Optimizing Wireless Connectivity: A Deep Neural Network-Based Handover Approach for Hybrid LiFi and WiFi Networks

. 2024 Mar 22 ; 24 (7) : . [epub] 20240322

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38610234

A Hybrid LiFi and WiFi network (HLWNet) integrates the rapid data transmission capabilities of Light Fidelity (LiFi) with the extensive connectivity provided by Wireless Fidelity (WiFi), resulting in significant benefits for wireless data transmissions in the designated area. However, the challenge of decision-making during the handover process in HLWNet is made more complex due to the specific characteristics of electromagnetic signals' line-of-sight transmission, resulting in a greater level of intricacy compared to previous heterogeneous networks. This research work addresses the problem of handover decisions in the Hybrid LiFi and WiFi networks and treats it as a binary classification problem. Consequently, it proposes a handover method based on a deep neural network (DNN). The comprehensive handover scheme incorporates two sets of neural networks (ANN and DNN) that utilize input factors such as channel quality and the mobility of users to enable informed decisions during handovers. Following training with labeled datasets, the neural-network-based handover approach achieves an accuracy rate exceeding 95%. A comparative analysis of the proposed scheme against the benchmark reveals that the proposed method considerably increases user throughput by approximately 18.58% to 38.5% while reducing the handover rate by approximately 55.21% to 67.15% compared to the benchmark artificial neural network (ANN); moreover, the proposed method demonstrates robustness in the face of variations in user mobility and channel conditions.

Zobrazit více v PubMed

You X., Wang C.-X., Huang J., Gao X., Zhang Z., Wang M., Huang Y., Zhang C., Jiang Y., Wang J., et al. Towards 6G Wireless Communication Networks: Vision, Enabling Technologies, and New Paradigm Shifts. Sci. China Inf. Sci. 2021;64:110301. doi: 10.1007/s11432-020-2955-6. DOI

Lee I., Lee K. The Internet of Things (IoT): Applications, Investments, and Challenges for Enterprises. Bus. Horiz. 2015;58:431–440. doi: 10.1016/j.bushor.2015.03.008. DOI

Besjedica T., Fertalj K., Lipovac V., Zakarija I. Evolution of Hybrid LiFi–WiFi Networks: A Survey. Sensors. 2023;23:4252. doi: 10.3390/s23094252. PubMed DOI PMC

Dang S., Amin O., Shihada B., Alouini M.-S. What Should 6G Be? Nat. Electron. 2020;3:20–29. doi: 10.1038/s41928-019-0355-6. DOI

Rehman S.U., Ullah S., Chong P.H.J., Yongchareon S., Komosny D. Visible Light Communication: A System Perspective—Overview and Challenges. Sensors. 2019;19:1153. doi: 10.3390/s19051153. PubMed DOI PMC

Rahaim M.B., Vegni A.M., Little T.D.C. A Hybrid Radio Frequency and Broadcast Visible Light Communication System; Proceedings of the 2011 IEEE GLOBECOM Workshops (GC Wkshps); Houston, TX, USA. 5–9 December 2011; pp. 792–796. DOI

Haas H., Yin L., Wang Y., Chen C. What Is LiFi? J. Light. Technol. 2016;34:1533–1544. doi: 10.1109/JLT.2015.2510021. DOI

Islim M.S., Ferreira R.X., He X., Xie E., Videv S., Viola S., Watson S., Bamiedakis N., Penty R.V., White I.H., et al. Towards 10 Gb/s Orthogonal Frequency Division Multiplexing-Based Visible Light Communication Using a GaN Violet Micro-LED. Photon. Res. PRJ. 2017;5:A35–A43. doi: 10.1364/PRJ.5.000A35. DOI

Arfaoui M.A., Soltani M.D., Tavakkolnia I., Ghrayeb A., Assi C.M., Safari M., Haas H. Invoking Deep Learning for Joint Estimation of Indoor LiFi User Position and Orientation. IEEE J. Sel. Areas Commun. 2021;39:2890–2905. doi: 10.1109/JSAC.2021.3064637. DOI

Paramita S., Srivastava A., Bohara V.A., Mitra A., Atluri H.K., Paventhan A. Demo of Hybrid LiFi/WiFi Network for an Indoor Environment; Proceedings of the 2023 15th International Conference on Communication Systems & Networks (COMSNETS); Bangalore, India. 3–8 January 2023; pp. 213–215. DOI

Matheus L.E.M., Vieira A.B., Vieira L.F.M., Vieira M.A.M., Gnawali O. Visible Light Communication: Concepts, Applications and Challenges. IEEE Commun. Surv. Tutor. 2019;21:3204–3237. doi: 10.1109/COMST.2019.2913348. DOI

Elgala H., Mesleh R., Haas H. Indoor Optical Wireless Communication: Potential and State-of-the-Art. IEEE Commun. Mag. 2011;49:56–62. doi: 10.1109/MCOM.2011.6011734. DOI

Soltani M.D., Kazemi H., Safari M., Haas H. Handover Modeling for Indoor Li-Fi Cellular Networks: The Effects of Receiver Mobility and Rotation; Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC); San Francisco, CA, USA. 19–22 March 2017; pp. 1–6. DOI

Wu X., Soltani M.D., Zhou L., Safari M., Haas H. Hybrid LiFi and WiFi Networks: A Survey. IEEE Commun. Surv. Tutor. 2021;23:1398–1420. doi: 10.1109/COMST.2021.3058296. DOI

Wu X., O’Brien D.C. A Novel Machine Learning-Based Handover Scheme for Hybrid LiFi and WiFi Networks; Proceedings of the 2020 IEEE Globecom Workshops; Taipei, Taiwan. 7–11 December 2020; pp. 1–5. DOI

Ma G., Parthiban R., Karmakar N. An Adaptive Handover Scheme for Hybrid LiFi and WiFi Networks. IEEE Access. 2022;10:18955–18965. doi: 10.1109/ACCESS.2022.3151858. DOI

Hou J., O’Brien D.C. Vertical Handover-Decision-Making Algorithm Using Fuzzy Logic for the Integrated Radio-and-OW System. IEEE Trans. Wirel. Commun. 2006;5:176–185. doi: 10.1109/TWC.2006.1576541. DOI

Wang Y., Wu X., Haas H. Fuzzy Logic Based Dynamic Handover Scheme for Indoor Li-Fi and RF Hybrid Network; Proceedings of the 2016 IEEE International Conference on Communications (ICC); Kuala Lumpur, Malaysia. 22–27 May 2016; pp. 1–6. DOI

Wang F., Wang Z., Qian C., Dai L., Yang Z. Efficient Vertical Handover Scheme for Heterogeneous VLC-RF Systems. J. Opt. Commun. Netw. JOCN. 2015;7:1172–1180. doi: 10.1364/JOCN.7.001172. DOI

Stevens-Navarro E., Wong V.W.S., Lin Y. A Vertical Handoff Decision Algorithm for Heterogeneous Wireless Networks; Proceedings of the 2007 IEEE Wireless Communications and Networking Conference; Hong Kong, China. 11–15 March 2007; pp. 3199–3204. DOI

Niyato D., Hossain E. Dynamics of Network Selection in Heterogeneous Wireless Networks: An Evolutionary Game Approach. IEEE Trans. Veh. Technol. 2009;58:2008–2017. doi: 10.1109/TVT.2008.2004588. DOI

Liang S., Zhang Y., Fan B., Tian H. Multi-Attribute Vertical Handover Decision-Making Algorithm in a Hybrid VLC-Femto System. IEEE Commun. Lett. 2017;21:1521–1524. doi: 10.1109/LCOMM.2017.2654252. DOI

Ma G., Parthiban R., Karmakar N. Novel Handover Algorithms Using Pattern Recognition for Hybrid LiFi Networks; Proceedings of the 2022 IEEE Symposium on Computers and Communications (ISCC Rhodes); Rhodes, Greece. 30 June–3 July 2022; pp. 1–7. DOI

Sun Y., Peng M., Zhou Y., Huang Y., Mao S. Application of Machine Learning in Wireless Networks: Key Techniques and Open Issues. IEEE Commun. Surv. Tutor. 2019;21:3072–3108. doi: 10.1109/COMST.2019.2924243. DOI

Ye H., Li G.Y., Juang B.-H.F. Deep Reinforcement Learning Based Resource Allocation for V2V Communications. IEEE Trans. Veh. Technol. 2019;68:3163–3173. doi: 10.1109/TVT.2019.2897134. DOI

Alshaer H., Haas H. SDN-Enabled Li-Fi/Wi-Fi Wireless Medium Access Technologies Integration Framework; Proceedings of the 2016 IEEE Conference on Standards for Communications and Networking (CSCN); Berlin, Germany. 31 October–2 November 2016; pp. 1–6. DOI

Cossu G., Corsini R., Ciaramella E. High-Speed Bi-Directional Optical Wireless System in Non-Directed Line-of-Sight Configuration. J. Light. Technol. 2014;32:2035–2040. doi: 10.1109/JLT.2014.2315667. DOI

Wu X., O’Brien D.C., Deng X., Linnartz J.-P.M.G. Smart Handover for Hybrid LiFi and WiFi Networks. IEEE Trans. Wirel. Commun. 2020;19:8211–8219. doi: 10.1109/TWC.2020.3020160. DOI

Shao S., Liu G., Khreishah A., Ayyash M., Elgala H., Little T.D.C., Rahaim M. Optimizing Handover Parameters by Q-Learning for Heterogeneous Radio-Optical Networks. IEEE Photonics J. 2020;12:1–15. doi: 10.1109/JPHOT.2019.2953863. DOI

Yin L., Wu X., Haas H. Indoor Visible Light Positioning with Angle Diversity Transmitter; Proceedings of the 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall); Boston, MA, USA. 6–9 September 2015; pp. 1–5. DOI

Cybenko G. Approximation by Superpositions of a Sigmoidal Function. Math. Control. Signal Syst. 1989;2:303–314. doi: 10.1007/BF02551274. DOI

Alotaibi N.M., Alwakeel S.S. A Neural Network Based Handover Management Strategy for Heterogeneous Networks; Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA); Miami, FL, USA. 9–11 December 2015; pp. 1210–1214. DOI

Ji H., Wu X., Wang Q., Redmond S.J., Tavakkolnia I. Adaptive Target-Condition Neural Network: DNN-Aided Load Balancing for Hybrid LiFi and WiFi Networks. IEEE Trans. Wirel. Commun. 2023 doi: 10.1109/TWC.2023.3339503. DOI

Ruder S. An Overview of Gradient Descent Optimization Algorithms. arXiv. 2017 doi: 10.48550/arXiv.1609.04747.1609.04747 DOI

Fawcett T. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006;27:861–874. doi: 10.1016/j.patrec.2005.10.010. DOI

Wu X., Safari M., Haas H. Access Point Selection for Hybrid Li-Fi and Wi-Fi Networks. IEEE Trans. Commun. 2017;65:5375–5385. doi: 10.1109/TCOMM.2017.2740211. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...