Vaccination of chickens with SPI1-lon and SPI1-lon-fliC mutant of Salmonella enterica Serovar Enteritidis
Language English Country United States Media electronic-print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
23785484
PubMed Central
PMC3681909
DOI
10.1371/journal.pone.0066172
PII: PONE-D-13-08846
Knihovny.cz E-resources
- MeSH
- Bacterial Proteins genetics immunology MeSH
- Flagellin genetics immunology MeSH
- Chickens MeSH
- Mutation * MeSH
- Poultry Diseases prevention & control MeSH
- Protease La genetics immunology MeSH
- Antibodies, Bacterial immunology MeSH
- Salmonella enteritidis genetics growth & development immunology ultrastructure MeSH
- Salmonella Infections, Animal prevention & control MeSH
- Salmonella Vaccines administration & dosage immunology MeSH
- Vaccination veterinary MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Flagellin MeSH
- Protease La MeSH
- Antibodies, Bacterial MeSH
- Salmonella Vaccines MeSH
- Spi1 protein, Salmonella MeSH Browser
The prevalence of Salmonella enterica serovar Enteritidis is gradually decreasing in poultry flocks in the EU, which may result in the demand for a vaccine that allows for the differentiation of vaccinated flocks from those infected by wild-type S. Enteritidis. In this study, we therefore constructed a (Salmonella Pathogenicity Island 1) SPI1-lon mutant with or without fliC encoding for S. Enteritidis flagellin. The combination of SPI1-lon mutations resulted in attenuated but immunogenic mutant suitable for oral vaccination of poultry. In addition, the vaccination of chickens with the SPI1-lon-fliC mutant enabled the serological differentiation of vaccinated and infected chickens. The absence of fliC therefore did not affect the immunogenicity of the vaccine strain and allowed for serological differentiation of the vaccinated chickens. The SPI1-lon-fliC mutant is therefore a suitable marker vaccine strain for oral vaccination of poultry.
See more in PubMed
Berndt A, Wilhelm A, Jugert C, Pieper J, Sachse K, et al. (2007) Chicken cecum immune response to Salmonella enterica serovars of different levels of invasiveness. Infect Immun 75: 5993–6007. PubMed PMC
Matulova M, Rajova J, Vlasatikova L, Volf J, Stepanova H, et al. (2012) Characterization of chicken spleen transcriptome after infection with Salmonella enterica serovar Enteritidis. PLoS One 7: e48101. PubMed PMC
Matulova M, Varmuzova K, Sisak F, Havlickova H, Babak V, et al.. (2013) Chicken innate immune response to oral infection with Salmonella enterica serovar Enteritidis. Vet Res. PubMed PMC
Beal RK, Wigley P, Powers C, Hulme SD, Barrow PA, et al. (2004) Age at primary infection with Salmonella enterica serovar Typhimurium in the chicken influences persistence of infection and subsequent immunity to re-challenge. Vet Immunol Immunopathol 100: 151–64. PubMed
Matulova M, Havlickova H, Sisak F, Rychlik I (2012) Vaccination of chickens with Salmonella Pathogenicity Island (SPI) 1 and SPI2 defective mutants of Salmonella enterica serovar Enteritidis. Vaccine 30: 2090–7. PubMed
Lahuerta A, Westrell T, Takkinen J, Boelaert F, Rizzi V, et al... (2011) Zoonoses in the European Union: origin, distribution and dynamics - the EFSA-ECDC summary report 2009. Euro Surveill 16: pii: 19832. PubMed
Adriaensen C, De Greve H, Tian JQ, De Craeye S, Gubbels E, et al. (2007) A live Salmonella enterica serovar Enteritidis vaccine allows serological differentiation between vaccinated and infected animals. Infect Immun 75: 2461–8. PubMed PMC
Selke M, Meens J, Springer S, Frank R, Gerlach GF (2007) Immunization of pigs to prevent disease in humans: construction and protective efficacy of a Salmonella enterica serovar Typhimurium live negative-marker vaccine. Infect Immun 75: 2476–83. PubMed PMC
Methner U, Barrow PA, Berndt A, Rychlik I (2011) Salmonella Enteritidis with double deletion in phoPfliC–a potential live Salmonella vaccine candidate with novel characteristics for use in chickens. Vaccine 29: 3248–53. PubMed
Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167: 1882–5. PubMed
Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, et al. (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099–103. PubMed
Iqbal M, Philbin VJ, Withanage GS, Wigley P, Beal RK, et al. (2005) Identification and functional characterization of chicken toll-like receptor 5 reveals a fundamental role in the biology of infection with Salmonella enterica serovar Typhimurium. Infect Immun 73: 2344–50. PubMed PMC
Kremer CJ, O’Meara KM, Layton SL, Hargis BM, Cole K (2011) Evaluation of recombinant Salmonella expressing the flagellar protein fliC for persistence and enhanced antibody response in commercial turkeys. Poult Sci 90: 752–8. PubMed
McNeilly TN, Naylor SW, Mahajan A, Mitchell MC, McAteer S, et al. (2008) Escherichia coli O157: H7 colonization in cattle following systemic and mucosal immunization with purified H7 flagellin. Infect Immun 76: 2594–602. PubMed PMC
Kodama C, Matsui H (2004) Salmonella flagellin is not a dominant protective antigen in oral immunization with attenuated live vaccine strains. Infect Immun 72: 2449–51. PubMed PMC
Jones MA, Wigley P, Page KL, Hulme SD, Barrow PA (2001) Salmonella enterica serovar Gallinarum requires the Salmonella pathogenicity island 2 type III secretion system but not the Salmonella pathogenicity island 1 type III secretion system for virulence in chickens. Infect Immun 69: 5471–6. PubMed PMC
Karasova D, Sebkova A, Vrbas V, Havlickova H, Sisak F, et al. (2009) Comparative analysis of Salmonella enterica serovar Enteritidis mutants with a vaccine potential. Vaccine 27: 5265–70. PubMed
Murray RA, Lee CA (2000) Invasion genes are not required for Salmonella enterica serovar typhimurium to breach the intestinal epithelium: evidence that salmonella pathogenicity island 1 has alternative functions during infection. Infect Immun 68: 5050–5. PubMed PMC
Dieye Y, Ameiss K, Mellata M, Curtiss R III (2009) The Salmonella Pathogenicity Island (SPI) 1 contributes more than SPI2 to the colonization of the chicken by Salmonella enterica serovar Typhimurium. BMC Microbiol 9: 3. PubMed PMC
Rychlik I, Karasova D, Sebkova A, Volf J, Sisak F, et al. (2009) Virulence potential of five major pathogenicity islands (SPI-1 to SPI-5) of Salmonella enterica serovar Enteritidis for chickens. BMC Microbiol 9: 268. PubMed PMC
Monack DM, Raupach B, Hromockyj AE, Falkow S (1996) Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc Natl Acad Sci U S A 93: 9833–8. PubMed PMC
Pavlova B, Volf J, Ondrackova P, Matiasovic J, Stepanova H, et al. (2011) SPI-1-encoded type III secretion system of Salmonella enterica is required for the suppression of porcine alveolar macrophage cytokine expression. Vet Res 42: 16. PubMed PMC
Pullinger GD, Paulin SM, Charleston B, Watson PR, Bowen AJ, et al. (2007) Systemic translocation of Salmonella enterica serovar Dublin in cattle occurs predominantly via efferent lymphatics in a cell-free niche and requires type III secretion system 1 (T3SS-1) but not T3SS-2. Infect Immun 75: 5191–9. PubMed PMC
Gottesman S, Trisler P, Torres-Cabassa A (1985) Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J Bacteriol 162: 1111–9. PubMed PMC
Takaya A, Tomoyasu T, Tokumitsu A, Morioka M, Yamamoto T (2002) The ATP-dependent lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1. J Bacteriol 184: 224–32. PubMed PMC
Leyman B, Boyen F, Van Parys A, Verbrugghe E, Haesebrouck F, et al. (2012) Tackling the issue of environmental survival of live Salmonella Typhimurium vaccines: deletion of the lon gene. Res Vet Sci 93: 1168–72. PubMed
Matsuda K, Chaudhari AA, Kim SW, Lee KM, Lee JH (2010) Physiology, pathogenicity and immunogenicity of lon and/or cpxR deleted mutants of Salmonella Gallinarum as vaccine candidates for fowl typhoid. Vet Res 41: 59. PubMed PMC
Nandre RM, Chaudhari AA, Matsuda K, Lee JH (2011) Immunogenicity of a Salmonella Enteritidis mutant as vaccine candidate and its protective efficacy against salmonellosis in chickens. Vet Immunol Immunopathol 144: 299–311. PubMed
Slattery A, Victorsen AH, Brown A, Hillman K, Phillips GJ (2013) Isolation of Highly Persistent Mutants of Salmonella enterica Serovar Typhimurium Reveals a New Toxin-Antitoxin Module. J Bacteriol 195: 647–57. PubMed PMC
Garcia-Calderon CB, Casadesus J, Ramos-Morales F (2007) Rcs and PhoPQ regulatory overlap in the control of Salmonella enterica virulence. J Bacteriol 189: 6635–44. PubMed PMC
Wang Q, Zhao Y, McClelland M, Harshey RM (2007) The RcsCDB signaling system and swarming motility in Salmonella enterica serovar typhimurium: dual regulation of flagellar and SPI-2 virulence genes. J Bacteriol 189: 8447–57. PubMed PMC
Andersen-Nissen E, Smith KD, Strobe KL, Barrett SL, Cookson BT, et al. (2005) Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci U S A 102: 9247–52. PubMed PMC
Karasova D, Sebkova A, Havlickova H, Sisak F, Volf J, et al. (2010) Influence of 5 major Salmonella pathogenicity islands on NK cell depletion in mice infected with Salmonella enterica serovar Enteritidis. BMC Microbiol 10: 75. PubMed PMC
Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–5. PubMed PMC
Gene expression in the chicken caecum in response to infections with non-typhoid Salmonella