Composition of Gut Microbiota Influences Resistance of Newly Hatched Chickens to Salmonella Enteritidis Infection
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27379083
PubMed Central
PMC4911395
DOI
10.3389/fmicb.2016.00957
Knihovny.cz E-zdroje
- Klíčová slova
- Salmonella Enteritidis, cecum, chicken, competitive exclusion, inflammation, microbiota,
- Publikační typ
- časopisecké články MeSH
Since poultry is a very common source of non-typhoid Salmonella for humans, different interventions aimed at decreasing the prevalence of Salmonella in chickens are understood as an effective measure for decreasing the incidence of human salmonellosis. One such intervention is the use of probiotic or competitive exclusion products. In this study we tested whether microbiota from donor hens of different age will equally protect chickens against Salmonella Enteritidis infection. Newly hatched chickens were therefore orally inoculated with cecal extracts from 1-, 3-, 16-, 28-, and 42-week-old donors and 7 days later, the chickens were infected with S. Enteritidis. The experiment was terminated 4 days later. In the second experiment, groups of newly hatched chickens were inoculated with cecal extracts of 35-week-old hens either on day 1 of life followed by S. Enteritidis infection on day 2 or were infected with S. Enteritidis infection on day 1 followed by therapeutic administration of the cecal extract on day 2 or were inoculated on day 1 of life with a mixture of the cecal extract and S. Enteritidis. This experiment was terminated when the chickens were 5 days old. Both Salmonella culture and chicken gene expression confirmed that inoculation of newly hatched chickens with microbiota from 3-week-old or older chickens protected them against S. Enteritidis challenge. On the other hand, microbiota from 1-week-old donors failed to protect chickens against S. Enteritidis challenge. Microbiota from 35-week-old hens protected chickens even 24 h after administration. However, simultaneous or therapeutic microbiota administration failed to protect chickens against S. Enteritidis infection. Gut microbiota can be used as a preventive measure against S. Enteritidis infection but its composition and early administration is critical for its efficacy.
Zobrazit více v PubMed
Bar-Shira E., Sklan D., Friedman A. (2003). Establishment of immune competence in the avian GALT during the immediate post-hatch period. PubMed DOI
Beal R. K., Powers C., Wigley P., Barrow P. A., Kaiser P., Smith A. L. (2005). A strong antigen-specific T-cell response is associated with age and genetically dependent resistance to avian enteric salmonellosis. PubMed DOI PMC
Beal R. K., Wigley P., Powers C., Hulme S. D., Barrow P. A., Smith A. L. (2004). Age at primary infection with PubMed DOI
Biloni A., Quintana C. F., Menconi A., Kallapura G., Latorre J., Pixley C., et al. (2013). Evaluation of effects of EarlyBird associated with FloraMax-B11 on PubMed DOI
Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. PubMed DOI PMC
Cooper G. L., Venables L. M., Woodward M. J., Hormaeche C. E. (1994). Vaccination of chickens with strain CVL30, a genetically defined PubMed PMC
Crhanova M., Hradecka H., Faldynova M., Matulova M., Havlickova H., Sisak F., et al. (2011). Immune response of chicken gut to natural colonization by gut microflora and to PubMed DOI PMC
Dueger E. L., House J. K., Heithoff D. M., Mahan M. J. (2003). PubMed DOI
Fleming S. E., Fitch M. D., DeVries S., Liu M. L., Kight C. (1991). Nutrient utilization by cells isolated from rat jejunum, cecum and colon. PubMed
Gantois I., Ducatelle R., Pasmans F., Haesebrouck F., Hautefort I., Thompson A., et al. (2006a). Butyrate specifically down-regulates PubMed DOI PMC
Gantois I., Ducatelle R., Timbermont L., Boyen F., Bohez L., Haesebrouck F., et al. (2006b). Oral immunisation of laying hens with the live vaccine strains of TAD PubMed DOI
Hofacre C. L., Johnson A. C., Kelly B. J., Froyman R. (2002). Effect of a commercial competitive exclusion culture on reduction of colonization of an antibiotic-resistant pathogenic PubMed DOI
Karasova D., Sebkova A., Havlickova H., Sisak F., Volf J., Faldyna M., et al. (2010). Influence of 5 major PubMed DOI PMC
Kerr A. K., Farrar A. M., Waddell L. A., Wilkins W., Wilhelm B. J., Bucher O., et al. (2013). A systematic review-meta-analysis and meta-regression on the effect of selected competitive exclusion products on PubMed DOI
Matulova M., Havlickova H., Sisak F., Babak V., Rychlik I. (2013a). SPI1 defective mutants of PubMed DOI
Matulova M., Rajova J., Vlasatikova L., Volf J., Stepanova H., Havlickova H., et al. (2012). Characterization of chicken spleen transcriptome after infection with PubMed DOI PMC
Matulova M., Varmuzova K., Sisak F., Havlickova H., Babak V., Stejskal K., et al. (2013b). Chicken innate immune response to oral infection with PubMed DOI PMC
Methner U., Barrow P. A., Berndt A., Steinbach G. (1999). Combination of vaccination and competitive exclusion to prevent PubMed DOI
Methner U., Barrow P. A., Gregorova D., Rychlik I. (2004). Intestinal colonisation-inhibition and virulence of PubMed DOI
Milbradt E. L., Zamae J. R., Araujo Junior J. P., Mazza P., Padovani C. R., Carvalho V. R., et al. (2014). Control of PubMed DOI
Polansky O., Sekelova Z., Faldynova M., Sebkova A., Sisak F., Rychlik I. (2016). Important metabolic pathways and biological processes expressed by chicken cecal microbiota. PubMed PMC
Qiu X., Zhang M., Yang X., Hong N., Yu C. (2013). PubMed DOI
Rantala M., Nurmi E. (1973). Prevention of the growth of PubMed DOI
Rychlik I., Karasova D., Sebkova A., Volf J., Sisak F., Havlickova H., et al. (2009). Virulence potential of five major pathogenicity islands (SPI-1 to SPI-5) of PubMed DOI PMC
Schneitz C., Nuotio L., Kiiskinen T., Nurmi E. (1991). Pilot-scale testing of the competitive exclusion method in chickens. PubMed DOI
Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermudez-Humaran L. G., Gratadoux J. J., et al. (2008). PubMed DOI PMC
Van Immerseel F., De Buck J., De Smet I., Mast J., Haesebrouck F., Ducatelle R. (2002). Dynamics of immune cell infiltration in the caecal lamina propria of chickens after neonatal infection with a PubMed DOI
Van Immerseel F., De Buck J., Pasmans F., Velge P., Bottreau E., Fievez V., et al. (2003). Invasion of PubMed DOI
Videnska P., Sedlar K., Lukac M., Faldynova M., Gerzova L., Cejkova D., et al. (2014). Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PubMed DOI PMC
Wierup M., Wold-Troell M., Nurmi E., Hakkinen M. (1988). Epidemiological evaluation of the PubMed DOI
Withanage G. S., Kaiser P., Wigley P., Powers C., Mastroeni P., Brooks H., et al. (2004). Rapid expression of chemokines and proinflammatory cytokines in newly hatched chickens infected with PubMed DOI PMC
Composition and Function of Chicken Gut Microbiota
Gut Anaerobes Capable of Chicken Caecum Colonisation
Contact with adult hen affects development of caecal microbiota in newly hatched chicks
Does selection for growth rate in broilers affect their resistance and tolerance to Eimeria maxima?