Different Bacteroides Species Colonise Human and Chicken Intestinal Tract
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO0518
Ministerstvo Zemědělství
CZ.02.1.01/0.0/0.0/16_025/0007404
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32992519
PubMed Central
PMC7600693
DOI
10.3390/microorganisms8101483
PII: microorganisms8101483
Knihovny.cz E-zdroje
- Klíčová slova
- Bacteroides, caecum, chicken, glutamate decarboxylase, human, microbiome, microbiota, pentose cycle,
- Publikační typ
- časopisecké články MeSH
Bacteroidaceae are common gut microbiota members in all warm-blooded animals. However, if Bacteroidaceae are to be used as probiotics, the species selected for different hosts should reflect the natural distribution. In this study, we therefore evaluated host adaptation of bacterial species belonging to the family Bacteroidaceae. B. dorei, B. uniformis, B. xylanisolvens, B. ovatus, B. clarus, B. thetaiotaomicron and B. vulgatus represented human-adapted species while B. gallinaceum, B. caecigallinarum, B. mediterraneensis, B. caecicola, M. massiliensis, B. plebeius and B. coprocola were commonly detected in chicken but not human gut microbiota. There were 29 genes which were present in all human-adapted Bacteroides but absent from the genomes of all chicken isolates, and these included genes required for the pentose cycle and glutamate or histidine metabolism. These genes were expressed during an in vitro competitive assay, in which human-adapted Bacteroides species overgrew the chicken-adapted isolates. Not a single gene specific for the chicken-adapted species was found. Instead, chicken-adapted species exhibited signs of frequent horizontal gene transfer, of KUP, linA and sugE genes in particular. The differences in host adaptation should be considered when the new generation of probiotics for humans or chickens is designed.
Zobrazit více v PubMed
Gerzova L., Babak V., Sedlar K., Faldynova M., Videnska P., Cejkova D., Jensen A.N., Denis M., Kerouanton A., Ricci A., et al. Characterization of antibiotic resistance gene abundance and microbiota composition in feces of organic and conventional pigs from four EU countries. PLoS ONE. 2015;10:e0132892. doi: 10.1371/journal.pone.0132892. PubMed DOI PMC
Kubasova T., Davidova-Gerzova L., Merlot E., Medvecky M., Polansky O., Gardan-Salmon D., Quesnel H., Rychlik I. Housing systems influence gut microbiota composition of sows but not of their piglets. PLoS ONE. 2017;12:e0170051. doi: 10.1371/journal.pone.0170051. PubMed DOI PMC
Kubasova T., Kollarcikova M., Crhanova M., Karasova D., Cejkova D., Sebkova A., Matiasovicova J., Faldynova M., Pokorna A., Cizek A., et al. Contact with adult hen affects development of caecal microbiota in newly hatched chicks. PLoS ONE. 2019;14:e0212446. doi: 10.1371/journal.pone.0212446. PubMed DOI PMC
Videnska P., Sedlar K., Lukac M., Faldynova M., Gerzova L., Cejkova D., Sisak F., Rychlik I. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS ONE. 2014;9:e115142. doi: 10.1371/journal.pone.0115142. PubMed DOI PMC
O’Toole P.W., Claesson M.J. Gut microbiota: Changes throughout the lifespan from infancy to elderly. Int. Dairy J. 2010;20:281–291. doi: 10.1016/j.idairyj.2009.11.010. DOI
Mariat D., Firmesse O., Levenez F., Guimaraes V., Sokol H., Dore J., Corthier G., Furet J.P. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123. doi: 10.1186/1471-2180-9-123. PubMed DOI PMC
Medvecky M., Cejkova D., Polansky O., Karasova D., Kubasova T., Cizek A., Rychlik I. Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genom. 2018;19:561. doi: 10.1186/s12864-018-4959-4. PubMed DOI PMC
Atherly T., Ziemer C.J. Bacteroides isolated from four mammalian hosts lack host-specific 16S rRNA gene phylogeny and carbon and nitrogen utilization patterns. Microbiologyopen. 2014;3:225–238. doi: 10.1002/mbo3.159. PubMed DOI PMC
Li M., Shang Q., Li G., Wang X., Yu G. Degradation of Marine algae-derived carbohydrates by bacteroidetes isolated from human gut microbiota. Mar. Drugs. 2017;15:92. doi: 10.3390/md15040092. PubMed DOI PMC
Polansky O., Sekelova Z., Faldynova M., Sebkova A., Sisak F., Rychlik I. Important metabolic pathways and biological processes expressed by chicken cecal microbiota. Appl. Environ. Microbiol. 2016;82:1569–1576. doi: 10.1128/AEM.03473-15. PubMed DOI PMC
Yang J., Martinez I., Walter J., Keshavarzian A., Rose D.J. In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production. Anaerobe. 2013;23:74–81. doi: 10.1016/j.anaerobe.2013.06.012. PubMed DOI
Rychlik I. Composition and function of chicken gut microbiota. Animals. 2020;10:103. doi: 10.3390/ani10010103. PubMed DOI PMC
Kubasova T., Kollarcikova M., Crhanova M., Karasova D., Cejkova D., Sebkova A., Matiasovicova J., Faldynova M., Sisak F., Babak V., et al. Gut anaerobes capable of chicken caecum colonisation. Microorganisms. 2019;7:597. doi: 10.3390/microorganisms7120597. PubMed DOI PMC
Katoh K., Misawa K., Kuma K., Miyata T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Suchard M.A., Lemey P., Baele G., Ayres D.L., Drummond A.J., Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4:vey016. doi: 10.1093/ve/vey016. PubMed DOI PMC
Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC
Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Minh B.Q., Nguyen M.A., von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013;30:1188–1195. doi: 10.1093/molbev/mst024. PubMed DOI PMC
Overbeek R., Olson R., Pusch G.D., Olsen G.J., Davis J.J., Disz T., Edwards R.A., Gerdes S., Parrello B., Shukla M., et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST) Nucleic Acids Res. 2014;42:D206–D214. doi: 10.1093/nar/gkt1226. PubMed DOI PMC
Crhanova M., Karasova D., Juricova H., Matiasovicova J., Jahodarova E., Kubasova T., Seidlerova Z., Cizek A., Rychlik I. Systematic culturomics shows that half of chicken caecal microbiota members can be grown in vitro except for two lineages of Clostridiales and a single lineage of Bacteroidetes. Microorganisms. 2019;7:496. doi: 10.3390/microorganisms7110496. PubMed DOI PMC
Wisniewski J.R., Zougman A., Nagaraj N., Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI
Tan H., Zhai Q., Chen W. Investigations of Bacteroides spp. towards next-generation probiotics. Food Res. Int. 2019;116:637–644. doi: 10.1016/j.foodres.2018.08.088. PubMed DOI
Zafar H., Saier M.H., Jr. Comparative genomics of transport proteins in seven Bacteroides species. PLoS ONE. 2018;13:e0208151. doi: 10.1371/journal.pone.0208151. PubMed DOI PMC
Tamura K., Foley M.H., Gardill B.R., Dejean G., Schnizlein M., Bahr C.M.E., Louise Creagh A., van Petegem F., Koropatkin N.M., Brumer H. Surface glycan-binding proteins are essential for cereal beta-glucan utilization by the human gut symbiont Bacteroides ovatus. Cell. Mol. Life Sci. 2019;76:4319–4340. doi: 10.1007/s00018-019-03115-3. PubMed DOI PMC
Yoshida N., Emoto T., Yamashita T., Watanabe H., Hayashi T., Tabata T., Hoshi N., Hatano N., Ozawa G., Sasaki N., et al. Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation. 2018;138:2486–2498. doi: 10.1161/CIRCULATIONAHA.118.033714. PubMed DOI
Borrelli L., Coretti L., Dipineto L., Bovera F., Menna F., Chiariotti L., Nizza A., Lembo F., Fioretti A. Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. Sci. Rep. 2017;7:16269. doi: 10.1038/s41598-017-16560-6. PubMed DOI PMC
Saputra S., Irisawa T., Sakamoto M., Kitahara M., Sulistiani, Yulinery T., Ohkuma M., Dinoto A. Bacteroides caecigallinarum sp. nov., isolated from caecum of an Indonesian chicken. Int. J. Syst. Evol. Microbiol. 2015;65:4341–4346. doi: 10.1099/ijsem.0.000573. PubMed DOI
Lopez-Contreras B.E., Moran-Ramos S., Villarruel-Vazquez R., Macias-Kauffer L., Villamil-Ramirez H., Leon-Mimila P., Vega-Badillo J., Sanchez-Munoz F., Llanos-Moreno L.E., Canizalez-Roman A., et al. Composition of gut microbiota in obese and normal-weight Mexican school-age children and its association with metabolic traits. Pediatr. Obes. 2018;13:381–388. doi: 10.1111/ijpo.12262. PubMed DOI
Lappi J., Salojarvi J., Kolehmainen M., Mykkanen H., Poutanen K., de Vos W.M., Salonen A. Intake of whole-grain and fiber-rich rye bread versus refined wheat bread does not differentiate intestinal microbiota composition in Finnish adults with metabolic syndrome. J. Nutr. 2013;143:648–655. doi: 10.3945/jn.112.172668. PubMed DOI
Ngom I.I., Mailhe M., Ricaboni D., Vitton V., Benezech A., Khelaifia S., Michelle C., Cadoret F., Armstrong N., Levasseur A., et al. Noncontiguous finished genome sequence and description of Mediterranea massiliensis gen. nov., sp. nov., a new member of the Bacteroidaceae family isolated from human colon. New Microbes New Infect. 2018;21:105–116. doi: 10.1016/j.nmni.2017.11.009. PubMed DOI PMC
Huang K., Herrero-Fresno A., Thofner I., Skov S., Olsen J.E. Interaction differences of the avian host-specific Salmonella enterica serovar gallinarum, the host-generalist S. Typhimurium, and the cattle host-adapted S. Dublin with chicken primary macrophage. Infect. Immun. 2019;87 doi: 10.1128/IAI.00552-19. PubMed DOI PMC
Lukjancenko O., Wassenaar T.M., Ussery D.W. Comparison of 61 sequenced Escherichia coli genomes. Microb. Ecol. 2010;60:708–720. doi: 10.1007/s00248-010-9717-3. PubMed DOI PMC
Jaspers E., Overmann J. Ecological significance of microdiversity: Identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl. Environ. Microbiol. 2004;70:4831–4839. doi: 10.1128/AEM.70.8.4831-4839.2004. PubMed DOI PMC
Seedorf H., Griffin N.W., Ridaura V.K., Reyes A., Cheng J., Rey F.E., Smith M.I., Simon G.M., Scheffrahn R.H., Woebken D., et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell. 2014;159:253–266. doi: 10.1016/j.cell.2014.09.008. PubMed DOI PMC
Adamberg K., Adamberg S. Selection of fast and slow growing bacteria from fecal microbiota using continuous culture with changing dilution rate. Microb. Ecol. Health Dis. 2018;29:1549922. doi: 10.1080/16512235.2018.1549922. PubMed DOI PMC
Svihus B., Choct M., Classen H.L. Function and nutritional roles of the avian caeca: A review. World Poult. Sci. J. 2013;69:249–263. doi: 10.1017/S0043933913000287. DOI
De Filippo C., Di Paola M., Ramazzotti M., Albanese D., Pieraccini G., Banci E., Miglietta F., Cavalieri D., Lionetti P. Diet, environments, and gut microbiota. A preliminary investigation in children living in Rural and Urban Burkina Faso and Italy. Front. Microbiol. 2017;8:1979. doi: 10.3389/fmicb.2017.01979. PubMed DOI PMC
Immunoglobulin secretion influences the composition of chicken caecal microbiota
Succession, Replacement, and Modification of Chicken Litter Microbiota
Host Species Adaptation of Obligate Gut Anaerobes Is Dependent on Their Environmental Survival