RuBisCO in Non-Photosynthetic Alga Euglena longa: Divergent Features, Transcriptomic Analysis and Regulation of Complex Formation

. 2016 ; 11 (7) : e0158790. [epub] 20160708

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27391690

Euglena longa, a close relative of the photosynthetic model alga Euglena gracilis, possesses an enigmatic non-photosynthetic plastid. Its genome has retained a gene for the large subunit of the enzyme RuBisCO (rbcL). Here we provide new data illuminating the putative role of RuBisCO in E. longa. We demonstrated that the E. longa RBCL protein sequence is extremely divergent compared to its homologs from the photosynthetic relatives, suggesting a possible functional shift upon the loss of photosynthesis. Similarly to E. gracilis, E. longa harbors a nuclear gene encoding the small subunit of RuBisCO (RBCS) as a precursor polyprotein comprising multiple RBCS repeats, but one of them is highly divergent. Both RBCL and the RBCS proteins are synthesized in E. longa, but their abundance is very low compared to E. gracilis. No RBCS monomers could be detected in E. longa, suggesting that processing of the precursor polyprotein is inefficient in this species. The abundance of RBCS is regulated post-transcriptionally. Indeed, blocking the cytoplasmic translation by cycloheximide has no immediate effect on the RBCS stability in photosynthetically grown E. gracilis, but in E. longa, the protein is rapidly degraded. Altogether, our results revealed signatures of evolutionary degradation (becoming defunct) of RuBisCO in E. longa and suggest that its biological role in this species may be rather unorthodox, if any.

Zobrazit více v PubMed

Bassham JA, Benson AA, Calvin M. The path of carbon in photosynthesis. J Biol Chem. 1950; 185: 781–787. PubMed

Tabita FR, Hanson TE, Li H, Satagopan S, Singh J, Chan S. Function, structure, and evolution of the RuBisCO-like proteins and their RuBisCO homologs. Microbiol Mol Biol Rev. 2007; 71: 576–599. PubMed PMC

Janouškovec J, Horák A, Oborník M, Lukeš J, Keeling PJ. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci U S A. 2010; 107: 10949–10954. 10.1073/pnas.1003335107 PubMed DOI PMC

Andrews TJ. Catalysis by cyanobacterial ribulose-bisphosphate carboxylase large subunits in the complete absence of small subunits. J Biol Chem. 1988; 263: 12213–12219. PubMed

van Lun M, Hub JS, van der Spoel D, Andersson I. CO2 and O2 distribution in RuBisCO suggests the small subunit functions as a CO2 reservoir. J Am Chem Soc. 2014; 136: 3165–3171. 10.1021/ja411579b PubMed DOI

Watson GM, Tabita FR. Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation. FEMS Microbiol Lett. 1997; 146: 13–22. PubMed

Hauser T, Popilka L, Hartl FU, Hayer-Hartl M. Role of auxiliary proteins in RuBisCO biogenesis and function. Nat Plants. 2015; 1: 15065 10.1038/nplants.2015.65 PubMed DOI

Genkov T, Spreitzer RJ. Highly conserved small subunit residues influence RuBisCO large subunit catalysis. J Biol Chem. 2009; 284: 30105–30112. 10.1074/jbc.M109.044081 PubMed DOI PMC

Genkov T, Meyer M, Griffiths H, Spreitzer RJ. Functional hybrid RuBisCO enzymes with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in Chlamydomonas. J Biol Chem. 2010; 285: 19833–19841. 10.1074/jbc.M110.124230 PubMed DOI PMC

Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012; 59: 429–493. 10.1111/j.1550-7408.2012.00644.x PubMed DOI PMC

Leander BS. Did trypanosomatid parasites have photosynthetic ancestors? Trends Microbiol. 2004; 12: 251–258. PubMed

Yamaguchi A, Yubuki N, Leander BS. Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evol Biol. 2012; 12: 29 10.1186/1471-2148-12-29 PubMed DOI PMC

Busse I, Preisfeld A. Systematics of primary osmotrophic euglenids: a molecular approach to the phylogeny of Distigma and Astasia (Euglenozoa). Int J Syst Evol Microbiol. 2003; 53: 617–624. PubMed

Marin B, Palm A, Klingberg M, Melkonian M. Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist. 2003; 154: 99–145. PubMed

Gockel G, Hachtel W. Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist. 2000; 151: 347–351. PubMed

Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, et al. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res. 1993; 21: 3537–3544. PubMed PMC

Siemeister G, Hachtel W. Structure and expression of a gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase (rbcL) in the colourless euglenoid flagellate Astasia longa. Plant Mol Biol. 1990; 14: 825–833. PubMed

Bennett MS, Triemer RE. Chloroplast genome evolution in the Euglenaceae. J Eukaryot Microbiol. 2015; 62: 773–785. 10.1111/jeu.12235 PubMed DOI

Chan RL, Keller M, Canaday J, Weil JH, Imbault P. Eight small subunits of Euglena ribulose-1,5-bisphosphate carboxylase/oxygenase are translated from a large mRNA as a polyprotein. EMBO J. 1990; 9: 333–338. PubMed PMC

Markunas CM, Triemer RE. Evolutionary history of the enzymes involved in the Calvin-Benson cycle in euglenids. J Eukaryot Microbiol. 2015: 10.1111/jeu.12282 PubMed DOI

Durnford DG, Gray MW. Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Eukaryot Cell. 2006; 5: 2079–2091. PubMed PMC

Sailland A, Amiri I, Freyssinet G. Amino acid sequence of the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit from Euglena. Plant Mol Biol. 1986; 7: 213–218. 10.1007/BF00021333 PubMed DOI

Yokota A, Harada A, Kitaoka S. Characterization of ribulose 1,5-bisphosphate carboxylase/oxygenase from Euglena gracilis Z. J Biochem. 1989; 105: 400–405. PubMed

Wolfe AD, dePamphilis CW. The effect of relaxed functional constraints on the photosynthetic gene rbcL in photosynthetic and nonphotosynthetic parasitic plants. Mol Biol Evol. 1998; 15: 1243–1258. PubMed

Manen JF, Habashi C, Jeanmonod D, Park JM, Schneeweiss GM. Phylogeny and intraspecific variability of holoparasitic Orobanche (Orobanchaceae) inferred from plastid rbcL sequences. Mol Phylogenet Evol. 2004; 33: 482–500. PubMed

Randle CP, Wolfe AD. The evolution and expression of RbcL in holoparasitic sister-genera Harveya and Hyobanche (Orobanchaceae). Am J Bot. 2005; 92: 1575–1585. 10.3732/ajb.92.9.1575 PubMed DOI

Cramer M, Myers J. Growth and photosynthetic characteristics of Euglena gracilis. Archiv Fur Mikrobiologie. 1952; 17: 384–402.

Záhonová K, Hadariová L, Vacula R, Yurchenko V, Eliáš M, Krajčovič J, et al. A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis. FEBS Lett. 2014; 588: 783–788. 10.1016/j.febslet.2014.01.034 PubMed DOI

Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques. 2005; 39: 75–85. PubMed

Yurchenko V, Xue Z, Gama V, Matsuyama S, Sadofsky MJ. Ku70 is stabilized by increased cellular SUMO. Biochem Biophys Res Commun. 2008; 366: 263–268. PubMed PMC

Yurchenko V, Xue Z, Sadofsky MJ. SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Mol Cell Biol. 2006; 26: 1786–1794. PubMed PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215: 403–410. PubMed

Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLOS Biol. 2014; 12: e1001889 10.1371/journal.pbio.1001889 PubMed DOI PMC

Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002; 30: 3059–3066. PubMed PMC

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999; 41: 95–98.

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30: 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC

Lartillot N, Lepage T, Blanquart S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009; 25: 2286–2288. 10.1093/bioinformatics/btp368 PubMed DOI

Rice DW, Palmer JD. An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol. 2006; 4: 31 PubMed PMC

Spreitzer RJ, Salvucci ME. RuBisCO: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol. 2002; 53: 449–475. PubMed

Keller M, Chan RL, Tessier LH, Weil JH, Imbault P. Post-transcriptional regulation by light of the biosynthesis of Euglena ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit. Plant Mol Biol. 1991; 17: 73–82. PubMed

Knight JR, Willis AE, Milner J. Active regulator of SIRT1 is required for ribosome biogenesis and function. Nucleic Acids Res. 2013; 41: 4185–4197. 10.1093/nar/gkt129 PubMed DOI PMC

Doyle CM, Rumfeldt JA, Broom HR, Broom A, Stathopulos PB, Vassall KA, et al. Energetics of oligomeric protein folding and association. Arch Biochem Biophys. 2013; 531: 44–64. 10.1016/j.abb.2012.12.005 PubMed DOI

Vesteg M, Vacula R, Burey S, Löffelhardt W, Drahovská H, Martin W, et al. Expression of nucleus-encoded genes for chloroplast proteins in the flagellate Euglena gracilis. J Eukaryot Microbiol. 2009; 56: 159–166. 10.1111/j.1550-7408.2008.00383.x PubMed DOI

Rikin A, Schwartzbach SD. Extremely large and slowly processed precursors to the Euglena light-harvesting chlorophyll a/b binding proteins of photosystem II. Proc Natl Acad Sci U S A. 1988; 85: 5117–5121. PubMed PMC

Muchhal US, Schwartzbach SD. Characterization of a Euglena gene encoding a polyprotein precursor to the light-harvesting chlorophyll a/b-binding protein of photosystem II. Plant Mol Biol. 1992; 18: 287–299. PubMed

Nowitzki U, Gelius-Dietrich G, Schwieger M, Henze K, Martin W. Chloroplast phosphoglycerate kinase from Euglena gracilis: endosymbiotic gene replacement going against the tide. Eur J Biochem. 2004; 271: 4123–4131. PubMed

Koziol AG, Durnford DG. Euglena light-harvesting complexes are encoded by multifarious polyprotein mRNAs that evolve in concert. Mol Biol Evol. 2008; 25: 92–100. PubMed

Zhang H, Lin S. Complex gene structure of the form II RuBisCO in the dinoflagellate Prorocentrum minimum (Dinophyceae). J Phycol. 2003; 39: 1160–1171.

Enomoto T, Sulli C, Schwartzbach SD. A Soluble chloroplast protease processes the Euglena polyprotein precursor to the light harvesting chlorophyll a/b binding protein of photosystem II. Plant Cell Physiol. 1997; 38: 743–746.

Song J, Tan H, Perry AJ, Akutsu T, Webb GI, Whisstock JC, et al. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites. PLOS ONE. 2012; 7: e50300 10.1371/journal.pone.0050300 PubMed DOI PMC

Lin MT, Occhialini A, Andralojc PJ, Parry MA, Hanson MR. A faster RuBisCO with potential to increase photosynthesis in crops. Nature. 2014; 513: 547–550. 10.1038/nature13776 PubMed DOI PMC

Kanevski I, Maliga P, Rhoades DF, Gutteridge S. Plastome engineering of ribulose-1,5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid. Plant Physiol. 1999; 119: 133–142. PubMed PMC

Stotz M, Mueller-Cajar O, Ciniawsky S, Wendler P, Hartl FU, Bracher A, et al. Structure of green-type RuBisCO activase from tobacco. Nat Struct Mol Biol. 2011; 18: 1366–1370. 10.1038/nsmb.2171 PubMed DOI

Hauser T, Bhat JY, Milicic G, Wendler P, Hartl FU, Bracher A, et al. Structure and mechanism of the RuBisCO-assembly chaperone Raf1. Nat Struct Mol Biol. 2015; 22: 720–728. 10.1038/nsmb.3062 PubMed DOI

Feiz L, Williams-Carrier R, Belcher S, Montano M, Barkan A, Stern DB. A protein with an inactive pterin-4a-carbinolamine dehydratase domain is required for RuBisCO biogenesis in plants. Plant J. 2014; 80: 862–869. 10.1111/tpj.12686 PubMed DOI

Wheatley NM, Sundberg CD, Gidaniyan SD, Cascio D, Yeates TO. Structure and identification of a pterin dehydratase-like protein as a ribulose-bisphosphate carboxylase/oxygenase (RuBisCO) assembly factor in the alpha-carboxysome. J Biol Chem. 2014; 289: 7973–7981. 10.1074/jbc.M113.531236 PubMed DOI PMC

Imker HJ, Fedorov AA, Fedorov EV, Almo SC, Gerlt JA. Mechanistic diversity in the RuBisCO superfamily: the "enolase" in the methionine salvage pathway in Geobacillus kaustophilus. Biochemistry. 2007; 46: 4077–4089. PubMed

Imker HJ, Singh J, Warlick BP, Tabita FR, Gerlt JA. Mechanistic diversity in the RuBisCO superfamily: a novel isomerization reaction catalyzed by the RuBisCO-like protein from Rhodospirillum rubrum. Biochemistry. 2008; 47: 11171–11173. 10.1021/bi801685f PubMed DOI PMC

Machado MA, Zetsche K. A structural, functional and molecular analysis of plastids of the holoparasites Cuscuta reflexa and Cuscuta europaea. Planta. 1990; 181: 91–96. 10.1007/BF00202329 PubMed DOI

Dey S, North JA, Sriram J, Evans BS, Tabita FR . In vivo studies in Rhodospirillum rubrum indicate that ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) catalyzes two obligatorily required and physiologically significant reactions for distinct carbon and sulfur metabolic pathways. J Biol Chem. 2015; 290: 30658–30668. 10.1074/jbc.M115.691295 PubMed DOI PMC

Price GD, Howitt SM, Harrison K, Badger MR. Analysis of a genomic DNA region from the cyanobacterium Synechococcus sp. strain PCC7942 involved in carboxysome assembly and function. J Bacteriol. 1993; 175: 2871–2879. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A cryptic plastid and a novel mitochondrial plasmid in Leucomyxa plasmidifera gen. and sp. nov. (Ochrophyta) push the frontiers of organellar biology

. 2024 Oct ; 14 (10) : 240022. [epub] 20241030

Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events

Catalase impairs Leishmania mexicana development and virulence

. 2021 Dec ; 12 (1) : 852-867.

The Cryptic Plastid of Euglena longa Defines a New Type of Nonphotosynthetic Plastid Organelle

. 2020 Oct 21 ; 5 (5) : . [epub] 20201021

Catalase and Ascorbate Peroxidase in Euglenozoan Protists

. 2020 Apr 24 ; 9 (4) : . [epub] 20200424

Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses

. 2018 Nov 19 ; 8 (1) : 17012. [epub] 20181119

Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists

. 2018 Apr ; 64 (2) : 365-387. [epub] 20171012

Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase

. 2018 Mar 27 ; 8 (1) : 5239. [epub] 20180327

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace