Characterization of microbiota composition and presence of selected antibiotic resistance genes in carriage water of ornamental fish
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25084116
PubMed Central
PMC4118911
DOI
10.1371/journal.pone.0103865
PII: PONE-D-14-16092
Knihovny.cz E-resources
- MeSH
- Actinobacteria drug effects genetics MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Bacteria drug effects genetics MeSH
- Bacteroidetes drug effects genetics MeSH
- Fusobacteria drug effects genetics MeSH
- Integrons genetics MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Water Microbiology MeSH
- Microbiota drug effects genetics MeSH
- Drug Resistance, Multiple, Bacterial MeSH
- Proteobacteria drug effects genetics MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Fishes MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- RNA, Ribosomal, 16S MeSH
International trade with ornamental fish is gradually recognized as an important source of a wide range of different antibiotic resistant bacteria. In this study we therefore characterized the prevalence of selected antibiotic resistance genes in the microbiota found in the carriage water of ornamental fish originating from 3 different continents. Real-time PCR quantification showed that the sul1 gene was present in 11 out of 100 bacteria. tet(A) was present in 6 out of 100 bacteria and strA, tet(G), sul2 and aadA were present in 1-2 copies per 100 bacteria. Class I integrons were quite common in carriage water microbiota, however, pyrosequencing showed that only 12 different antibiotic gene cassettes were present in class I integrons. The microbiota characterized by pyrosequencing of the V3/V4 variable region of 16S rRNA genes consisted of Proteobacteria (48%), Bacteroidetes (29.5%), Firmicutes (17.8%), Actinobacteria (2.1%) and Fusobacteria (1.6%). Correlation analysis between antibiotic resistance gene prevalence and microbiota composition verified by bacterial culture showed that major reservoirs of sul1 sul2, tet(A), tet(B) tet(G), cat, cml, bla, strA, aacA, aph and aadA could be found among Alpha-, Beta- and Gammaproteobacteria with representatives of Enterobacteriaceae, Pseudomonadaceae, Rhizobiaceae and Comamonadaceae being those most positively associated with the tested antibiotic resistance genes.
Department of Biomedical Engineering Brno University of Technology Brno Czech Republic
University of Veterinary and Pharmaceutical Sciences Brno Czech Republic
See more in PubMed
Verner-Jeffreys DW, Welch TJ, Schwarz T, Pond MJ, Woodward MJ, et al. (2009) High prevalence of multidrug-tolerant bacteria and associated antimicrobial resistance genes isolated from ornamental fish and their carriage water. PLoS One 4: e8388. PubMed PMC
Cizek A, Dolejska M, Sochorova R, Strachotova K, Piackova V, et al. (2010) Antimicrobial resistance and its genetic determinants in aeromonads isolated in ornamental (koi) carp (Cyprinus carpio koi) and common carp (Cyprinus carpio). Vet Microbiol 142: 435–9. PubMed
Lim LC, Dhert P, Sorgeloos P (2003) Recent developments and improvements in ornamental fish packaging systems for air transport. Aquac Res 34: 923–35.
Boyd D, Peters GA, Cloeckaert A, Boumedine KS, Chaslus-Dancla E, et al. (2001) Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar agona. J Bacteriol 183: 5725–32. PubMed PMC
Hradecka H, Karasova D, Rychlik I (2008) Characterization of Salmonella enterica serovar Typhimurium conjugative plasmids transferring resistance to antibiotics and their interaction with the virulence plasmid. J Antimicrob Chemother 62: 938–41. PubMed
Zhang XX, Zhang T, Fang H (2009) Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol 82: 397–414. PubMed
Zhang XX, Zhang T, Zhang M, Fang HHP, Cheng SP (2009) Characterization and quantification of class 1 integrons and associated gene cassettes in sewage treatment plants. Appl Microbiol Biotechnol 82: 1169–77. PubMed
Chen J, Yu ZT, Michel FC, Wittum T, Morrison M (2007) Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Appl Environ Microbiol 73: 4407–16. PubMed PMC
Yu ZT, Michel FC, Hansen G, Wittum T, Morrison M (2005) Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance. Appl Environ Microbiol 71: 6926–33. PubMed PMC
Faldynova M, Videnska P, Havlickova H, Sisak F, Juricova H, et al. (2013) Prevalence of antibiotic resistance genes in faecal samples from cattle, pigs and poultry. Vet Med Czech 58: 298–304.
Videnska P, Faldynova M, Juricova H, Babak V, Sisak F, et al. (2013) Chicken faecal microbiota and disturbances induced by single or repeated therapy with tetracycline and streptomycin. BMC Vet Res 9: 30. PubMed PMC
Ye L, Zhang T (2013) Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Appl Microbiol Biotechnol 97: 2681–90. PubMed PMC
Lin CH, Chung MY, Chen WB, Chien CH (2007) Growth inhibitory effect of the human NIT2 gene and its allelic imbalance in cancers. FEBS J 274: 2946–56. PubMed
Moura A, Henriques I, Ribeiro R, Correia A (2007) Prevalence and characterization of integrons from bacteria isolated from a slaughterhouse wastewater treatment plant. J Antimicrob Chemother 60: 1243–50. PubMed
Mariat D, Firmesse O, Levenez F, Guimaraes VD, Sokol H, et al. (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9: 123. PubMed PMC
Geraylou Z, Souffreau C, Rurangwa E, Maes GE, Spanier KI, et al. (2013) Prebiotic effects of arabinoxylan oligosaccharides on juvenile Siberian sturgeon (Acipenser baerii) with emphasis on the modulation of the gut microbiota using 454 pyrosequencing. FEMS Microbiol Ecol 86: 357–71. PubMed
Mann E, Schmitz-Esser S, Zebeli Q, Wagner M, Ritzmann M, et al. (2014) Mucosa-associated bacterial microbiome of the gastrointestinal tract of weaned pigs and dynamics linked to dietary calcium-phosphorus. PLoS One 9: e86950. PubMed PMC
Roe MT, Vega E, Pillai SD (2003) Antimicrobial resistance markers of class 1 and class 2 integron-bearing Escherichia coli from irrigation water and sediments. Emerg Inf Dis 9: 822–6. PubMed PMC
Galimand M, Lambert T, Gerbaud G, Courvalin P (1993) Characterization of the aac(6′)-Ib gene encoding an aminoglycoside 6′-N-Acetyltransferase in Pseudomonas-aeruginosa Bm2656. Antimicrob Agents Chemother 37: 1456–62. PubMed PMC
Hopkins JD, Flores A, Pla MD, Lester S, Obrien TF (1991) Nosocomial spread of an amikacin resistance gene on both a mobilized, nonconjugative plasmid and a conjugative plasmid. Antimicrob Agents Chemother 35: 1605–11. PubMed PMC
Vaz-Moreira I, Egas C, Nunes OC, Manaia CM (2011) Culture-dependent and culture-independent diversity surveys target different bacteria: a case study in a freshwater sample. Int J Gen Mol Microbiol 100: 245–57. PubMed
Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, et al. (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 5: 1595–608. PubMed PMC
Sullam KE, Essinger SD, Lozupone CA, O’Connor MP, Rosen GL, et al. (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol 21: 3363–78. PubMed PMC
Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, et al. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66–74. PubMed
Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, et al. (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103: 12115–20. PubMed PMC
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7: 335–6. PubMed PMC
Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71: 8228–35. PubMed PMC
Levesque C, Piche L, Larose C, Roy PH (1995) PCR Mapping of Integrons Reveals Several Novel Combinations of Resistance Genes. Antimicrob Agents Chemother 39: 185–91. PubMed PMC
Matulova M, Rajova J, Vlasatikova L, Volf J, Stepanova H, et al. (2012) Characterization of chicken spleen transcriptome after infection with Salmonella enterica serovar Enteritidis. PLoS One 7: e48101. PubMed PMC
Tseng CP, Cheng JC, Tseng CC, Wang C, Chen YL, et al. (2003) Broad-range ribosomal RNA real-time PCR after removal of DNA from reagents: melting profiles for clinically important bacteria. Clin Chem 49: 306–309. PubMed