65:5375–5385. doi: 10.1109/TCOMM.2017.2740211. DOI