Ecological Adaptations of Gut Microbiota Members and Their Consequences for Use as a New Generation of Probiotics
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007404
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO0518
Ministerstvo Zemědělství
PubMed
34067354
PubMed Central
PMC8196900
DOI
10.3390/ijms22115471
PII: ijms22115471
Knihovny.cz E-zdroje
- Klíčová slova
- chicken, gut, human, microbiota, pig, probiotics,
- MeSH
- biologická adaptace fyziologie MeSH
- Lactobacillus fyziologie MeSH
- lidé MeSH
- probiotika farmakologie terapeutické užití MeSH
- střevní mikroflóra fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In this review, we link ecological adaptations of different gut microbiota members with their potential for use as a new generation of probiotics. Gut microbiota members differ in their adaptations to survival in aerobic environments. Interestingly, there is an inverse relationship between aerobic survival and abundance or potential for prolonged colonization of the intestinal tract. Facultative anaerobes, aerotolerant Lactobacilli and endospore-forming Firmicutes exhibit high fluctuation, and if such bacteria are to be used as probiotics, they must be continuously administered to mimic their permanent supply from the environment. On the other hand, species not expressing any form of aerobic resistance, such as those from phylum Bacteroidetes, commonly represent host-adapted microbiota members characterized by vertical transmission from mothers to offspring, capable of long-term colonization following a single dose administration. To achieve maximal probiotic efficacy, the mode of their administration should thus reflect their natural ecology.
Zobrazit více v PubMed
Kubasova T., Davidova-Gerzova L., Babak V., Cejkova D., Montagne L., Le-Floc’H N., Rychlik I. Effects of host genetics and environmental conditions on fecal microbiota composition of pigs. PLoS ONE. 2018;13:e0201901. doi: 10.1371/journal.pone.0201901. PubMed DOI PMC
Videnska P., Sedlar K., Lukac M., Faldynova M., Gerzova L., Cejkova D., Sisak F., Rychlik I. Succession and Replacement of Bacterial Populations in the Caecum of Egg Laying Hens over Their Whole Life. PLoS ONE. 2014;9:e115142. doi: 10.1371/journal.pone.0115142. PubMed DOI PMC
Li X., Liang S., Xia Z., Qu J., Liu C., Yang H., Wang J., Madsen L., Hou Y., Li J., et al. Establishment of a Macaca fascicularis gut microbiome gene catalog and comparison with the human, pig, and mouse gut microbiomes. GigaScience. 2018;7:100. doi: 10.1093/gigascience/giy100. PubMed DOI PMC
Donnell M.M.O., Harris H.M.B., Ross R.P., O’Toole P.W. Core fecal microbiota of domesticated herbivorous ruminant, hindgut fermenters, and monogastric animals. Microbiologyopen. 2017;6:e00509. doi: 10.1002/mbo3.509. PubMed DOI PMC
Wu Y., Li S., Tao Y., Li D., Han Y., Show P.L., Wen G., Zhou J. Fermentation of blueberry and blackberry juices using Lactobacillus plantarum, Streptococcus thermophilus and Bifidobacterium bifidum: Growth of probiotics, metabolism of phenolics, antioxidant capacity in vitro and sensory evaluation. Food Chem. 2021;348:129083. doi: 10.1016/j.foodchem.2021.129083. PubMed DOI
Rezazadeh L., Alipour B., Jafarabadi M.A., Behrooz M., Gargari B.P. Daily consumption effects of probiotic yogurt containing Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 on oxidative stress in metabolic syndrome patients. Clin. Nutr. ESPEN. 2021;41:136–142. doi: 10.1016/j.clnesp.2020.12.003. PubMed DOI
Boyen F., Haesebrouck F., Vanparys A., Volf J., Mahu M., Van Immerseel F., Rychlik I., Dewulf J., Ducatelle R., Pasmans F. Coated fatty acids alter virulence properties of Salmonella Typhimurium and decrease intestinal colonization of pigs. Veter. Microbiol. 2008;132:319–327. doi: 10.1016/j.vetmic.2008.05.008. PubMed DOI
Van Immerseel F., De Buck J., Boyen F., Bohez L., Pasmans F., Volf J., Sevcik M., Rychlik I., Haesebrouck F., Ducatelle R. Medium-Chain Fatty Acids Decrease Colonization and Invasion through hilA Suppression Shortly after Infection of Chickens with Salmonella enterica Serovar Enteritidis. Appl. Environ. Microbiol. 2004;70:3582–3587. doi: 10.1128/AEM.70.6.3582-3587.2004. PubMed DOI PMC
Nebbia S., Lamberti C., Bianco G.L., Cirrincione S., Laroute V., Cocaign-Bousquet M., Cavallarin L., Giuffrida M.G., Pessione E. Antimicrobial Potential of Food Lactic Acid Bacteria: Bioactive Peptide Decrypting from Caseins and Bacteriocin Production. Microorganisms. 2020;9:65. doi: 10.3390/microorganisms9010065. PubMed DOI PMC
Derrien M., Vlieg J.E.V.H. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. 2015;23:354–366. doi: 10.1016/j.tim.2015.03.002. PubMed DOI
Shahbazi R., Sharifzad F., Bagheri R., Alsadi N., Yasavoli-Sharahi H., Matar C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients. 2021;13:1516. doi: 10.3390/nu13051516. PubMed DOI PMC
Šefcová M., Larrea-Álvarez M., Larrea-Álvarez C., Karaffová V., Ortega-Paredes D., Vinueza-Burgos C., Ševčíková Z., Levkut M., Herich R., Revajová V. The Probiotic Lactobacillus fermentum Biocenol CCM 7514 Moderates Campylobacter jejuni-Induced Body Weight Impairment by Improving Gut Morphometry and Regulating Cecal Cytokine Abundance in Broiler Chickens. Animals. 2021;11:235. doi: 10.3390/ani11010235. PubMed DOI PMC
de Souza M., Baptista A.A.S., Valdiviezo M.J., Justino L., Menck-Costa M.F., Ferraz C.R., da Gloria E.M., Verri W.A., Bracarense A.P.F. Lactobacillus spp. reduces morphological changes and oxidative stress induced by deoxynivalenol on the intestine and liver of broilers. Toxicon. 2020;185:203–212. doi: 10.1016/j.toxicon.2020.07.002. PubMed DOI
O’Toole P.W., Marchesi J.R., Hill C. Next-generation probiotics: The spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2017;2:17057. doi: 10.1038/nmicrobiol.2017.57. PubMed DOI
Crhanova M., Karasova D., Juricova H., Matiasovicova J., Jahodarova E., Kubasova T., Seidlerova Z., Cizek A., Rychlik I. Systematic Culturomics Shows that Half of Chicken Caecal Microbiota Members can be Grown in Vitro Except for Two Lineages of Clostridiales and a Single Lineage of Bacteroidetes. Microorganisms. 2019;7:496. doi: 10.3390/microorganisms7110496. PubMed DOI PMC
Hansen L., Nielsen B., Boll E., Skjøt-Rasmussen L., Wellejus A., Jørgensen L., Lauridsen C., Canibe N. Functional in vitro screening of probiotic strains for inoculation of piglets as a prophylactic measure towards Enterotoxigenic Escherichia coli infection. J. Microbiol. Methods. 2021;180:106126. doi: 10.1016/j.mimet.2020.106126. PubMed DOI
Wang J., Bai X., Peng C., Yu Z., Li B., Zhang W., Sun Z., Zhang H. Fermented milk containing Lactobacillus casei Zhang and Bifidobacterium animalis ssp. lactis V9 alleviated constipation symptoms through regulation of intestinal microbiota, inflammation, and metabolic pathways. J. Dairy Sci. 2020;103:11025–11038. doi: 10.3168/jds.2020-18639. PubMed DOI
Di Napoli M., Di Luccia B., Vitiello G., D’Errico G., Carpentieri A., Pezzella A., Pizzo E., Notomista E., Varcamonti M., Zanfardino A. Characterisation of EFV12 a bio-active small peptide produced by the human intestinal isolate Lactobacillus gasseri SF1109. Benef. Microbes. 2020;11:815–824. doi: 10.3920/BM2020.0124. PubMed DOI
Garcia-Gutierrez E., O’Connor P.M., Colquhoun I.J., Vior N.M., Rodríguez J.M., Mayer M.J., Cotter P.D., Narbad A. Production of multiple bacteriocins, including the novel bacteriocin gassericin M, by Lactobacillus gasseri LM19, a strain isolated from human milk. Appl. Microbiol. Biotechnol. 2020;104:3869–3884. doi: 10.1007/s00253-020-10493-3. PubMed DOI PMC
Bujalance C., Moreno E., Jiménez-Valera M., Ruiz-Bravo A. A probiotic strain of Lactobacillus plantarum stimulates lymphocyte responses in immunologically intact and immunocompromised mice. Int. J. Food Microbiol. 2007;113:28–34. doi: 10.1016/j.ijfoodmicro.2006.07.014. PubMed DOI
Hrdý J., Alard J., Couturier-Maillard A., Boulard O., Boutillier D., Delacre M., Lapadatescu C., Cesaro A., Blanc P., Pot B., et al. Lactobacillus reuteri 5454 and Bifidobacterium animalis ssp. lactis 5764 improve colitis while differentially impacting dendritic cells maturation and antimicrobial responses. Sci. Rep. 2020;10:1–11. doi: 10.1038/s41598-020-62161-1. PubMed DOI PMC
Anania C., Di Marino V., Olivero F., De Canditiis D., Brindisi G., Iannilli F., De Castro G., Zicari A., Duse M. Treatment with a Probiotic Mixture Containing Bifidobacterium animalis Subsp. Lactis BB12 and Enterococcus faecium L3 for the Prevention of Allergic Rhinitis Symptoms in Children: A Randomized Controlled Trial. Nutrients. 2021;13:1315. doi: 10.3390/nu13041315. PubMed DOI PMC
Kubasova T., Davidova-Gerzova L., Merlot E., Medvecky M., Polansky O., Gardan-Salmon D., Quesnel H., Rychlik I. Housing Systems Influence Gut Microbiota Composition of Sows but Not of Their Piglets. PLoS ONE. 2017;12:e0170051. doi: 10.1371/journal.pone.0170051. PubMed DOI PMC
Kubasova T., Kollarcikova M., Crhanova M., Karasova D., Cejkova D., Sebkova A., Matiasovicova J., Faldynova M., Pokorna A., Cizek A., et al. Contact with adult hen affects development of caecal microbiota in newly hatched chicks. PLoS ONE. 2019;14:e0212446. doi: 10.1371/journal.pone.0212446. PubMed DOI PMC
Li S.S., Zhu A., Benes V., Costea P.I., Hercog R., Hildebrand F., Huerta-Cepas J., Nieuwdorp M., Salojärvi J., Voigt A.Y., et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science. 2016;352:586–589. doi: 10.1126/science.aad8852. PubMed DOI
Nii T., Kakuya H., Isobe N., Yoshimura Y. Lactobacillus reuteri Enhances the Mucosal Barrier Function against Heat-killed Salmonella Typhimurium in the Intestine of Broiler Chicks. J. Poult. Sci. 2020;57:148–159. doi: 10.2141/jpsa.0190044. PubMed DOI PMC
Rodríguez-Sorrento A., Castillejos L., López-Colom P., Cifuentes-Orjuela G., Rodríguez-Palmero M., Moreno-Muñoz J.A., Luise D., Trevisi P., Martín-Orúe S.M. Effects of the Administration of Bifidobacterium longum subsp. infantis CECT 7210 and Lactobacillus rhamnosus HN001 and Their Synbiotic Combination with Galacto-Oligosaccharides Against Enterotoxigenic Escherichia coli F4 in an Early Weaned Piglet Model. Front. Microbiol. 2021;12:642549. doi: 10.3389/fmicb.2021.642549. PubMed DOI PMC
Spreckels J., Wejryd E., Marchini G., Jonsson B., de Vries D., Jenmalm M., Landberg E., Sverremark-Ekström E., Martí M., Abrahamsson T. Lactobacillus reuteri Colonisation of Extremely Preterm Infants in a Randomised Placebo-Controlled Trial. Microorganisms. 2021;9:915. doi: 10.3390/microorganisms9050915. PubMed DOI PMC
Yang X., Liang S., Guo F., Ren Z., Yang X., Long F. Gut microbiota mediates the protective role of Lactobacillus plantarum in ameliorating deoxynivalenol-induced apoptosis and intestinal inflammation of broiler chickens. Poult. Sci. 2020;99:2395–2406. doi: 10.1016/j.psj.2019.10.034. PubMed DOI PMC
Geng T., Su S., Sun K., Zhao L., Zhao Y., Bao N., Pan L., Sun H. Effects of feeding a Lactobacillus plantarum JL01 diet on caecal bacteria and metabolites of weaned piglets. Lett. Appl. Microbiol. 2021;72:24–35. doi: 10.1111/lam.13399. PubMed DOI
Hofeld B.C., Puppala V.K., Tyagi S., Ahn K.W., Anger A., Jia S., Salzman N.H., Hessner M.J., Widlansky M.E. Lactobacillus plantarum 299v probiotic supplementation in men with stable coronary artery disease suppresses systemic inflammation. Sci. Rep. 2021;11:1–11. doi: 10.1038/s41598-021-83252-7. PubMed DOI PMC
Kubasova T., Kollarcikova M., Crhanova M., Karasova D., Cejkova D., Sebkova A., Matiasovicova J., Faldynova M., Sisak F., Babak V., et al. Gut Anaerobes Capable of Chicken Caecum Colonisation. Microorganisms. 2019;7:597. doi: 10.3390/microorganisms7120597. PubMed DOI PMC
Cordain L., Eaton S.B., Sebastian A., Mann N., Lindeberg S., Watkins B.A., O’Keefe J.H., Brand-Miller J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 2005;81:341–354. doi: 10.1093/ajcn.81.2.341. PubMed DOI
Arnesen L.P.S., Fagerlund A., Granum P.E. From soil to gut:Bacillus cereusand its food poisoning toxins. FEMS Microbiol. Rev. 2008;32:579–606. doi: 10.1111/j.1574-6976.2008.00112.x. PubMed DOI
Medvecky M., Cejkova D., Polansky O., Karasova D., Kubasova T., Cizek A., Rychlik I. Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genom. 2018;19:1–15. doi: 10.1186/s12864-018-4959-4. PubMed DOI PMC
Rychlik I. Composition and Function of Chicken Gut Microbiota. Animals. 2020;10:103. doi: 10.3390/ani10010103. PubMed DOI PMC
Tanaka M., Onizuka S., Mishima R., Nakayama J. Cultural isolation of spore-forming bacteria in human feces using bile acids. Sci. Rep. 2020;10:1–8. doi: 10.1038/s41598-020-71883-1. PubMed DOI PMC
Videnska P., Faldynova M., Juricova H., Babak V., Sisak F., Havlickova H., Rychlik I. Chicken faecal microbiota and disturbances induced by single or repeated therapy with tetracycline and streptomycin. BMC Veter. Res. 2013;9:30. doi: 10.1186/1746-6148-9-30. PubMed DOI PMC
Adhikari B., Kim S.W., Kwon Y.M. Characterization of Microbiota Associated with Digesta and Mucosa in Different Regions of Gastrointestinal Tract of Nursery Pigs. Int. J. Mol. Sci. 2019;20:1630. doi: 10.3390/ijms20071630. PubMed DOI PMC
Slifierz M.J., Friendship R.M., Weese J.S. Longitudinal study of the early-life fecal and nasal microbiotas of the domestic pig. BMC Microbiol. 2015;15:1–12. doi: 10.1186/s12866-015-0512-7. PubMed DOI PMC
Reid G., Gaudier E., Guarner F., Huffnagle G.B., Macklaim J.M., Munoz A.M., Martini M., Ringel-Kulka T., Sartor B.R., Unal R.R., et al. Responders and non-responders to probiotic interventions. Gut Microbes. 2010;1:200–204. doi: 10.4161/gmic.1.3.12013. PubMed DOI PMC
Bachmann H., Starrenburg M.J., Molenaar D., Kleerebezem M., Vlieg J.E.V.H. Microbial domestication signatures of Lactococcus lactis can be reproduced by experimental evolution. Genome Res. 2011;22:115–124. doi: 10.1101/gr.121285.111. PubMed DOI PMC
Chee W.J.Y., Chew S.Y., Than L.T.L. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb. Cell Factories. 2020;19:1–24. doi: 10.1186/s12934-020-01464-4. PubMed DOI PMC
Bucher M.G., Zwirzitz B., Oladeinde A., Cook K., Plymel C., Zock G., Lakin S., Aggrey S.E., Ritz C., Looft T., et al. Reused poultry litter microbiome with competitive exclusion potential against Salmonella Heidelberg. J. Environ. Qual. 2020;49:869–881. doi: 10.1002/jeq2.20081. PubMed DOI
Browne H.P., Neville B.A., Forster S.C., Lawley T.D. Transmission of the gut microbiota: Spreading of health. Nat. Rev. Genet. 2017;15:531–543. doi: 10.1038/nrmicro.2017.50. PubMed DOI PMC
Francavilla R., De Angelis M., Rizzello C.G., Cavallo N., Bello F.D., Gobbetti M. Selected Probiotic Lactobacilli Have the Capacity to Hydrolyze Gluten Peptides during Simulated Gastrointestinal Digestion. Appl. Environ. Microbiol. 2017;83:e00376-17.. doi: 10.1128/AEM.00376-17. PubMed DOI PMC
Campbell-Platt G. Fermented foods—A world perspective. Food Res. Int. 1994;27:253–257. doi: 10.1016/0963-9969(94)90093-0. DOI
Kearney S.M., Gibbons S.M., Poyet M., Gurry T., Bullock K., Allegretti J.R., Clish C.B., Alm E.J. Endospores and other lysis-resistant bacteria comprise a widely shared core community within the human microbiota. ISME J. 2018;12:2403–2416. doi: 10.1038/s41396-018-0192-z. PubMed DOI PMC
Ghosh J., Larsson P., Singh B., Pettersson F., Islam N.M., Sarkar S.N., Dasgupta S., Kirsebom L.A. Sporulation in mycobacteria. Proc. Natl. Acad. Sci. USA. 2009;106:10781–10786. doi: 10.1073/pnas.0904104106. PubMed DOI PMC
Cheng L., Kiewiet M.B.G., Logtenberg M.J., Groeneveld A., Nauta A., Schols H.A., Walvoort M.T.C., Harmsen H.J.M., De Vos P. Effects of Different Human Milk Oligosaccharides on Growth of Bifidobacteria in Monoculture and Co-culture with Faecalibacterium prausnitzii. Front. Microbiol. 2020;11:569700. doi: 10.3389/fmicb.2020.569700. PubMed DOI PMC
Karasova D., Crhanova M., Babak V., Jerabek M., Brzobohaty L., Matesova Z., Rychlik I. Development of piglet gut microbiota at the time of weaning influences development of postweaning diarrhea—A field study. Res. Veter. Sci. 2020;135:59–65. doi: 10.1016/j.rvsc.2020.12.022. PubMed DOI
Takakura W., Pimentel M. Small Intestinal Bacterial Overgrowth and Irritable Bowel Syndrome—An Update. Front. Psychiatry. 2020;11:664. doi: 10.3389/fpsyt.2020.00664. PubMed DOI PMC
Cukrowska B., Lodínová-Žádníková R., Enders C., Sonnenborn U., Schulze J., Tlaskalová-Hogenová H. Specific Proliferative and Antibody Responses of Premature Infants to Intestinal Colonization with Nonpathogenic Probiotic E. coli Strain Nissle 1917. Scand. J. Immunol. 2002;55:204–209. doi: 10.1046/j.1365-3083.2002.01005.x. PubMed DOI
Henker J., Laass M., Blokhin B.M., Bolbot Y.K., Maydannik V.G., Elze M., Wolff C., Schulze J. The probiotic Escherichia coli strain Nissle 1917 (EcN) stops acute diarrhoea in infants and toddlers. Eur. J. Nucl. Med. Mol. Imaging. 2007;166:311–318. doi: 10.1007/s00431-007-0419-x. PubMed DOI PMC
Faldynova M., Pravcova M., Sisak F., Havlickova H., Kolackova I., Cizek A., Karpiskova R., Rychlik I. Evolution of Antibiotic Resistance in Salmonella enterica Serovar Typhimurium Strains Isolated in the Czech Republic between 1984 and 2002. Antimicrob. Agents Chemother. 2003;47:2002–2005. doi: 10.1128/AAC.47.6.2002-2005.2003. PubMed DOI PMC
Lee N.-K., Kim W.-S., Paik H.-D. Bacillus strains as human probiotics: Characterization, safety, microbiome, and probiotic carrier. Food Sci. Biotechnol. 2019;28:1297–1305. doi: 10.1007/s10068-019-00691-9. PubMed DOI PMC
Mazanko M.S., Gorlov I., Prazdnova E.V., Makarenko M.S., Usatov A.V., Bren A.B., Chistyakov V.A., Tutelyan A.V., Komarova Z.B., Mosolova N.I., et al. Bacillus Probiotic Supplementations Improve Laying Performance, Egg Quality, Hatching of Laying Hens, and Sperm Quality of Roosters. Probiotics Antimicrob. Proteins. 2018;10:367–373. doi: 10.1007/s12602-017-9369-4. PubMed DOI
Poulsen A.-S.R., De Jonge N., Nielsen J.L., Højberg O., Lauridsen C., Cutting S.M., Canibe N. Impact of Bacillus spp. spores and gentamicin on the gastrointestinal microbiota of suckling and newly weaned piglets. PLoS ONE. 2018;13:e0207382. doi: 10.1371/journal.pone.0207382. PubMed DOI PMC
Von Stetten F. Climatic influence on mesophilic Bacillus cereus and psychrotolerant Bacillus weihenstephanensis populations in tropical, temperate and alpine soil. Environ. Microbiol. 1999;1:503–515. doi: 10.1046/j.1462-2920.1999.00070.x. PubMed DOI
Rothschild D., Weissbrod O., Barkan E., Kurilshikov A., Korem T., Zeevi D., Costea P.I., Godneva A., Kalka I.N., Bar N., et al. Environment dominates over host genetics in shaping human gut microbiota. Nat. Cell Biol. 2018;555:210–215. doi: 10.1038/nature25973. PubMed DOI
Nayfach S., Rodriguez-Mueller B., Garud N., Pollard K.S. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res. 2016;26:1612–1625. doi: 10.1101/gr.201863.115. PubMed DOI PMC
Avershina E., Larsen M.G., Aspholm M., Lindbäck T., Storrø O., Øien T., Johnsen R., Rudi K. Culture dependent and independent analyses suggest a low level of sharing of endospore-forming species between mothers and their children. Sci. Rep. 2020;10:1832. doi: 10.1038/s41598-020-58858-y. PubMed DOI PMC
Browne H.P., Forster S.C., Anonye B.O., Kumar N., Neville B.A., Stares M.D., Goulding D., Lawley T.D. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nat. Cell Biol. 2016;533:543–546. doi: 10.1038/nature17645. PubMed DOI PMC
Forster S.C., Kumar N., Anonye B.O., Almeida A., Viciani E., Stares M.D., Dunn M., Mkandawire T., Zhu A., Shao Y., et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol. 2019;37:186–192. doi: 10.1038/s41587-018-0009-7. PubMed DOI PMC
Galperin M.Y. Genome Diversity of Spore-Forming Firmicutes. Microbiol. Spectr. 2013;1:TBS-0015-2012. doi: 10.1128/microbiolspectrum.TBS-0015-2012. PubMed DOI PMC
Antunes L.C., Poppleton D., Klingl A., Criscuolo A., Dupuy B., Brochier-Armanet C., Beloin C., Gribaldo S. Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes. eLife. 2016;5:e14589. doi: 10.7554/eLife.14589. PubMed DOI PMC
Kollarcikova M., Faldynova M., Matiasovicova J., Jahodarova E., Kubasova T., Seidlerova Z., Babak V., Videnska P., Cizek A., Rychlik I. Different Bacteroides Species Colonise Human and Chicken Intestinal Tract. Microorganisms. 2020;8:1483. doi: 10.3390/microorganisms8101483. PubMed DOI PMC
Browne H.P., Almeida A., Kumar N., Vervier K., Adoum A.T., Viciani E., Dawson N.J.R., Forster S.C., Cormie C., Goulding D., et al. Host adaptation in gut Firmicutes is associated with sporulation loss and altered colonisa-tion patterns. bioRxiv. 2021 doi: 10.1101/2020.09.09.289504. PubMed DOI PMC
Van Nood E., Vrieze A., Nieuwdorp M., Fuentes S., Zoetendal E.G., De Vos W.M., Visser C.E., Kuijper E.J., Bartelsman J.F.W.M., Tijssen J.G.P., et al. Duodenal Infusion of Donor Feces for Recurrent Clostridium difficile. New Engl. J. Med. 2013;368:407–415. doi: 10.1056/NEJMoa1205037. PubMed DOI
Varmuzova K., Kubasova T., Davidova-Gerzova L., Sisak F., Havlickova H., Sebkova A., Faldynova M., Rychlik I. Composition of Gut Microbiota Influences Resistance of Newly Hatched Chickens to Salmonella Enteritidis Infection. Front. Microbiol. 2016;7:957. doi: 10.3389/fmicb.2016.00957. PubMed DOI PMC
Jakobsson H.E., Abrahamsson T.R., Jenmalm M.C., Harris K., Quince C., Jernberg C., Björkstén B., Engstrand L., Andersson A.F., Filion K.B., et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut. 2014;63:559–566. doi: 10.1136/gutjnl-2012-303249. PubMed DOI
Dominguez-Bello M.G., Costello E.K., Contreras M., Magris M., Hidalgo G., Fierer N., Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA. 2010;107:11971–11975. doi: 10.1073/pnas.1002601107. PubMed DOI PMC
Immunoglobulin secretion influences the composition of chicken caecal microbiota
Succession, Replacement, and Modification of Chicken Litter Microbiota
Morphology, microbiota, and metabolome along the intestinal tract of female turkeys
Host Species Adaptation of Obligate Gut Anaerobes Is Dependent on Their Environmental Survival