The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
16-16992S
Grantová Agentura České Republiky (CZ)
LO1204
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
30069594
PubMed Central
PMC6154037
DOI
10.1007/s00122-018-3148-9
PII: 10.1007/s00122-018-3148-9
Knihovny.cz E-zdroje
- MeSH
- Agropyron genetika MeSH
- chromozomy rostlin * MeSH
- diploidie MeSH
- DNA sondy MeSH
- hybridizace in situ fluorescenční MeSH
- karyotyp * MeSH
- pšenice genetika MeSH
- tandemové repetitivní sekvence * MeSH
- translokace genetická MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA sondy MeSH
Fluorescence in situ hybridization with probes for 45 cDNAs and five tandem repeats revealed homoeologous relationships of Agropyron cristatum with wheat. The results will contribute to alien gene introgression in wheat improvement. Crested wheatgrass (Agropyron cristatum L. Gaertn.) is a wild relative of wheat and a promising source of novel genes for wheat improvement. To date, identification of A. cristatum chromosomes has not been possible, and its molecular karyotype has not been available. Furthermore, homoeologous relationship between the genomes of A. cristatum and wheat has not been determined. To develop chromosome-specific landmarks, A. cristatum genomic DNA was sequenced, and new tandem repeats were discovered. Their distribution on mitotic chromosomes was studied by fluorescence in situ hybridization (FISH), which revealed specific patterns for five repeats in addition to 5S and 45S ribosomal DNA and rye subtelomeric repeats pSc119.2 and pSc200. FISH with one tandem repeat together with 45S rDNA enabled identification of all A. cristatum chromosomes. To analyze the structure and cross-species homoeology of A. cristatum chromosomes with wheat, probes for 45 mapped wheat cDNAs covering all seven chromosome groups were localized by FISH. Thirty-four cDNAs hybridized to homoeologous chromosomes of A. cristatum, nine hybridized to homoeologous and non-homoeologous chromosomes, and two hybridized to unique positions on non-homoeologous chromosomes. FISH using single-gene probes revealed that the wheat-A. cristatum collinearity was distorted, and important structural rearrangements were observed for chromosomes 2P, 4P, 5P, 6P and 7P. Chromosomal inversions were found for pericentric region of 4P and whole chromosome arm 6PL. Furthermore, reciprocal translocations between 2PS and 4PL were detected. These results provide new insights into the genome evolution within Triticeae and will facilitate the use of crested wheatgrass in alien gene introgression into wheat.
Zobrazit více v PubMed
Alkhimova AG, Heslop-Harrison JS, Shchapova AI, Vershinin AV. Rye chromosome variability in wheat-rye addition and substitution lines. Chromosome Res. 1999;7:205–212. doi: 10.1023/a:1009299300018. PubMed DOI
Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1006/jmbi.1990.9999. PubMed DOI
Anathawat-Jonsson K, Heslop-Harrison JS. Isolation and characterization of genome-specific DNA-sequences in Triticeae species. Mol Gen Genet. 1993;240:151–158. doi: 10.1007/bf00277052. PubMed DOI
Appels R, Dennis ES, Smyth DR, Peacock WJ. 2 Repeated DNA-sequences from the heterochromatic regions of rye (Secale cereale) chromosomes. Chromosoma. 1981;84:265–277. doi: 10.1007/bf00399137. DOI
Asay KH, Jensen KB, Hsiao C, Dewey DR. Probable origin of standard crested wheatgrass, Agropyron desertorum Fisch ex Link, Schultes. Can J Plant Sci. 1992;72:763–772. doi: 10.4141/cjps92-092. DOI
Asghari A, Agayev Y, Fathi SAA. Karyological study of four species of wheat grass (Agropyron sp.) Pak J Biol Sci. 2007;10:1093–1097. doi: 10.3923/pjbs.2007.1093.1097. PubMed DOI
Badaeva ED, Friebe B, Gill BS. Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome. 1996;39:293–306. doi: 10.1139/g96-040. PubMed DOI
Badaeva ED, Amosova AV, Samatadze TE, et al. Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst Evol. 2004;246:45–76. doi: 10.1007/s00606-003-0072-4. DOI
Bedbrook JR, Jones J, Odell M, et al. Molecular description of telomeric heterochromatin in Secale species. Cell. 1980;19:545–560. doi: 10.1016/0092-8674(80)90529-2. PubMed DOI
Benavente E, Cifuentes M, Dusautoir JC, David J. The use of cytogenetic tools for studies in the crop-to-wild gene transfer scenario. Cytogenetic Genome Res. 2008;120:384–395. doi: 10.1159/000121087. PubMed DOI
Benson DA, Karsch-Mizrachi I, Lipman DJ, et al. GenBank. Nucleic Acids Res. 2010;38:D46–D51. doi: 10.1093/nar/gkp1024. PubMed DOI PMC
Brasileiro-Vidal AC, Cuadrado A, Brammer SP, et al. Chromosome characterization in Thinopyrum ponticum (Triticeae, Poaceae) using in situ hybridization with different DNA sequences. Genet Mol Biol. 2003;26:505–510. doi: 10.1590/s1415-47572003000400014. DOI
Brettell RIS, Banks PM, Cauderon Y, et al. A single wheatgrass chromosome reduces the concentration of barley yellow dwarf virus in wheat. Ann Appl Biol. 1988;113:599–603. doi: 10.1111/j.1744-7348.1988.tb03337.x. DOI
Busch W, Herrmann RG, Martin R. Refined physical mapping of the Sec-1 locus on the satellite of chromosome 1R of rye (Secale cereale) Genome. 1995;38:889–893. doi: 10.1139/g95-117. PubMed DOI
Cabrera A, Martin A, Barro F. In situ comparative mapping (ISCM) of Glu-1 loci in Triticum and Hordeum. Chromosome Res. 2002;10:49–54. doi: 10.1023/a:1014270227360. PubMed DOI
Castilho A, Heslop-Harrison JS. Physical mapping of 5S and 18S-25S rDNA and repetitive DNA-sequences in Aegilops umbellulata. Genome. 1995;38:91–96. doi: 10.1139/g95-011. PubMed DOI
Cauderon Y, Rhind JM. Effect on wheat of an Agropyron chromosome carrying stripe rust resistance. Ann De L Amelior Des Plantes. 1976;26:745–749.
Chen Q, Jahier J, Cauderon Y. Production and cytogenetical studies of hybrids between Triticum aestivum and Agropyron cristatum Gaertn. Comptes Rendus De L Academie Des Sciences Serie Iii-Sciences De La Vie-Life Sciences. 1989;308:425–430.
Contento A, Heslop-Harrison JS, Schwarzacher T. Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenet Genome Res. 2005;109:34–42. doi: 10.1159/000082379. PubMed DOI
Danilova TV, Friebe B, Gill BS. Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma. 2012;121:597–611. doi: 10.1007/s00412-012-0384-7. PubMed DOI
Danilova TV, Friebe B, Gill BS. Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet. 2014;127:715–730. doi: 10.1007/s00122-013-2253-z. PubMed DOI PMC
Danilova TV, Akhunova AR, Akhunov ED, et al. Major structural genomic alterations can be associated with hybrid speciation in Aegilops markgrafii (Triticeae) Plant J. 2017;92:317–330. doi: 10.1111/tpj.13657. PubMed DOI
De Carvalho R, Guerra M. Cytogenetics of Manihot esculenta Crantz (cassava) and eight related species. Hereditas. 2002;136:159–168. doi: 10.1034/j.1601-5223.2002.1360212.x. PubMed DOI
Del Fabbro C, Scalabrin S, Morgante M, Giorgi FM. An extensive evaluation of read trimming effects on Illumina NGS data analysis. PLoS ONE. 2013 doi: 10.1371/journal.pone.0085024. PubMed DOI PMC
Devos KM, Gale MD. Genome relationships: the grass model in current research. Plant Cell. 2000;12:637–646. doi: 10.1105/tpc.12.5.637. PubMed DOI PMC
Devos KM, Atkinson MD, Chinoy CN, et al. Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet. 1993;85:673–680. doi: 10.1007/bf00225004. PubMed DOI
Devos KM, Dubcovsky J, Dvorak J, et al. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet. 1995;91:282–288. doi: 10.1007/bf00220890. PubMed DOI
Dewey DR. Historical and current taxonomic perspectives of Agropyron, Elymus, and related genera. Crop Sci. 1983;23:637–642. doi: 10.2135/cropsci1983.0011183X002300040009x. DOI
Dewey DR, Asay KH. Cytogenetic and taxonomic relationships among three diploid crested wheat grasses. Crop Sci. 1982;22:645–650. doi: 10.2135/cropsci1982.0011183X002200030052x. DOI
Doležel J, Bartoš J, Voglmayr H, Greilhuber J. Nuclear DNA content and genome size of trout and human. Cytometry. 2003;51:127–128. doi: 10.1002/cyto.a.10013. PubMed DOI
Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc. 2007;2:2233–2244. doi: 10.1038/nprot.2007.310. PubMed DOI
Dvořák J, Zhang HB, Kota RS, Lassner M. Organization and evolution of the 5S-ribosomal RNA gene family in wheat and related species. Genome. 1989;32:1003–1016. doi: 10.1139/g89-545. DOI
Feuillet C, Langridge P, Waugh R. Cereal breeding takes a walk on the wild side. Trends Genet. 2008;24:24–32. doi: 10.1016/j.tig.2007.11.001. PubMed DOI
Friebe B, Mukai Y, Dhaliwal HS, et al. Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germ plasm by C-banding and in situ hybridization. Theor Appl Genet. 1991;81:381–389. PubMed
Friebe B, Jiang J, Raupp WJ, et al. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996;91:59–87. doi: 10.1007/bf00035277. DOI
Fu S, Lv Z, Guo X, et al. Alteration of terminal heterochromatin and chromosome rearrangements in derivatives of wheat-rye hybrids. J Genet Genom. 2013;40:413–420. doi: 10.1016/j.jgg.2013.05.005. PubMed DOI
Fu S, Chen L, Wang Y, et al. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci Rep. 2015;5:10552. doi: 10.1038/srep10552. PubMed DOI PMC
Fukui K, Kamisugi Y, Sakai F. Physical mapping of 5S rDNA loci by direct-cloned biotinylated probes in barley chromosomes. Genome. 1994;37:105–111. doi: 10.1139/g94-013. PubMed DOI
Gale MD, Devos KM. Plant comparative genetics after 10 years. Science. 1998;282:656–659. doi: 10.1126/science.282.5389.656. PubMed DOI
Gerlach WL, Bedbrook JR. Cloning and characterization of ribosomal-RNA genes from wheat and barley. Nucleic Acids Res. 1979;7:1869–1885. doi: 10.1093/nar/7.7.1869. PubMed DOI PMC
Gill BS, Friebe B, Endo TR. Standard karyotype and nomenclature system for description of chromosome bands and structural-aberrations in wheat (Triticum aestivum) Genome. 1991;34:830–839. doi: 10.1139/g91-128. DOI
Gill BS, Friebe B, Raupp WJ, et al. Wheat Genetics Resource Center: the first 25 years. Adv Agron. 2006;89:73–136. doi: 10.1016/s0065-2113(05)89002-9. DOI
Guerra M, Kenton A, Bennett MD. rDNA sites in mitotic and polytene chromosomes of Vigna unguiculata (L) Walp and Phaseolus coccineus L revealed by in situ hybridization. Ann Bot. 1996;78:157–161. doi: 10.1006/anbo.1996.0108. DOI
Han FP, Fedak G, Guo WL, Liu B. Rapid and repeatable elimination of a parental genome-specific DNA repeat (pGcIR-1a) in newly synthesized wheat allopolyploids. Genetics. 2005;170:1239–1245. doi: 10.1534/genetics.104.039263. PubMed DOI PMC
Han H, Bai L, Su J, et al. Genetic rearrangements of six wheat-Agropyron cristatum 6P addition lines revealed by molecular markers. PLoS ONE. 2014 doi: 10.1371/journal.pone.0091066. PubMed DOI PMC
Han H, Liu W, Lu Y, et al. Isolation and application of P genome-specific DNA sequences of Agropyron Gaertn. in Triticeae. Planta. 2017;245:425–437. doi: 10.1007/s00425-016-2616-1. PubMed DOI
He Q, Cai Z, Hu T, et al. Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.) BMC Plant Biol. 2015 doi: 10.1186/s12870-015-0480-y. PubMed DOI PMC
Hsiao C, Wang RRC, Dewey DR. Karyotype analysis and genome relationships of 22 diploid species in the tribe Triticeae. Can J Genet Cytol. 1986;28:109–120. doi: 10.1139/g86-015. DOI
Hsiao C, Asay KH, Dewey DR. Cytogenetic analysis of interspecific hybrids and amphiploids between 2 diploid crested wheatgrasses, Agropyron mongolicum and A. cristatum. Genome. 1989;32:1079–1084. doi: 10.1139/g89-557. DOI
Hu L-J, Liu C, Zeng Z-X, et al. Genomic rearrangement between wheat and Thinopyrum elongatum revealed by mapped functional molecular markers. Genes Genom. 2012;34:67–75. doi: 10.1007/s13258-011-0153-7. DOI
Jabeen R, Iftikhar T, Mengal T, Khattak MI. A comparative chromosomal count and morphological karyotyping of three indigenous cultivars of kalongi (Nigella sativa L.) Pak J Bot. 2012;44:1007–1012.
Jiang J, Gill BS, Wang GL, et al. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA. 1995;92:4487–4491. doi: 10.1073/pnas.92.10.4487. PubMed DOI PMC
Jubault M, Tanguy AM, Abelard P, et al. Attempts to induce homoeologous pairing between wheat and Agropyron cristatum genomes. Genome. 2006;49:190–193. doi: 10.1139/g05-074. PubMed DOI
Karafiátová M, Bartoš J, Kopecký D, et al. Mapping nonrecombining regions in barley using multicolor FISH. Chrom Res. 2013;21:739–751. doi: 10.1007/s10577-013-9380-x. PubMed DOI
Kato A, Lamb JC, Birchler JA. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA. 2004;101:13554–13559. doi: 10.1073/pnas.0403659101. PubMed DOI PMC
Kato A, Albert PS, Vega JM, Birchler JA. Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem. 2006;81:71–78. doi: 10.1080/10520290600643677. PubMed DOI
Kawaura K, Mochida K, Enju A, et al. Assessment of adaptive evolution between wheat and rice as deduced from full-length common wheat cDNA sequence data and expression patterns. BMC Genom. 2009 doi: 10.1186/1471-2164-10-271. PubMed DOI PMC
Kharb P, Dong JJ, Islam-Faridi MN, et al. Fluorescence in situ hybridization of single copy transgenes in rice chromosomes. In Vitro Cellular Dev Biol Plant. 2001;37:1–5. doi: 10.1007/s11627-001-0001-6. DOI
Kim JS, Islam-Faridi MN, Klein PE, et al. Comprehensive molecular cytogenetic analysis of Sorghum genome architecture distribution of euchromatin heterochromatin, genes and recombination in comparison to rice. Genetics. 2005;171:1963–1976. doi: 10.1534/genetics.105.048215. PubMed DOI PMC
Kishii M, Yamada T, Sasakuma T, Tsujimoto H. Production of wheat-Leymus racemosus chromosome addition lines. Theor Appl Genet. 2004;109:255–260. doi: 10.1007/s00122-004-1631-y. PubMed DOI
Knott DR. Effect on wheat of Agropyron chromosome carrying rust resistance. Can J Genet Cytol. 1964;6:500–507. doi: 10.1139/g64-064. PubMed DOI
Knott DR. Translocations involving Triticum chromosomes and Agropyron chromosomes carrying rust resistance. Can J Genet Cytol. 1968;10:695–696. doi: 10.1139/g68-087. PubMed DOI
Li L, Yang X, Zhou R, et al. Establishment of wheat-Agropyron cristatum alien addition lines: II. Identification of alien chromosomes and analysis of development approaches. Acta Genet Sin. 1998;25:538–544.
Li G-R, Liu C, Wei P, et al. Chromosomal distribution of a new centromeric Ty3-gypsy retrotransposon sequence in Dasypyrum and related Triticeae species. J Genet. 2012;91:343–348. doi: 10.1007/s12041-012-0181-3. PubMed DOI
Li Q, Lu Y, Pan C, et al. Characterization of a novel wheat-Agropyron cristatum 2P disomic addition line with powdery mildew resistance. Crop Sci. 2016;56:2390–2400. doi: 10.2135/cropsci2015.10.0638. DOI
Li D, Li T, Wu Y, et al. FISH-Based markers enable identification of chromosomes derived from tetraploid Thinopyrum elongatum in hybrid lines. Front Plant Sci. 2018;9:526. doi: 10.3389/fpls.2018.00526. PubMed DOI PMC
Limin AE, Fowler DB. An interspecific hybrid and amphiploid produced from Triticum aestivum crosses with Agropyron cristatum and Agropyron desertorum. Genome. 1990;33:581–584. doi: 10.1139/g90-085. DOI
Linc G, Gaal E, Molnar I, et al. Molecular cytogenetic (FISH) and genome analysis of diploid wheatgrasses and their phylogenetic relationship. PLoS ONE. 2017 doi: 10.1371/journal.pone.0173623. PubMed DOI PMC
Liu W, Liu W, Wu J, et al. Analysis of genetic diversity in natural populations of Psathyrostachys huashanica Keng using microsatellite (SSR) markers. Agric Sci China. 2010;9:463–471. doi: 10.1016/s1671-2927(09)60118-8. DOI
Luan Y, Wang X, Liu W, et al. Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta. 2010;232:501–510. doi: 10.1007/s00425-010-1187-9. PubMed DOI
Martin A, Cabrera A, Esteban E, et al. A fertile amphiploid between diploid wheat (Triticum tauschii) and crested wheatgrass (Agropyron cristatum) Genome. 1999;42:519–524. doi: 10.1139/gen-42-3-519. PubMed DOI
McArthur RI, Zhu XW, Oliver RE, et al. Homoeology of Thinopyrum junceum and Elymus rectisetus chromosomes to wheat and disease resistance conferred by the Thinopyrum and Elymus chromosomes in wheat. Chrom Res. 2012;20:699–715. doi: 10.1007/s10577-012-9307-y. PubMed DOI
McGuire PE, Dvorak J. High salt tolerance potential in wheatgrasses. Crop Sci. 1981;21:702–705. doi: 10.2135/cropsci1981.0011183X002100050018x. DOI
Mickelsonyoung L, Endo TR, Gill BS. A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes. Theor Appl Genet. 1995;90:1007–1011. PubMed
Miftahudin Ross K, Ma XF, et al. Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics. 2004;168:651–663. doi: 10.1534/genetics.104.034827. PubMed DOI PMC
Mirzaghaderi G, Houben A, Badaeva ED. Molecular-cytogenetic analysis of Aegilops triuncialis and identification of its chromosomes in the background of wheat. Mol Cytogenet. 2014 doi: 10.1186/s13039-014-0091-6. PubMed DOI PMC
Mukai Y, Endo TR, Gill BS. Physical mapping of the 5S ribosomal-RNA multigene family in common wheat. J Hered. 1990;81:290–295. doi: 10.1093/oxfordjournals.jhered.a110991. DOI
Mukai Y, Endo TR, Gill BS. Physical mapping of the 18S.26S ribosomal-RNA multigene family in common wheat: identification of a new locus. Chromosoma. 1991;100:71–78. doi: 10.1007/bf00418239. DOI
Nagaki K, Tsujimoto H, Isono K, Sasakuma T. Molecular characterization of a tandem repeat, AFA family, and distribution among Triticeae. Genome. 1995;38:479–486. doi: 10.1139/g95-063. PubMed DOI
Naranjo CA, Poggio L, Brandham PE. A practical method of chromosome classification on the basis of centromere position. Genetica. 1983;62:51–53. doi: 10.1007/BF00123310. DOI
Naranjo T, Roca A, Goicoechea PG, Giraldez R. Arm homoeology of wheat and rye chromosomes. Genome. 1987;29:873–882. doi: 10.1139/g87-149. DOI
Nasuda S, Friebe B, Gill BS. Gametocidal genes induce chromosome breakage in the interphase prior to the first mitotic cell division of the male gametophyte in wheat. Genetics. 1998;149:1115–1124. PubMed PMC
Novák P, Neumann P, Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 2010 doi: 10.1186/1471-2105-11-378. PubMed DOI PMC
Novák P, Neumann P, Pech J, et al. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI
Ochoa V, Madrid E, Said M, et al. Molecular and cytogenetic characterization of a common wheat-Agropyron cristatum chromosome translocation conferring resistance to leaf rust. Euphytica. 2015;201:89–95. doi: 10.1007/s10681-014-1190-5. DOI
Paterson AH, Bowers JE, Burow M, et al. Comparative genomics of plant chromosomes. Plant Cell. 2000;12:1523–1539. doi: 10.1105/tpc.12.9.1523. PubMed DOI PMC
Qi L, Friebe B, Zhang P, Gill BS. Homoeologous recombination, chromosome engineering and crop improvement. Chrom Res. 2007;15:3–19. doi: 10.1007/s10577-006-1108-8. PubMed DOI
Reddy P, Appels R. A 2nd locus for the 5S multigene family in Secale L.: sequence divergence in 2 lineages of the family. Genome. 1989;32:456–467. doi: 10.1139/g89-469. PubMed DOI
Said M, Cabrera A. A physical map of chromosome 4Hch from H. chilense containing SSR, STS and EST-SSR molecular markers. Euphytica. 2009;167:253–259. doi: 10.1007/s10681-009-9895-6. DOI
Said M, Recio R, Cabrera A. Development and characterisation of structural changes in chromosome 3 Hch from Hordeum chilense in common wheat and their use in physical mapping. Euphytica. 2012;188:429–440. doi: 10.1007/s10681-012-0712-2. DOI
Sato S, Hizume M, Kawamura S. Relationship between secondary constrictions and nucleolus organizing regions in Allium sativum chromosomes. Protoplasma. 1980;105:77–85. doi: 10.1007/bf01279851. DOI
Schneider A, Linc G, Molnar-Lang M. Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat. Plant Breed. 2003;122:396–400. doi: 10.1046/j.1439-0523.2003.00891.x. DOI
Schneider A, Linc G, Molnar I, Molnar-Lang M. Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat-Aegilops biuncialis disomic addition lines. Genome. 2005;48:1070–1082. doi: 10.1139/g05-062. PubMed DOI
Schulz-Schaeffer J, Allderdice PW, Creel GC. Segmental allo-polyploidy in tetraploid and hexaploid Agropyron species of the crested wheatgrass complex (Section Agropyron) Crop Sci. 1963;3:525–530. doi: 10.2135/cropsci1963.0011183X000300060021x. DOI
Sharma HC, Gill BS, Uyemoto JK. High levels of resistance in Agropyron species to barley yellow dwarf and wheat streak mosaic viruses. Phytopathol Z J Phytopathol. 1984;110:143–147. doi: 10.1111/j.1439-0434.1984.tb03402.x. DOI
Shukle RH, Lampe DJ, Lister RM, Foster JE. Aphid feeding behavior: relationship to barley yellow dwarf virus-resistance in Agropyron species. Phytopathology. 1987;77:725–729. doi: 10.1094/Phyto-77-725. DOI
Smit S, Widmann J, Knight R. Evolutionary rates vary among rRNA structural elements. Nucl Acids Res. 2007;35:3339–3354. doi: 10.1093/nar/gkm101. PubMed DOI PMC
Song L, Jiang L, Han H, et al. Efficient induction of wheat-Agropyron cristatum 6P translocation lines and GISH detection. PLoS ONE. 2013 doi: 10.1371/journal.pone.0069501. PubMed DOI PMC
Song L, Lu Y, Zhang J, et al. Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background. Theor Appl Genet. 2016;129:1023–1034. doi: 10.1007/s00122-016-2680-8. PubMed DOI
Sonnhammer ELL, Durbin R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene-Combis. 1995;167:1–10. doi: 10.1016/0378-1119(95)00657-5. PubMed DOI
Sousa A, Barros e Silva AE, Cuadrado A, et al. Distribution of 5S and 45S rDNA sites in plants with holokinetic chromosomes and the “chromosome field” hypothesis. Micron. 2011;42:625–631. doi: 10.1016/j.micron.2011.03.002. PubMed DOI
Stebbins GL. Types of polyploids: their classification and significance. Adv Genet Incorporating Mol Genet Med. 1947;1:403–429. doi: 10.1016/s0065-2660(08)60490-3. PubMed DOI
Svitashev S, Bryngelsson T, Li XM, Wang RRC. Genome-specific repetitive DNA and RAPD markers for genome identification in Elymus and Hordelymus. Genome. 1998;41:120–128. doi: 10.1139/gen-41-1-120. PubMed DOI
Szakács É, Molnár-Láng M. Fluorescent in situ hybridization polymorphism on the 1RS chromosome arms of cultivated Secale cereale species. Cereal Res Commun. 2008;36:247–255. doi: 10.1556/CRC.36.2008.2.5. DOI
Tang Z-X, Fu S-L, Ren Z-L, et al. Variations of tandem repeat, regulatory element, and promoter regions revealed by wheat-rye amphiploids. Genome. 2008;51:399–408. doi: 10.1139/g08-027. PubMed DOI
Tang Z, Yang Z, Fu S. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet. 2014;55:313–318. doi: 10.1007/s13353-014-0215-z. PubMed DOI
Tang S, Qiu L, Xiao Z, et al. New oligonucleotide probes for ND-FISH analysis to identify barley chromosomes and to investigate polymorphisms of wheat chromosomes. Genes. 2016;7:118. doi: 10.3390/genes7120118. PubMed DOI PMC
Untergasser A, Cutcutache I, Koressaar T, et al. Primer3-new capabilities and interfaces. Nucl Acids Res. 2012;40:e115. doi: 10.1093/nar/gks596. PubMed DOI PMC
Vershinin AV, Schwarzacher T, Heslop-Harrison JS. The large-scale genomic organization of repetitive dna families at the telomeres of rye chromosomes. Plant Cell. 1995;7:1823–1833. PubMed PMC
Wang RRC. Agropyron and Psathyrostachys. Wild Crop Relat Genom Breed Res Cereals. 2011 doi: 10.1007/978-3-642-14228-4_2. DOI
Wang CJR, Harper L, Cande WZ. High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell. 2006;18:529–544. doi: 10.1105/tpc.105.037838. PubMed DOI PMC
Wang Q, Xiang J, Gao A, et al. Analysis of chromosomal structural polymorphisms in the St, P, and Y genomes of Triticeae (Poaceae) Genome. 2010;53:241–249. doi: 10.1139/g09-098. PubMed DOI
Wu J, Yang X, Wang H, et al. The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor Appl Genet. 2006;114:13–20. doi: 10.1007/s00122-006-0405-0. PubMed DOI
Wu M, Zhang JP, Wang JC, et al. Cloning and characterization of repetitive sequences and development of SCAR markers specific for the P genome of Agropyron cristatum. Euphytica. 2010;172:363–372. doi: 10.1007/s10681-009-0033-2. DOI
Yang C-T, Fan X, Wang X-L, et al. Karyotype analysis of Agropyron cristatum (L.) Gaertner. Caryologia. 2014;67:234–237. doi: 10.1080/0144235x.2014.974351. DOI
Ye X, Lu Y, Liu W, et al. The effects of chromosome 6P on fertile tiller number of wheat as revealed in wheat-Agropyron cristatum chromosome 5A/6P translocation lines. Theor Appl Genet. 2015;128:797–811. doi: 10.1007/s00122-015-2466-4. PubMed DOI
Zhang H, Jia J, Gale MD, Devos KM. Relationships between the chromosomes of Aegilops umbellulata and wheat. Theor Appl Genet. 1998;96:69–75. doi: 10.1007/s001220050710. DOI
Zhang P, Li WL, Fellers J, et al. BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma. 2004;112:288–299. doi: 10.1007/s00412-004-0273-9. PubMed DOI
Zhang H, Bian Y, Gou X, et al. Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation. Proc Natl Acad Sci USA. 2013;110:19466–19471. doi: 10.1073/pnas.1319598110. PubMed DOI PMC
Zhang J, Liu W, Han H, et al. De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics. 2015;106:129–136. doi: 10.1016/j.ygeno.2015.04.003. PubMed DOI
Flow Cytometric Analysis and Sorting of Plant Chromosomes
Advances in the Molecular Cytogenetics of Bananas, Family Musaceae
The B chromosome of Sorghum purpureosericeum reveals the first pieces of its sequence