Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30451959
PubMed Central
PMC6242988
DOI
10.1038/s41598-018-35389-1
PII: 10.1038/s41598-018-35389-1
Knihovny.cz E-zdroje
- MeSH
- Euglena longa klasifikace cytologie genetika MeSH
- fotosyntéza * MeSH
- fylogeneze MeSH
- molekulární evoluce * MeSH
- plastidy genetika MeSH
- proteiny chloroplastové genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny chloroplastové MeSH
Euglenophytes are a familiar algal group with green alga-derived secondary plastids, but the knowledge of euglenophyte plastid function and evolution is still highly incomplete. With this in mind we sequenced and analysed the transcriptome of the non-photosynthetic species Euglena longa. The transcriptomic data confirmed the absence of genes for the photosynthetic machinery, but provided candidate plastid-localised proteins bearing N-terminal bipartite topogenic signals (BTSs) of the characteristic euglenophyte type. Further comparative analyses including transcriptome assemblies available for photosynthetic euglenophytes enabled us to unveil salient aspects of the basic euglenophyte plastid infrastructure, such as plastidial targeting of several proteins as C-terminal translational fusions with other BTS-bearing proteins or replacement of the conventional eubacteria-derived plastidial ribosomal protein L24 by homologs of archaeo-eukaryotic origin. Strikingly, no homologs of any key component of the TOC/TIC system and the plastid division apparatus are discernible in euglenophytes, and the machinery for intraplastidial protein targeting has been simplified by the loss of the cpSRP/cpFtsY system and the SEC2 translocon. Lastly, euglenophytes proved to encode a plastid-targeted homolog of the termination factor Rho horizontally acquired from a Lambdaproteobacteria-related donor. Our study thus further documents a substantial remodelling of the euglenophyte plastid compared to its green algal progenitor.
Department of Genetics Faculty of Natural Sciences Comenius University 842 15 Bratislava Slovakia
Department of Parasitology Faculty of Science Charles University BIOCEV Prague Czech Republic
Institute of Parasitology Biology Centre CAS 370 05 České Budějovice Czech Republic
University of South Bohemia Faculty of Science 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Leander, B. S., Lax, G., Karnkowska, A. & Simpson, A. G. B. Euglenida in Handbook of the Protists (eds John M. Archibald et al.), 1–42 (Springer International Publishing, 2017).
Campbell DA, Thomas S, Sturm NR. Transcription in kinetoplastid protozoa: why be normal? Microbes Infect. 2003;5:1231–1240. doi: 10.1016/j.micinf.2003.09.005. PubMed DOI
Clayton CE. Gene expression in kinetoplastids. Curr Opin Microbiol. 2016;32:46–51. doi: 10.1016/j.mib.2016.04.018. PubMed DOI
Ebenezer, T. E. et al. Unlocking the biological potential of Euglena gracilis: evolution, cell biology and significance to parasitism. bioRxiv, 10.1101/228015, (2017).
Hoffmeister M, et al. Euglena gracilis rhodoquinone:ubiquinone ratio and mitochondrial proteome differ under aerobic and anaerobic conditions. J Biol Chem. 2004;279:22422–22429. doi: 10.1074/jbc.M400913200. PubMed DOI
Frantz C, Ebel C, Paulus F, Imbault P. Characterization of trans-splicing in Euglenoids. Curr Genet. 2000;37:349–355. doi: 10.1007/s002940000116. PubMed DOI
Liang XH, Haritan A, Uliel S, Michaeli S. Trans and cis splicing in trypanosomatids: mechanism, factors, and regulation. Eukaryot Cell. 2003;2:830–840. doi: 10.1128/EC.2.5.830-840.2003. PubMed DOI PMC
Ebenezer TE, Carrington M, Lebert M, Kelly S, Field MC. Euglena gracilis genome and transcriptome: Organelles, nuclear genome assembly strategies and initial features. Adv Exp Med Biol. 2017;979:125–140. doi: 10.1007/978-3-319-54910-1_7. PubMed DOI
O’Neill EC, et al. The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol Biosyst. 2015;11:2808–2820. doi: 10.1039/C5MB00319A. PubMed DOI
Yoshida Y, et al. De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. BMC Genomics. 2016;17:182. doi: 10.1186/s12864-016-2540-6. PubMed DOI PMC
Keeling PJ, et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014;12:e1001889. doi: 10.1371/journal.pbio.1001889. PubMed DOI PMC
Jackson C, Knoll AH, Chan CX, Verbruggen H. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci Rep. 2018;8:1523. doi: 10.1038/s41598-017-18805-w. PubMed DOI PMC
Turmel M, Gagnon MC, O’Kelly CJ, Otis C, Lemieux C. The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol. 2009;26:631–648. doi: 10.1093/molbev/msn285. PubMed DOI
Vanclová, A. M. G., Hadariová, L., Hrdá, Š. & Hampl, V. Chapter Nine - Secondary Plastids of Euglenophytes in Advances in Botanical Research Vol. 84 (ed. Yoshihisa Hirakawa), 321–358 (Academic Press, 2017).
Durnford, D. G. & Schwartzbach, S. D. Protein targeting to the plastid of Euglena in Euglena: Biochemistry, cell and molecular biology Vol. 979 (eds Steven D. Schwartzbach & Shigeru Shigeoka), 183–205 (Springer International Publishing, 2017). PubMed
Durnford DG, Gray MW. Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Eukaryot Cell. 2006;5:2079–2091. doi: 10.1128/EC.00222-06. PubMed DOI PMC
Kořený L, Oborník M. Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis. Genome Biol Evol. 2011;3:359–364. doi: 10.1093/gbe/evr029. PubMed DOI PMC
Lakey B, Triemer R. The tetrapyrrole synthesis pathway as a model of horizontal gene transfer in euglenoids. J Phycol. 2017;53:198–217. doi: 10.1111/jpy.12491. PubMed DOI
Markunas CM, Triemer RE. Evolutionary history of the enzymes involved in the Calvin-Benson cycle in euglenids. J Eukaryot Microbiol. 2016;63:326–339. doi: 10.1111/jeu.12282. PubMed DOI
Marin B, Palm A, Klingberg M, Melkonian M. Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist. 2003;154:99–145. doi: 10.1078/143446103764928521. PubMed DOI
Gockel G, Hachtel W. Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist. 2000;151:347–351. doi: 10.1078/S1434-4610(04)70033-4. PubMed DOI
Hadariová L, Vesteg M, Birčák E, Schwartzbach SD, Krajčovič J. An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis. Curr Genet. 2017;63:331–341. doi: 10.1007/s00294-016-0641-z. PubMed DOI
Záhonová K, Füssy Z, Oborník M, Eliáš M, Yurchenko V. RuBisCO in non-photosynthetic alga Euglena longa: divergent features, transcriptomic analysis and regulation of complex formation. PLoS ONE. 2016;11:e0158790. doi: 10.1371/journal.pone.0158790. PubMed DOI PMC
Webster DA, Hackett DP, Park RB. The respiratory chain of colorless algae: III. Electron microscopy. J Ultrastruct Res. 1967;21:514–523. doi: 10.1016/S0022-5320(67)80154-0. PubMed DOI
Nudelman MA, Rossi MS, Conforti V, Triemer RE. Phylogeny of Euglenophyceae based on small subunit rDNA sequences: Taxonomic implications. J Phycol. 2003;39:226–235. doi: 10.1046/j.1529-8817.2003.02075.x. DOI
Záhonová K, et al. Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase. Sci Rep. 2018;8:5239. doi: 10.1038/s41598-018-23575-0. PubMed DOI PMC
Russell AG, Watanabe Y, Charette JM, Gray MW. Unusual features of fibrillarin cDNA and gene structure in Euglena gracilis: evolutionary conservation of core proteins and structural predictions for methylation-guide box C/D snoRNPs throughout the domain Eucarya. Nucleic Acids Res. 2005;33:2781–2791. doi: 10.1093/nar/gki574. PubMed DOI PMC
Nagai M, Yoneda Y. Small GTPase Ran and Ran-binding proteins. Biomol Concepts. 2012;3:307–318. doi: 10.1515/bmc-2011-0068. PubMed DOI
Záhonová K, et al. A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis. FEBS Lett. 2014;588:783–788. doi: 10.1016/j.febslet.2014.01.034. PubMed DOI
Maier UG, et al. Massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes. Genome Biol Evol. 2013;5:2318–2329. doi: 10.1093/gbe/evt181. PubMed DOI PMC
Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A. The plastid genome of Polytoma uvella is the largest known among colorless algae and plants and reflects contrasting evolutionary paths to nonphotosynthetic lifestyles. Plant Physiol. 2017;173:932–943. doi: 10.1104/pp.16.01628. PubMed DOI PMC
Kamikawa R, et al. Proposal of a twin arginine translocator system-mediated constraint against loss of ATP synthase genes from nonphotosynthetic plastid genomes. Mol Biol Evol. 2015;32:2598–2604. doi: 10.1093/molbev/msv134. PubMed DOI
Suzuki S, Endoh R, Manabe RI, Ohkuma M, Hirakawa Y. Multiple losses of photosynthesis and convergent reductive genome evolution in the colourless green algae Prototheca. Sci Rep. 2018;8:940. doi: 10.1038/s41598-017-18378-8. PubMed DOI PMC
Habib S, Vaishya S, Gupta K. Translation in organelles of apicomplexan parasites. Trends Parasitol. 2016;32:939–952. doi: 10.1016/j.pt.2016.07.005. PubMed DOI
Mailu BM, et al. Plasmodium apicoplast Gln-tRNAGln biosynthesis utilizes a unique GatAB amidotransferase essential for erythrocytic stage parasites. J Biol Chem. 2015;290:29629–29641. doi: 10.1074/jbc.M115.655100. PubMed DOI PMC
Sheppard K, et al. From one amino acid to another: tRNA-dependent amino acid biosynthesis. Nucleic Acids Res. 2008;36:1813–1825. doi: 10.1093/nar/gkn015. PubMed DOI PMC
Gile GH, Moog D, Slamovits CH, Maier UG, Archibald JM. Dual organellar targeting of aminoacyl-tRNA synthetases in diatoms and cryptophytes. Genome Biol Evol. 2015;7:1728–1742. doi: 10.1093/gbe/evv095. PubMed DOI PMC
Ban N, et al. A new system for naming ribosomal proteins. Curr Opin Struct Biol. 2014;24:165–169. doi: 10.1016/j.sbi.2014.01.002. PubMed DOI PMC
Adams KL, Daley DO, Whelan J, Palmer JD. Genes for two mitochondrial ribosomal proteins in flowering plants are derived from their chloroplast or cytosolic counterparts. Plant Cell. 2002;14:931–943. doi: 10.1105/tpc.010483. PubMed DOI PMC
Bieri P, Leibundgut M, Saurer M, Boehringer D, Ban N. The complete structure of the chloroplast 70S ribosome in complex with translation factor pY. EMBO J. 2017;36:475–486. doi: 10.15252/embj.201695959. PubMed DOI PMC
Bubunenko MG, Schmidt J, Subramanian AR. Protein substitution in chloroplast ribosome evolution. A eukaryotic cytosolic protein has replaced its organelle homologue (L23) in spinach. J Mol Biol. 1994;240:28–41. doi: 10.1006/jmbi.1994.1415. PubMed DOI
Takagi M, Absalon MJ, McLure KG, Kastan MB. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell. 2005;123:49–63. doi: 10.1016/j.cell.2005.07.034. PubMed DOI
Zhang M, Zhang J, Yan W, Chen X. p73 expression is regulated by ribosomal protein RPL26 through mRNA translation and protein stability. Oncotarget. 2016;7:78255–78268. PubMed PMC
Chan RL, Keller M, Canaday J, Weil JH, Imbault P. Eight small subunits of Euglena ribulose 1-5 bisphosphate carboxylase/oxygenase are translated from a large mRNA as a polyprotein. EMBO J. 1990;9:333–338. doi: 10.1002/j.1460-2075.1990.tb08115.x. PubMed DOI PMC
Enomoto T, Sulli C, Schwartzbach SD. A soluble chloroplast protease processes the Euglena polyprotein precursor to the light harvesting chlorophyll a/b binding protein of photosystem II. Plant Cell Physiol. 1997;38:743–746. doi: 10.1093/oxfordjournals.pcp.a029229. DOI
Koziol AG, Durnford DG. Euglena light-harvesting complexes are encoded by multifarious polyprotein mRNAs that evolve in concert. Mol Biol Evol. 2008;25:92–100. doi: 10.1093/molbev/msm232. PubMed DOI
Nowitzki U, Gelius-Dietrich G, Schwieger M, Henze K, Martin W. Chloroplast phosphoglycerate kinase from Euglena gracilis: endosymbiotic gene replacement going against the tide. Eur J Biochem. 2004;271:4123–4131. doi: 10.1111/j.1432-1033.2004.04350.x. PubMed DOI
Zhang H, Lin S. Complex gene structure of the the form II RuBisCO in the dinoflagellate Prorocentrum minimum (Dinophyceae) J Phycol. 2003;39:1160–1171. doi: 10.1111/j.0022-3646.2003.03-055.x. DOI
Benz JP, et al. Arabidopsis Tic62 and ferredoxin-NADP(H) oxidoreductase form light-regulated complexes that are integrated into the chloroplast redox poise. Plant Cell. 2009;21:3965–3983. doi: 10.1105/tpc.109.069815. PubMed DOI PMC
Chigri F, et al. Calcium regulation of chloroplast protein translocation is mediated by calmodulin binding to Tic32. Proc Natl Acad Sci USA. 2006;103:16051–16056. doi: 10.1073/pnas.0607150103. PubMed DOI PMC
Kikuchi S, et al. A 1-megadalton translocation complex containing Tic20 and Tic21 mediates chloroplast protein import at the inner envelope membrane. Plant Cell. 2009;21:1781–1797. doi: 10.1105/tpc.108.063552. PubMed DOI PMC
Hauenstein M, Christ B, Das A, Aubry S, Hortensteiner S. A role for TIC55 as a hydroxylase of phyllobilins, the products of chlorophyll breakdown during plant senescence. Plant Cell. 2016;28:2510–2527. doi: 10.1105/tpc.16.00630. PubMed DOI PMC
Maier UG, Zauner S, Hempel F. Protein import into complex plastids: Cellular organization of higher complexity. Eur J Cell Biol. 2015;94:340–348. doi: 10.1016/j.ejcb.2015.05.008. PubMed DOI
Lee DW, Lee J, Hwang I. Sorting of nuclear-encoded chloroplast membrane proteins. Curr Opin Plant Biol. 2017;40:1–7. doi: 10.1016/j.pbi.2017.06.011. PubMed DOI
Braun NA, Davis AW, Theg SM. The chloroplast Tat pathway utilizes the transmembrane electric potential as an energy source. Biophys J. 2007;93:1993–1998. doi: 10.1529/biophysj.106.098731. PubMed DOI PMC
Träger C, et al. Evolution from the prokaryotic to the higher plant chloroplast signal recognition particle: the signal recognition particle RNA is conserved in plastids of a wide range of photosynthetic organisms. Plant Cell. 2012;24:4819–4836. doi: 10.1105/tpc.112.102996. PubMed DOI PMC
Ziehe D, Dünschede B, Schünemann D. From bacteria to chloroplasts: evolution of the chloroplast SRP system. Biol Chem. 2017;398:653–661. doi: 10.1515/hsz-2016-0292. PubMed DOI
Skalitzky CA, et al. Plastids contain a second sec translocase system with essential functions. Plant Physiol. 2011;155:354–369. doi: 10.1104/pp.110.166546. PubMed DOI PMC
Li Y, Martin JR, Aldama GA, Fernandez DE, Cline K. Identification of putative substrates of SEC. 2, a chloroplast inner envelope translocase. Plant Physiol. 2017;173:2121–2137. doi: 10.1104/pp.17.00012. PubMed DOI PMC
Nishimura K, Kato Y, Sakamoto W. Chloroplast proteases: Updates on proteolysis within and across suborganellar compartments. Plant Physiol. 2016;171:2280–2293. PubMed PMC
Nakai M, Sugita D, Omata T, Endo T. Sec-Y protein is localized in both the cytoplasmic and thylakoid membranes in the cyanobacterium Synechococcus PCC7942. Biochem Biophys Res Commun. 1993;193:228–234. doi: 10.1006/bbrc.1993.1613. PubMed DOI
Yusa F, Steiner JM, Löffelhardt W. Evolutionary conservation of dual Sec translocases in the cyanelles of Cyanophora paradoxa. BMC Evol Biol. 2008;8:304. doi: 10.1186/1471-2148-8-304. PubMed DOI PMC
Chen C, MacCready JS, Ducat DC, Osteryoung KW. The molecular machinery of chloroplast division. Plant Physiol. 2018;176:138–151. doi: 10.1104/pp.17.01272. PubMed DOI PMC
Miyagishima SY, Nakamura M, Uzuka A, Era A. FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division. Front Plant Sci. 2014;5:459. doi: 10.3389/fpls.2014.00459. PubMed DOI PMC
Chi W, He B, Mao J, Jiang J, Zhang L. Plastid sigma factors: Their individual functions and regulation in transcription. Biochim Biophys Acta. 2015;1847:770–778. doi: 10.1016/j.bbabio.2015.01.001. PubMed DOI
Kriner MA, Sevostyanova A, Groisman EA. Learning from the leaders: Gene regulation by the transcription termination factor Rho. Trends Biochem Sci. 2016;41:690–699. doi: 10.1016/j.tibs.2016.05.012. PubMed DOI PMC
Parks, D. H. et al. A proposal for a standardized bacterial taxonomy based on genome phylogeny. Nat Biotechnol., 10.1038/nbt.4229, (2018). PubMed
Anantharaman K, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:13219. doi: 10.1038/ncomms13219. PubMed DOI PMC
Cao H, et al. Delta-proteobacterial SAR324 group in hydrothermal plumes on the South Mid-Atlantic Ridge. Sci Rep. 2016;6:22842. doi: 10.1038/srep22842. PubMed DOI PMC
Chitsaz H, et al. Efficient de novo assembly of single-cell bacterial genomes from short-read data sets. Nat Biotechnol. 2011;29:915–921. doi: 10.1038/nbt.1966. PubMed DOI PMC
Tully BJ, Graham ED, Heidelberg JF. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci Data. 2018;5:170203. doi: 10.1038/sdata.2017.203. PubMed DOI PMC
Hadariová L, Vesteg M, Hampl V, Krajčovič J. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet. 2018;64:365–387. doi: 10.1007/s00294-017-0761-0. PubMed DOI
Huang J, Yue J. Horizontal gene transfer in the evolution of photosynthetic eukaryotes. J Syst Evol. 2013;51:13–29. doi: 10.1111/j.1759-6831.2012.00237.x. DOI
Mackiewicz P, Bodyl A, Moszczynski K. The case of horizontal gene transfer from bacteria to the peculiar dinoflagellate plastid genome. Mob Genet Elements. 2013;3:e25845. doi: 10.4161/mge.25845. PubMed DOI PMC
Maruyama S, Suzaki T, Weber AP, Archibald JM, Nozaki H. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. BMC Evol Biol. 2011;11:105. doi: 10.1186/1471-2148-11-105. PubMed DOI PMC
Cramer M, Myers J. Growth and photosynthetic characteristics of Euglena gracilis. Archiv Mikrobiol. 1952;17:384–402. doi: 10.1007/BF00410835. DOI
Mateášiková-Kováčová B, et al. Nucleus-encoded mRNAs for chloroplast proteins GapA, PetA, and PsbO are trans-spliced in the flagellate Euglena gracilis irrespective of light and plastid function. J Eukaryot Microbiol. 2012;59:651–653. doi: 10.1111/j.1550-7408.2012.00634.x. PubMed DOI
Schmieder R, Edwards R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLOS ONE. 2011;6:e17288. doi: 10.1371/journal.pone.0017288. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Simpson JT, et al. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009;19:1117–1123. doi: 10.1101/gr.089532.108. PubMed DOI PMC
Robertson G, et al. De novo assembly and analysis of RNA-seq data. Nat Methods. 2010;7:909–912. doi: 10.1038/nmeth.1517. PubMed DOI
Grabherr MG, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Xie Y, et al. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics. 2014;30:1660–1666. doi: 10.1093/bioinformatics/btu077. PubMed DOI
Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Res. 1999;9:868–877. doi: 10.1101/gr.9.9.868. PubMed DOI PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Eddy SR. A new generation of homology search tools based on probabilistic inference. Genome Inform. 2009;23:205–211. PubMed
Marchler-Bauer A, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45:D200–D203. doi: 10.1093/nar/gkw1129. PubMed DOI PMC
Larkin MA, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI
Hiller K, Grote A, Scheer M, Munch R, Jahn D. PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 2004;32:W375–379. doi: 10.1093/nar/gkh378. PubMed DOI PMC
Petsalaki EI, Bagos PG, Litou ZI, Hamodrakas SJ. PredSL: a tool for the N-terminal sequence-based prediction of protein subcellular localization. Genomics Proteomics Bioinformatics. 2006;4:48–55. doi: 10.1016/S1672-0229(06)60016-8. PubMed DOI PMC
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–580. doi: 10.1006/jmbi.2000.4315. PubMed DOI
Kearse M, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Blum T, Briesemeister S, Kohlbacher O. MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction. BMC Bioinformatics. 2009;10:274. doi: 10.1186/1471-2105-10-274. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30:3276–3278. doi: 10.1093/bioinformatics/btu531. PubMed DOI PMC
Goodstadt L, Ponting CP. CHROMA: consensus-based colouring of multiple alignments for publication. Bioinformatics. 2001;17:845–846. doi: 10.1093/bioinformatics/17.9.845. PubMed DOI
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
New plastids, old proteins: repeated endosymbiotic acquisitions in kareniacean dinoflagellates
Comparative analysis of mitochondrion-related organelles in anaerobic amoebozoans
Functional differentiation of Sec13 paralogues in the euglenozoan protists
Euglenozoan kleptoplasty illuminates the early evolution of photoendosymbiosis
Vestiges of the Bacterial Signal Recognition Particle-Based Protein Targeting in Mitochondria
The Cryptic Plastid of Euglena longa Defines a New Type of Nonphotosynthetic Plastid Organelle
A Uniquely Complex Mitochondrial Proteome from Euglena gracilis
Catalase and Ascorbate Peroxidase in Euglenozoan Protists