Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota

. 2015 Dec 28 ; 82 (5) : 1569-76. [epub] 20151228

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26712550

The gut microbiota plays important roles in its host. However, how each microbiota member contributes to the behavior of the whole population is not known. In this study, we therefore determined protein expression in the cecal microbiota in chickens of selected ages and in 7-day-old chickens inoculated with different cecal extracts on the day of hatching. Campylobacter, Helicobacter, Mucispirillum, and Megamonas overgrew in the ceca of 7-day-old chickens inoculated with cecal extracts from donor hens. Firmicutes were characterized by ABC and phosphotransferase system (PTS) transporters, extensive acyl coenzyme A (acyl-CoA) metabolism, and expression of l-fucose isomerase. Anaerostipes, Anaerotruncus, Pseudoflavonifractor, Dorea, Blautia, and Subdoligranulum expressed spore proteins. Firmicutes (Faecalibacterium, Butyrivibrio, Megasphaera, Subdoligranulum, Oscillibacter, Anaerostipes, and Anaerotruncus) expressed enzymes required for butyrate production. Megamonas, Phascolarctobacterium, and Blautia (exceptions from the phylum Firmicutes) and all Bacteroidetes expressed enzymes for propionate production pathways. Representatives of Bacteroidetes also expressed xylose isomerase, enzymes required for polysaccharide degradation, and ExbBD, TonB, and outer membrane receptors likely to be involved in oligosaccharide transport. Based on our data, Anaerostipes, Anaerotruncus, and Subdoligranulum might be optimal probiotic strains, since these represent spore-forming butyrate producers. However, certain care should be taken during microbiota transplantation because the microbiota may behave differently in the intestinal tract of a recipient depending on how well the existing communities are established.

Zobrazit více v PubMed

Whitman WB, Coleman DC, Wiebe WJ. 1998. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583. doi:10.1073/pnas.95.12.6578. PubMed DOI PMC

Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. 2005. Host-bacterial mutualism in the human intestine. Science 307:1915–1920. doi:10.1126/science.1104816. PubMed DOI

Fleming SE, Fitch MD, DeVries S, Liu ML, Kight C. 1991. Nutrient utilization by cells isolated from rat jejunum, cecum and colon. J Nutr 121:869–878. PubMed

Boyen F, Haesebrouck F, Vanparys A, Volf J, Mahu M, Van Immerseel F, Rychlik I, Dewulf J, Ducatelle R, Pasmans F. 2008. Coated fatty acids alter virulence properties of Salmonella Typhimurium and decrease intestinal colonization of pigs. Vet Microbiol 132:319–327. doi:10.1016/j.vetmic.2008.05.008. PubMed DOI

O'Hara AM, Shanahan F. 2006. The gut flora as a forgotten organ. EMBO Rep 7:688–693. doi:10.1038/sj.embor.7400731. PubMed DOI PMC

Barrett E, Ross RP, O'Toole PW, Fitzgerald GF, Stanton C. 2012. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113:411–417. doi:10.1111/j.1365-2672.2012.05344.x. PubMed DOI

Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108:16050–16055. doi:10.1073/pnas.1102999108. PubMed DOI PMC

Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linlokken A, Wilson R, Rudi K. 2014. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil 26:1155–1162. doi:10.1111/nmo.12378. PubMed DOI

Li K, Bihan M, Yooseph S, Methe BA. 2012. Analyses of the microbial diversity across the human microbiome. PLoS One 7:e32118. doi:10.1371/journal.pone.0032118. PubMed DOI PMC

Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O'Sullivan O, Fitzgerald GF, Deane J, O'Connor M, Harnedy N, O'Connor K, O'Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O'Toole PW. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184. doi:10.1038/nature11319. PubMed DOI

Videnska P, Sedlar K, Lukac M, Faldynova M, Gerzova L, Cejkova D, Sisak F, Rychlik I. 2014. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS One 9:e115142. doi:10.1371/journal.pone.0115142. PubMed DOI PMC

Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M. 2007. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181. doi:10.1093/dnares/dsm018. PubMed DOI PMC

Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW, Pallen MJ. 2014. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One 9:e91941. doi:10.1371/journal.pone.0091941. PubMed DOI PMC

Methner U, Barrow PA, Martin G, Meyer H. 1997. Comparative study of the protective effect against Salmonella colonisation in newly hatched SPF chickens using live, attenuated Salmonella vaccine strains, wild-type Salmonella strains or a competitive exclusion product. Int J Food Microbiol 35:223–230. doi:10.1016/S0168-1605(96)01236-6. PubMed DOI

Wisniewski JR, Zougman A, Nagaraj N, Mann M. 2009. Universal sample preparation method for proteome analysis. Nat Methods 6:359–362. doi:10.1038/nmeth.1322. PubMed DOI

Vital M, Howe AC, Tiedje JM. 2014. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. mBio 5:e00889. doi:10.1128/mBio.00889-14. PubMed DOI PMC

Held KG, Postle K. 2002. ExbB and ExbD do not function independently in TonB-dependent energy transduction. J Bacteriol 184:5170–5173. doi:10.1128/JB.184.18.5170-5173.2002. PubMed DOI PMC

Neugebauer H, Herrmann C, Kammer W, Schwarz G, Nordheim A, Braun V. 2005. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. J Bacteriol 187:8300–8311. doi:10.1128/JB.187.24.8300-8311.2005. PubMed DOI PMC

Line JE, Hiett KL, Guard-Bouldin J, Seal BS. 2010. Differential carbon source utilization by Campylobacter jejuni 11168 in response to growth temperature variation. J Microbiol Methods 80:198–202. doi:10.1016/j.mimet.2009.12.011. PubMed DOI

Mohammed KA, Miles RJ, Halablab MA. 2004. The pattern and kinetics of substrate metabolism of Campylobacter jejuni and Campylobacter coli. Lett Appl Microbiol 39:261–266. doi:10.1111/j.1472-765X.2004.01574.x. PubMed DOI

Noy Y, Sklan D. 1998. Yolk utilisation in the newly hatched poult. Br Poult Sci 39:446–451. doi:10.1080/00071669889042. PubMed DOI

Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, Tome D. 2013. Re-print of “Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host.” Pharmacol Res 69:114–126. doi:10.1016/j.phrs.2013.01.003. PubMed DOI

Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, Lefsrud MG, Apajalahti J, Tysk C, Hettich RL, Jansson JK. 2009. Shotgun metaproteomics of the human distal gut microbiota. ISME J 3:179–189. doi:10.1038/ismej.2008.108. PubMed DOI

Gosalbes MJ, Durban A, Pignatelli M, Abellan JJ, Jimenez-Hernandez N, Perez-Cobas AE, Latorre A, Moya A. 2011. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6:e17447. doi:10.1371/journal.pone.0017447. PubMed DOI PMC

Kolmeder CA, de Been M, Nikkila J, Ritamo I, Matto J, Valmu L, Salojarvi J, Palva A, Salonen A, De Vos WM. 2012. Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS One 7:e29913. doi:10.1371/journal.pone.0029913. PubMed DOI PMC

Tang Y, Underwood A, Gielbert A, Woodward MJ, Petrovska L. 2014. Metaproteomics analysis reveals the adaptation process for the chicken gut microbiota. Appl Environ Microbiol 80:478–485. doi:10.1128/AEM.02472-13. PubMed DOI PMC

Berry D, Mader E, Lee TK, Woebken D, Wang Y, Zhu D, Palatinszky M, Schintlmeister A, Schmid MC, Hanson BT, Shterzer N, Mizrahi I, Rauch I, Decker T, Bocklitz T, Popp J, Gibson CM, Fowler PW, Huang WE, Wagner M. 2015. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci U S A 112:E194–E203. doi:10.1073/pnas.1420406112. PubMed DOI PMC

Benjdia A, Martens EC, Gordon JI, Berteau O. 2011. Sulfatases and a radical S-adenosyl-l-methionine (AdoMet) enzyme are key for mucosal foraging and fitness of the prominent human gut symbiont, Bacteroides thetaiotaomicron. J Biol Chem 286:25973–25982. doi:10.1074/jbc.M111.228841. PubMed DOI PMC

Adamberg S, Tomson K, Vija H, Puurand M, Kabanova N, Visnapuu T, Jogi E, Alamae T, Adamberg K. 2014. Degradation of fructans and production of propionic acid by Bacteroides thetaiotaomicron are enhanced by the shortage of amino acids. Front Nutr 1:21. doi:10.3389/fnut.2014.00021. PubMed DOI PMC

Isar J, Agarwal L, Saran S, Saxena RK. 2006. Succinic acid production from Bacteroides fragilis: process optimization and scale up in a bioreactor. Anaerobe 12:231–237. doi:10.1016/j.anaerobe.2006.07.001. PubMed DOI

Strobel HJ. 1992. Vitamin B12-dependent propionate production by the ruminal bacterium Prevotella ruminicola 23. Appl Environ Microbiol 58:2331–2333. PubMed PMC

Holmen Larsson JM, Thomsson KA, Rodriguez-Pineiro AM, Karlsson H, Hansson GC. 2013. Studies of mucus in mouse stomach, small intestine, and colon. III. Gastrointestinal Muc5ac and Muc2 mucin O-glycan patterns reveal a regiospecific distribution. Am J Physiol Gastrointest Liver Physiol 305:G357–G363. doi:10.1152/ajpgi.00048.2013. PubMed DOI PMC

Juge N. 2012. Microbial adhesins to gastrointestinal mucus. Trends Microbiol 20:30–39. doi:10.1016/j.tim.2011.10.001. PubMed DOI

Mikami T, Kitagawa H. 2013. Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta 1830:4719–4733. doi:10.1016/j.bbagen.2013.06.006. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Probiotic Mixtures Consisting of Representatives of Bacteroidetes and Selenomonadales Increase Resistance of Newly Hatched Chicks to Salmonella Enteritidis Infection

. 2024 Oct 25 ; 12 (11) : . [epub] 20241025

Immunoglobulin secretion influences the composition of chicken caecal microbiota

. 2024 Oct 25 ; 14 (1) : 25410. [epub] 20241025

In Vivo Expression of Chicken Gut Anaerobes Identifies Carbohydrate- or Amino Acid-Utilising, Motile or Type VI Secretion System-Expressing Bacteria

. 2024 Jun 13 ; 25 (12) : . [epub] 20240613

Colonization of chickens with competitive exclusion products results in extensive differences in metabolite composition in cecal digesta

. 2024 Jan ; 103 (1) : 103217. [epub] 20231019

Morphology, microbiota, and metabolome along the intestinal tract of female turkeys

. 2022 Nov ; 101 (11) : 102046. [epub] 20220703

The effect of Campylobacter jejuni and Campylobacter coli colonization on the gut morphology, functional integrity, and microbiota composition of female turkeys

. 2022 Aug 03 ; 14 (1) : 33. [epub] 20220803

Different Bacteroides Species Colonise Human and Chicken Intestinal Tract

. 2020 Sep 27 ; 8 (10) : . [epub] 20200927

Composition and Function of Chicken Gut Microbiota

. 2020 Jan 08 ; 10 (1) : . [epub] 20200108

Gut Anaerobes Capable of Chicken Caecum Colonisation

. 2019 Nov 21 ; 7 (12) : . [epub] 20191121

Effects of host genetics and environmental conditions on fecal microbiota composition of pigs

. 2018 ; 13 (8) : e0201901. [epub] 20180807

Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures

. 2018 Jul 31 ; 19 (1) : 561. [epub] 20180731

Does selection for growth rate in broilers affect their resistance and tolerance to Eimeria maxima?

. 2018 Jul 15 ; 258 () : 88-98. [epub] 20180618

Infectious bursal disease virus inoculation infection modifies Campylobacter jejuni-host interaction in broilers

. 2018 ; 10 () : 13. [epub] 20180330

Infectious bursal disease virus infection leads to changes in the gut associated-lymphoid tissue and the microbiota composition

. 2018 ; 13 (2) : e0192066. [epub] 20180201

Housing Systems Influence Gut Microbiota Composition of Sows but Not of Their Piglets

. 2017 ; 12 (1) : e0170051. [epub] 20170113

Immune protection of chickens conferred by a vaccine consisting of attenuated strains of Salmonella Enteritidis, Typhimurium and Infantis

. 2016 Oct 15 ; 47 (1) : 94. [epub] 20161015

Transient and Prolonged Response of Chicken Cecum Mucosa to Colonization with Different Gut Microbiota

. 2016 ; 11 (9) : e0163932. [epub] 20160929

Composition of Gut Microbiota Influences Resistance of Newly Hatched Chickens to Salmonella Enteritidis Infection

. 2016 ; 7 () : 957. [epub] 20160617

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...