The Usage of ANN for Regression Analysis in Visible Light Positioning Systems
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35458864
PubMed Central
PMC9029196
DOI
10.3390/s22082879
PII: s22082879
Knihovny.cz E-zdroje
- Klíčová slova
- Bayesian regularization, artificial neural network (ANN), multipath reflections, non-linear least square, visible light communication (VLC), visible light positioning,
- MeSH
- algoritmy * MeSH
- Bayesova věta MeSH
- metoda nejmenších čtverců MeSH
- neuronové sítě * MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
In this paper, we study the design aspects of an indoor visible light positioning (VLP) system that uses an artificial neural network (ANN) for positioning estimation by considering a multipath channel. Previous results usually rely on the simplistic line of sight model with limited validity. The study considers the influence of noise as a performance indicator for the comparison between different design approaches. Three different ANN algorithms are considered, including Levenberg-Marquardt, Bayesian regularization, and scaled conjugate gradient algorithms, to minimize the positioning error (εp) in the VLP system. The ANN design is optimized based on the number of neurons in the hidden layers, the number of training epochs, and the size of the training set. It is shown that, the ANN with Bayesian regularization outperforms the traditional received signal strength (RSS) technique using the non-linear least square estimation for all values of signal to noise ratio (SNR). Furthermore, in the inner region, which includes the area of the receiving plane within the transmitters, the positioning accuracy is improved by 43, 55, and 50% for the SNR of 10, 20, and 30 dB, respectively. In the outer region, which is the remaining area within the room, the positioning accuracy is improved by 57, 32, and 6% for the SNR of 10, 20, and 30 dB, respectively. Moreover, we also analyze the impact of different training dataset sizes in ANN, and we show that it is possible to achieve a minimum εp of 2 cm for 30 dB of SNR using a random selection scheme. Finally, it is observed that εp is low even for lower values of SNR, i.e., εp values are 2, 11, and 44 cm for the SNR of 30, 20, and 10 dB, respectively.
Zobrazit více v PubMed
Kaplan E.D., Hegarty C.J. Understanding GPS: Principles and Applications. Artech House; Boston, MA, USA: 1996.
Zhuang Y., El-Sheimy N. Tightly-Coupled Integration of WiFi and MEMS Sensors on Handheld Devices for Indoor Pedestrian Navigation. IEEE Sens. J. 2016;16:224–234. doi: 10.1109/JSEN.2015.2477444. DOI
Nieminen J., Gomez C., Isomaki M., Savolainen T., Patil B., Shelby Z., Xi M., Oller J. Networking Solutions for Connecting Bluetooth Low Energy Enabled Machines to the Internet of Things. IEEE Netw. 2014;28:83–90. doi: 10.1109/MNET.2014.6963809. DOI
Priyantha N.B., Miu A.K.L., Balakrishnan H., Teller S. The Cricket Compass for Context-Aware Mobile Applications; Proceedings of the 7th Annual International Conference on Mobile Computing and Networking; Rome, Italy. 16–21 July 2001; New York, NY, USA: Association for Computing Machinery; 2001. pp. 1–14.
Liu H., Darabi H., Banerjee P., Liu J. Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2007;37:1067–1080. doi: 10.1109/TSMCC.2007.905750. DOI
Hsu C.-W., Liu S., Lu F., Chow C.-W., Yeh C.-H., Chang G.-K. Accurate Indoor Visible Light Positioning System Utilizing Machine Learning Technique with Height Tolerance; Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC); San Diego, CA, USA. 11–15 March 2018; DOI
Hassan N.U.L., Adeel Pasha M., Naeem A., Jadoon T.M. Indoor Positioning Using Visible LED Lights: A Survey. ACM Trans. Sens. Netw. 2015;11:1–30. doi: 10.1145/2835376. DOI
Do T.-H., Yoo M. An In-Depth Survey of Visible Light Communication Based Positioning Systems. Sensors. 2016;16:678. doi: 10.3390/s16050678. PubMed DOI PMC
Yassin A., Nasser Y., Awad M., Al-Dubai A., Liu R., Yuen C., Raulefs R., Aboutanios E. Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications. IEEE Commun. Surv. Tutor. 2017;19:1327–1346. doi: 10.1109/COMST.2016.2632427. DOI
Luo J., Fan L., Li H. Indoor Positioning Systems Based on Visible Light Communication: State of the Art. IEEE Commun. Surv. Tutor. 2017;19:2871–2893. doi: 10.1109/COMST.2017.2743228. DOI
Wang K., Nirmalathas A., Lim C., Skafidas E. Optical Wireless-Based Indoor Localization System Employing a Single-Channel Imaging Receiver. J. Lightwave Technol. 2016;34:9. doi: 10.1109/JLT.2015.2504372. DOI
Kim H.S., Kim D.R., Yang S.H., Son Y.H., Han S.K. An Indoor Visible Light Communication Positioning System Using a RF Carrier Allocation Technique. J. Lightwave Technol. 2013;31:134–144. doi: 10.1109/JLT.2012.2225826. DOI
Zheng H., Xu Z., Yu C., Gurusamy M. Indoor Three-Dimensional Positioning Based on Visible Light Communication Using Hamming Filter. Opt. InfoBase Conf. Pap. 2016;2016:4–6. doi: 10.1364/sppcom.2016.spm4e.3. DOI
Xiang Liu X.L., Aiying Yang A.Y., Yu Wang Y.W., Feng L. Combination of Light-Emitting Diode Positioning Identification and Time-Division Multiplexing Scheme for Indoor Location-Based Service. Chin. Opt. Lett. 2015;13:120601–120606. doi: 10.3788/COL201513.120601. DOI
Chaudhary N., Alves L.N., Ghassemblooy Z. Current Trends on Visible Light Positioning Techniques; Proceedings of the 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC); Tehran, Iran. 27–28 April 2019; pp. 100–105. DOI
Plets D., Almadani Y., Bastiaens S., Ijaz M., Martens L., Joseph W. Efficient 3D Trilateration Algorithm for Visible Light Positioning. J. Opt. 2019;21:05LT01. doi: 10.1088/2040-8986/ab1389. DOI
Heqing Huang H.H., Aiying Yang A.Y., Lihui Feng L.F., Guoqiang Ni G.N., Guo P. Artificial Neural-Network-Based Visible Light Positioning Algorithm with a Diffuse Optical Channel. Chin. Opt. Lett. 2017;15:050601–050605. doi: 10.3788/COL201715.050601. DOI
Gu W., Aminikashani M., Deng P., Kavehrad M. Impact of Multipath Reflections on the Performance of Indoor Visible Light Positioning Systems. J. Lightwave Technol. 2016;34:2578–2587. doi: 10.1109/JLT.2016.2541659. DOI
Lin B., Guo Q., Lin C., Tang X., Zhou Z., Ghassemlooy Z. Experimental Demonstration of an Indoor Positioning System Based on Artificial Neural Network. Opt. Eng. 2019;58:1. doi: 10.1117/1.OE.58.1.016104. DOI
Zhang H., Cui J., Feng L., Yang A., Lv H., Lin B., Huang H. High-Precision Indoor Visible Light Positioning Using Deep Neural Network Based on the Bayesian Regularization with Sparse Training Point. IEEE Photonics J. 2019;11:1–10. doi: 10.1109/JPHOT.2019.2912156. PubMed DOI PMC
Zhang S., Du P., Chen C., Zhong W.-D., Alphones A. Robust 3D Indoor VLP System Based on ANN Using Hybrid RSS/PDOA. IEEE Access. 2019;7:47769–47780. doi: 10.1109/ACCESS.2019.2909761. DOI
Zhang W., Kavehrad M. A 2-D Indoor Localization System Based on Visible Light LED; Proceedings of the 2012 IEEE Photonics Society Summer Topical Meeting Series; Seattle, WA, USA. 9–11 July 2012; Seattle, WA, USA: IEEE; 2012. pp. 80–81.
Zhou Z. Indoor Positioning Algorithm Using Light-Emitting Diode Visible Light Communications. Opt. Eng. 2012;51:085009. doi: 10.1117/1.OE.51.8.085009. DOI
Aminikashani M., Gu W., Kavehrad M. Indoor Location Estimation with Optical-Based OFDM Communications. arXiv. 20151506.07571
Chaudhary N., Alves L.N., Ghassemlooy Z. Impact of Transmitter Positioning and Orientation Uncertainty on RSS-Based Visible Light Positioning Accuracy. Sensors. 2021;21:3044. doi: 10.3390/s21093044. PubMed DOI PMC
Chaudhary N., Younus O.I., Alves L.N., Ghassemlooy Z., Zvanovec S., Le-Minh H. An Indoor Visible Light Positioning System Using Tilted LEDs with High Accuracy. Sensors. 2021;21:920. doi: 10.3390/s21030920. PubMed DOI PMC
Komine T., Nakagawa M. Fundamental Analysis for Visible-Light Communication System Using LED Lights. IEEE Trans. Consum. Electron. 2004;50:100–107. doi: 10.1109/TCE.2004.1277847. DOI
Pandey O.J., Sharan R., Hegde R.M. Localization in Wireless Sensor Networks Using Visible Light in Non-Line of Sight Conditions. Wirel. Pers. Commun. 2017;97:6519–6539. doi: 10.1007/s11277-017-4853-4. DOI
Uysal M., Baykas T., Jungnickel V. IEEE 802.11bb Reference Channel Models for Indoor Environments. IEEE; Piscataway, NJ, USA: 2018. p. 60.
Chaudhary N., Alves L.N., Ghassemblooy Z. Feasibility Study of Reverse Trilateration Strategy with a Single Tx for VLP; Proceedings of the 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC); Tehran, Iran. 27–28 April 2019; pp. 121–126.
Ghassemlooy Z., Popoola W., Rajbhandari S. Optical Wireless Communications System and Channel Modelling with MATLAB®. 2nd ed. CRC Press; Boca Raton, FL, USA: 2019.
Shawky S., El-Shimy M.A., El-Sahn Z.A., Rizk M.R.M., Aly M.H. Improved VLC-Based Indoor Positioning System Using a Regression Approach with Conventional RSS Techniques; Proceedings of the 13th International Wireless Communications and Mobile Computing Conference, IWCMC 2017; Valencia, Spain. 26–30 June 2017; pp. 904–909. DOI
Chaudhary N., Alves L.N., Ghassemlooy Z. Impact of Transmitter Positioning Uncertainty on RSS-Based Visible Light Positioning Accuracy; Proceedings of the 12th IEEE/IET International Symposium on Communication Systems, Networks and Digital Signal Processing-CSNDSP; Porto, Portugal. 20–22 July 2020.
Hagan M.T., Demuth H.B., Beale M. Neural Network Design. PWS Publishing Co.; Boston, MA, USA: 1997.
Nwankpa C., Ijomah W., Gachagan A., Marshall S. Activation Functions: Comparison of Trends in Practice and Research for Deep Learning. arXiv. 20181811.03378
Shiquan W., Fang W. Computation of a Trust Region Step. Acta Math. Appl. Sin. 1991;7:354–362. doi: 10.1007/BF02009686. DOI
Lera G., Pinzolas M. Neighborhood Based Levenberg-Marquardt Algorithm for Neural Network Training. IEEE Trans. Neural Netw. 2002;13:1200–1203. doi: 10.1109/TNN.2002.1031951. PubMed DOI
Møller M.F. A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. Neural Netw. 1993;6:525–533. doi: 10.1016/S0893-6080(05)80056-5. DOI