Characterization of chicken spleen transcriptome after infection with Salmonella enterica serovar Enteritidis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23094107
PubMed Central
PMC3477135
DOI
10.1371/journal.pone.0048101
PII: PONE-D-12-17682
Knihovny.cz E-zdroje
- MeSH
- B-lymfocyty imunologie metabolismus MeSH
- cékum imunologie metabolismus MeSH
- imunoglobuliny genetika imunologie MeSH
- kur domácí genetika imunologie MeSH
- makrofágy imunologie metabolismus MeSH
- messenger RNA biosyntéza genetika MeSH
- nemoci drůbeže genetika imunologie mikrobiologie MeSH
- orgánová specificita MeSH
- ptačí proteiny genetika imunologie MeSH
- regulace genové exprese MeSH
- Salmonella enteritidis imunologie patogenita MeSH
- salmonelová infekce u zvířat genetika imunologie mikrobiologie MeSH
- sekvenční analýza DNA MeSH
- slezina imunologie metabolismus MeSH
- T-lymfocyty imunologie metabolismus MeSH
- transkriptom genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- imunoglobuliny MeSH
- messenger RNA MeSH
- ptačí proteiny MeSH
In this study we were interested in identification of new markers of chicken response to Salmonella Enteritidis infection. To reach this aim, gene expression in the spleens of naive chickens and those intravenously infected with S. Enteritidis with or without previous oral vaccination was determined by 454 pyrosequencing of splenic mRNA/cDNA. Forty genes with increased expression at the level of transcription were identified. The most inducible genes encoded avidin (AVD), extracellular fatty acid binding protein (EXFABP), immune responsive gene 1 (IRG1), chemokine ah221 (AH221), trappin-6-like protein (TRAP6) and serum amyloid A (SAA). Using cDNA from sorted splenic B-lymphocytes, macrophages, CD4, CD8 and γδ T-lymphocytes, we found that the above mentioned genes were preferentially expressed in macrophages. AVD, EXFABP, IRG1, AH221, TRAP6 and SAA were induced also in the cecum of chickens orally infected with S. Enteritidis on day 1 of life or day 42 of life. Unusual results were obtained for the immunoglobulin encoding transcripts. Prior to the infection, transcripts coding for the constant parts of IgM, IgY, IgA and Ig light chain were detected in B-lymphocytes. However, after the infection, immunoglobulin encoding transcripts were expressed also by T-lymphocytes and macrophages. Expression of AVD, EXFABP, IRG1, AH221, TRAP6, SAA and all immunoglobulin genes can be therefore used for the characterization of the course of S. Enteritidis infection in chickens.
Zobrazit více v PubMed
Beal RK, Wigley P, Powers C, Hulme SD, Barrow PA, et al. (2004) Age at primary infection with Salmonella enterica serovar Typhimurium in the chicken influences persistence of infection and subsequent immunity to re-challenge. Vet Immunol Immunopathol 100: 151–64. PubMed
Berndt A, Wilhelm A, Jugert C, Pieper J, Sachse K, et al. (2007) Chicken cecum immune response to Salmonella enterica serovars of different levels of invasiveness. Infect Immun 75: 5993–6007. PubMed PMC
Crhanova M, Hradecka H, Faldynova M, Matulova M, Havlickova H, et al. (2011) Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar Enteritidis infection. Infect Immun 79: 2755–63. PubMed PMC
Matulova M, Stepanova H, Sisak F, Havlickova H, Faldynova M, et al. (2012) Cytokine signaling in splenic leukocytes from vaccinated and non-vaccinated chickens after intravenous infection with Salmonella Enteritidis. PLoS One 7: e32346. PubMed PMC
Matulova M, Havlickova H, Sisak F, Rychlik I (2012) Vaccination of chickens with Salmonella Pathogenicity Island (SPI) 1 and SPI2 defective mutants of Salmonella enterica serovar Enteritidis. Vaccine 30: 2090–7. PubMed
Beal RK, Powers C, Davison TF, Barrow PA, Smith AL (2006) Clearance of enteric Salmonella enterica serovar Typhimurium in chickens is independent of B-cell function. Infect Immun 74: 1442–4. PubMed PMC
International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695–716. PubMed
Nagai Y, Shimazu R, Ogata H, Akashi S, Sudo K, et al. (2002) Requirement for MD-1 in cell surface expression of RP105/CD180 and B-cell responsiveness to lipopolysaccharide. Blood 99: 1699–705. PubMed
Dozin B, Descalzi F, Briata L, Hayashi M, Gentili C, et al. (1992) Expression, regulation, and tissue distribution of the Ch21 protein during chicken embryogenesis. J Biol Chem 267: 2979–85. PubMed
Korpela J (1984) Chicken macrophages synthesize and secrete avidin in culture. Eur J Cell Biol 33: 105–11. PubMed
Beal RK, Powers C, Wigley P, Barrow PA, Smith AL (2004) Temporal dynamics of the cellular, humoral and cytokine responses in chickens during primary and secondary infection with Salmonella enterica serovar Typhimurium. Avian Pathol 33: 25–33. PubMed
Raffatellu M, George MD, Akiyama Y, Hornsby MJ, Nuccio SP, et al. (2009) Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5: 476–86. PubMed PMC
Zerega B, Camardella L, Cermelli S, Sala R, Cancedda R, et al. (2001) Avidin expression during chick chondrocyte and myoblast development in vitro and in vivo: regulation of cell proliferation. J Cell Sci 114: 1473–82. PubMed
Zerega B, Pagano A, Pianezzi A, Ulivi V, Camardella L, et al. (2004) Expression of serum amyloid A in chondrocytes and myoblasts differentiation and inflammation: possible role in cholesterol homeostasis. Matrix Biol 23: 35–46. PubMed
Gruys E, Toussaint MJ, Niewold TA, Koopmans SJ (2005) Acute phase reaction and acute phase proteins. J Zhejiang Univ Sci B 6: 1045–56. PubMed PMC
Basler T, Jeckstadt S, Valentin-Weigand P, Goethe R (2006) Mycobacterium paratuberculosis, Mycobacterium smegmatis, and lipopolysaccharide induce different transcriptional and post-transcriptional regulation of the IRG1 gene in murine macrophages. J Leukoc Biol 79: 628–38. PubMed
Di Marco E, Sessarego N, Zerega B, Cancedda R, Cancedda FD (2003) Inhibition of cell proliferation and induction of apoptosis by ExFABP gene targeting. J Cell Physiol 196: 464–73. PubMed
Divanovic S, Trompette A, Atabani SF, Madan R, Golenbock DT, et al. (2005) Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol 6: 571–8. PubMed PMC
Miura Y, Shimazu R, Miyake K, Akashi S, Ogata H, et al. (1998) RP105 is associated with MD-1 and transmits an activation signal in human B cells. Blood 92: 2815–22. PubMed
Ogata H, Su I, Miyake K, Nagai Y, Akashi S, et al. (2000) The toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells. J Exp Med 192: 23–9. PubMed PMC
Boes M, Prodeus AP, Schmidt T, Carroll MC, Chen J (1998) A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J Exp Med 188: 2381–6. PubMed PMC
Tremblay GM, Vachon E, Larouche C, Bourbonnais Y (2002) Inhibition of human neutrophil elastase-induced acute lung injury in hamsters by recombinant human pre-elafin (trappin-2). Chest 121: 582–8. PubMed
Owen CA, Campbell EJ (1999) The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol 65: 137–50. PubMed
Marikovsky M, Ziv V, Nevo N, Harris-Cerruti C, Mahler O (2003) Cu/Zn superoxide dismutase plays important role in immune response. J Immunol 170: 2993–3001. PubMed
Marikovsky M, Nevo N, Vadai E, Harris-Cerruti C (2002) Cu/Zn superoxide dismutase plays a role in angiogenesis. Int J Cancer 97: 34–41. PubMed
Cook GP, Meyer KB, Neuberger MS, Pettersson S (1995) Regulated activity of the IgH intron enhancer (E mu) in the T lymphocyte lineage. Int Immunol 7: 89–95. PubMed
Kemp DJ, Harris AW, Cory S, Adams JM (1980) Expression of the immunoglobulin C mu gene in mouse T and B lymphoid and myeloid cell lines. Proc Natl Acad Sci U S A 77: 2876–80. PubMed PMC
Stavnezer J, Al Katib A, Koziner B (1986) Expression of immunoglobulin lambda light chain by the promyelocytic cell line HL-60. J Immunol 137: 3978–82. PubMed
Pasare C, Noggle S, Entringer M, Heinzelmann A, Bansal P, et al. (1999) Expression of an immunoglobulin heavy chain transgene in macrophage as well as lymphocyte lineages in vivo. Eur J Immunol 29: 1219–27. PubMed
Shi S, Blumenthal A, Hickey CM, Gandotra S, Levy D, et al. (2005) Expression of many immunologically important genes in Mycobacterium tuberculosis-infected macrophages is independent of both TLR2 and TLR4 but dependent on IFN-alphabeta receptor and STAT1. J Immunol 175: 3318–28. PubMed
Furutani Y, Kato A, Yasue H, Alexander LJ, Beattie CW, et al. (1998) Evolution of the trappin multigene family in the Suidae . J Biochem 124: 491–502. PubMed
Campbell EJ, Campbell MA, Owen CA (2000) Bioactive proteinase 3 on the cell surface of human neutrophils: quantification, catalytic activity, and susceptibility to inhibition. J Immunol 165: 3366–74. PubMed
Cancedda FD, Malpeli M, Gentili C, Di Marzo V, Bet P, et al. (1996) The developmentally regulated avian Ch21 lipocalin is an extracellular fatty acid-binding protein. J Biol Chem 271: 20163–9. PubMed
Descalzi CF, Dozin B, Zerega B, Cermelli S, Gentili C, et al. (2002) Ex-FABP, extracellular fatty acid binding protein, is a stress lipocalin expressed during chicken embryo development. Mol Cell Biochem 239: 221–5. PubMed
Coudevylle N, Geist L, Hotzinger M, Hartl M, Kontaxis G, et al. (2010) The v-myc-induced Q83 lipocalin is a siderocalin. J Biol Chem 285: 41646–52. PubMed PMC
Coudevylle N, Hoetzinger M, Geist L, Kontaxis G, Hartl M, et al. (2011) Lipocalin Q83 reveals a dual ligand binding mode with potential implications for the functions of siderocalins. Biochemistry 50: 9192–9. PubMed
Correnti C, Clifton MC, Abergel RJ, Allred B, Hoette TM, et al. (2011) Galline Ex-FABP is an antibacterial siderocalin and a lysophosphatidic acid sensor functioning through dual ligand specificities. Structure 19: 1796–806. PubMed PMC
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, et al. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–6. PubMed
Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365–86. PubMed
Elo HA, Raisanen S, Tuohimaa PJ (1980) Induction of an antimicrobial biotin-binding egg white protein (avidin) in chick tissues in septic Escherichia coli infection. Experientia 36: 312–3. PubMed
Immunoglobulin secretion influences the composition of chicken caecal microbiota
Gut Anaerobes Capable of Chicken Caecum Colonisation
Gene expression in the chicken caecum in response to infections with non-typhoid Salmonella
Chicken innate immune response to oral infection with Salmonella enterica serovar Enteritidis