An Indoor Visible Light Positioning System Using Tilted LEDs with High Accuracy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33573034
PubMed Central
PMC7866409
DOI
10.3390/s21030920
PII: s21030920
Knihovny.cz E-zdroje
- Klíčová slova
- Tx’s tilting, linear least square, localization, polynomial regression, received signal strength, visible light communication, visible light positioning,
- Publikační typ
- časopisecké články MeSH
The accuracy of the received signal strength-based visible light positioning (VLP) system in indoor applications is constrained by the tilt angles of transmitters (Txs) and receivers as well as multipath reflections. In this paper, for the first time, we show that tilting the Tx can be beneficial in VLP systems considering both line of sight (LoS) and non-line of sight transmission paths. With the Txs oriented towards the center of the receiving plane (i.e., the pointing center F), the received power level is maximized due to the LoS components on F. We also show that the proposed scheme offers a significant accuracy improvement of up to ~66% compared with a typical non-tilted Tx VLP at a dedicated location within a room using a low complex linear least square algorithm with polynomial regression. The effect of tilting the Tx on the lighting uniformity is also investigated and results proved that the uniformity achieved complies with the European Standard EN 12464-1. Furthermore, we show that the accuracy of VLP can be further enhanced with a minimum positioning error of 8 mm by changing the height of F.
Zobrazit více v PubMed
Nguyen C.T., Saputra Y.M., Huynh N.V., Nguyen N.-T., Khoa T.V., Tuan B.M., Nguyen D.N., Hoang D.T., Vu T.X., Dutkiewicz E., et al. A Comprehensive Survey of Enabling and Emerging Technologies for Social Distancing—Part I: Fundamentals and Enabling Technologies. IEEE Access. 2020;8:153479–153507. doi: 10.1109/ACCESS.2020.3018140. PubMed DOI PMC
Luo J., Fan L., Li H. Indoor Positioning Systems Based on Visible Light Communication: State of the Art. IEEE Commun. Surv. Tutor. 2017;19:2871–2893. doi: 10.1109/COMST.2017.2743228. DOI
Armstrong J., Sekercioglu Y.A., Neild A. Visible Light Positioning: A Roadmap for International Standardization. IEEE Commun. Mag. 2013;51:68–73. doi: 10.1109/MCOM.2013.6685759. DOI
Chung J., Donahoe M., Schmandt C., Kim I.-J., Razavai P., Wiseman M. Indoor location sensing using geo-magnetism; Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services; Washington, DC, USA. 29 June–1 July 2011; pp. 141–154.
Youssef M., Agrawala A. The Horus WLAN location determination system; Proceedings of the 3rd International Conference on Mobile Systems, Applications, and Services; Washington, DC, USA. 6–8 June 2005; pp. 205–218.
Chen Y., Lymberopoulos D., Liu J., Priyantha B. FM-based indoor localization; Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services; Low Wood Bay, Lake District, UK. 26–28 June 2012; pp. 169–182.
Elgala H., Mesleh R., Haas H. Indoor optical wireless communication: Potential and state-of-the-art. IEEE Commun. Mag. 2011;49:56–62. doi: 10.1109/MCOM.2011.6011734. DOI
Maheepala M., Kouzani A.Z., Joordens M.A. Light-Based Indoor Positioning Systems: A Review. IEEE Sens. J. 2020;20:3971–3995. doi: 10.1109/JSEN.2020.2964380. DOI
Do T.H., Yoo M. An in-Depth Survey of Visible Light Communication Based Positioning Systems. (in eng) Sensors. 2016;16:678. doi: 10.3390/s16050678. PubMed DOI PMC
Chaudhary N., Alves L.N., Ghassemlooy Z. Current Trends on Visible Light Positioning Techniques; Proceedings of the 2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC); Teheran, Iran. 27–28 April 2019; pp. 100–105.
Lee J., Kim S., Han S. 3D Visible Light Indoor Positioning by Bokeh Based Optical Intensity Measurement in Smartphone Camera. IEEE Access. 2019;7:91399–91406. doi: 10.1109/ACCESS.2019.2927356. DOI
Cheng H., Xiao C., Ji Y., Ni J., Wang T. A Single LED Visible Light Positioning System Based on Geometric Features and CMOS Camera. IEEE Photonics Technol. Lett. 2020;32:1097–1100. doi: 10.1109/LPT.2020.3012476. DOI
Younus O.I., Hassan N.B., Ghassemlooy Z., Haigh P.A., Zvanovec S., Alves L.N., Minh H.L. Data Rate Enhancement in Optical Camera Communications Using an Artificial Neural Network Equaliser. IEEE Access. 2020;8:42656–42665. doi: 10.1109/ACCESS.2020.2976537. DOI
Rabadan J., Guerra V., Guerra C., Rufo J., Perez-Jimenez R. A Novel Ranging Technique Based on Optical Camera Communications and Time Difference of Arrival. Appl. Sci. 2019;9:2382. doi: 10.3390/app9112382. DOI
Zhuang Y., Hua L., Qi L., Yang J., Cao P., Cao Y., Wu Y., Thompson J., Haas H. A Survey of Positioning Systems Using Visible LED Lights. IEEE Commun. Surv. Tutor. 2018;20:1963–1988. doi: 10.1109/COMST.2018.2806558. DOI
Chaudhary N., Alves L.N., Ghassemlooy Z. Impact of Transmitter Positioning Uncertainty on RSS-based Visible Light Positioning Accuracy; Proceedings of the 12th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP); Porto, Portugal. 20–22 July 2020.
Plets D., Almadani Y., Bastiaens S., Ijaz M., Martens L., Joseph W. Efficient 3D trilateration algorithm for visible light positioning. J. Opt. 2019;21:05LT01. doi: 10.1088/2040-8986/ab1389. DOI
Chvojka P., Zvanovec S., Haigh P.A., Ghassemlooy Z. Channel Characteristics of Visible Light Communications within Dynamic Indoor Environment. J. Lightwave Technol. 2015;33:1719–1725. doi: 10.1109/JLT.2015.2398894. DOI
Naz A., Asif H.M., Umer T., Ayub S., Al-Turjman F. Trilateration-based indoor localization engineering technique for visible light communication system. Softw. Pract. Exp. 2020:1–14.
Gu W., Aminikashani M., Deng P., Kavehrad M. Impact of Multipath Reflections on the Performance of Indoor Visible Light Positioning Systems. J. Lightwave Technol. 2016;34:2578–2587. doi: 10.1109/JLT.2016.2541659. DOI
Plets D., Eryildirim A., Bastiaens S., Stevens N., Martens L., Joseph W. A Performance Comparison of Different Cost Functions for RSS-Based Visible Light Positioning Under the Presence of Reflections; Proceedings of the 4th ACM Workshop on Visible Light Communication Systems; Snowbird, UT, USA. 16 October 2017.
Liu Y., Zhang J., Liu Y., Chen B., Liu S., Zuo Y. A new indoor visible light positioning scheme to reduce the influence of reflections; Proceedings of the 17th International Conference on Optical Communications and Networks (ICOCN2018); Zhuhai, China. 16–19 November 2018.
Wang J.-Y., Li Q.-L., Zhu J.-X., Wang Y. Impact of receiver’s tilted angle on channel capacity in VLCs. Electron. Lett. 2017;53:421–423. doi: 10.1049/el.2016.4657. DOI
Plets D., Bastiaens S., Martens L., Joseph W. An Analysis of the Impact of LED Tilt on Visible Light Positioning Accuracy. Electronics. 2019;8:389. doi: 10.3390/electronics8040389. DOI
Raes W., Stevens N. Performance Assessment of Artificial Neural Networks on the RSS-Based Visible Light Positioning Accuracy with Random Transmitter Tilt; Proceedings of the International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP); Porto, Portugal. 20–22 July 2020.
Lixuan W., Caili G., Luo P., Li Q. Indoor visible light localization algorithm based on received signal strength ratio with multi-directional LED array; Proceedings of the 2017 IEEE International Conference on Communications Workshops (ICC Workshops); Paris, France. 21–25 May 2017; pp. 138–143.
Yin L., Wu X., Haas H. Indoor Visible Light Positioning with Angle Diversity Transmitter; Proceedings of the 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall); Boston, MA, USA. 6–9 September 2015; pp. 1–5.
Zhou B., Liu A., Lau V. Performance Limits of Visible Light-Based User Position and Orientation Estimation Using Received Signal Strength Under NLOS Propagation. IEEE Trans. Wirel. Commun. 2019;18:5227–5241. doi: 10.1109/TWC.2019.2934689. DOI
Miramirkhani F., Uysal M. Channel Modeling and Characterization for Visible Light Communications. IEEE Photonics. J. 2015;7:1–16. doi: 10.1109/JPHOT.2015.2504238. DOI
Uysal M., Miramirkhani F., Narmanlioglu O., Baykas T., Panayirci E. IEEE 802.15.7r1 Reference Channel Models for Visible Light Communications. IEEE Commun. Mag. 2017;55:212–217. doi: 10.1109/MCOM.2017.1600872CM. DOI
Chaleshtori Z.N., Ghassemlooy Z., Eldeeb H.B., Uysal M., Zvanovec S. Utilization of an OLED-Based VLC System in Office, Corridor, and Semi-Open Corridor Environments. Sensors. 2020;20:6869. doi: 10.3390/s20236869. PubMed DOI PMC
Ghassemlooy Z., Popoola W., Rajbhandari S. Optical Wireless Communications: System and Channel Modelling with Matlab®. 2nd ed. CRC Press; Boca Raton, FL, USA: 2019.
Chaudhary N., Alves L.N., Ghassemblooy Z. Feasibility Study of Reverse Trilateration Strategy with a Single Tx for VLP; Proceedings of the 2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC); Teheran, Iran. 27–28 April 2019; pp. 121–126.
Younus O.I., Minh H.L., Dat P.T., Yamamoto N., Pham A.T., Ghassemlooy Z. Dynamic Physical-Layer Secured Link in a Mobile MIMO VLC System. IEEE Photonics J. 2020;12:1–14. doi: 10.1109/JPHOT.2020.2990798. DOI
Shawky S., El-Shimy M.A., El-Sahn Z.A., Rizk M.R.M., Aly M.H. Improved VLC-based indoor positioning system using a regression approach with conventional RSS techniques; Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC); Valencia, Spain. 26–30 June 2017; pp. 904–909.
Sun X., Duan J., Zou Y., Shi A. Impact of multipath effects on theoretical accuracy of TOA-based indoor VLC positioning system. Photonics Res. 2015;3:296–299. doi: 10.1364/PRJ.3.000296. DOI
De Normalisation C.E. EN 12464-1: Light and Lighting-Lighting of Work Places, Part 1: Indoor Work Places. BSI; London, UK: 2002.
The Usage of ANN for Regression Analysis in Visible Light Positioning Systems
Editorial to the Special Issue on "Visible Light Communications, Networking, and Sensing"