Eggshell and Feed Microbiota Do Not Represent Major Sources of Gut Anaerobes for Chickens in Commercial Production
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO0518
Ministerstvo Zemědělství
ATCZ194
Ministerstvo pro místní rozvoj
PubMed
34361916
PubMed Central
PMC8305510
DOI
10.3390/microorganisms9071480
PII: microorganisms9071480
Knihovny.cz E-zdroje
- Klíčová slova
- caecum, chicken, eggshell, feed, hatchery, microbiota,
- Publikační typ
- časopisecké články MeSH
In this study, we addressed the origin of chicken gut microbiota in commercial production by a comparison of eggshell and feed microbiota with caecal microbiota of 7-day-old chickens, using microbiota analysis by 16S rRNA sequencing. In addition, we tested at which timepoint during prenatal or neonatal development it is possible to successfully administer probiotics. We found that eggshell microbiota was a combination of environmental and adult hen gut microbiota but was completely different from caecal microbiota of 7-day-old chicks. Similarly, we observed that the composition of feed microbiota was different from caecal microbiota. Neither eggshell nor feed acted as an important source of gut microbiota for the chickens in commercial production. Following the experimental administration of potential probiotics, we found that chickens can be colonised only when already hatched and active. Spraying of eggs with gut anaerobes during egg incubation or hatching itself did not result in effective chicken colonisation. Such conclusions should be considered when selecting and administering probiotics to chickens in hatcheries. Eggshells, feed or drinking water do not act as major sources of gut microbiota. Newly hatched chickens must be colonised from additional sources, such as air dust with spores of Clostridiales. The natural colonisation starts only when chickens are already hatched, as spraying of eggs or even chickens at the very beginning of the hatching process did not result in efficient colonisation.
Hatchery Vodnanske Kure Komenskeho 75 768 11 Chropyne Czech Republic
Veterinary Research Institute Hudcova 70 621 00 Brno Czech Republic
Zobrazit více v PubMed
Videnska P., Sedlar K., Lukac M., Faldynova M., Gerzova L., Cejkova D., Sisak F., Rychlik I. Succession and Replacement of Bacterial Populations in the Caecum of Egg Laying Hens over Their Whole Life. PLoS ONE. 2014;9:e115142. doi: 10.1371/journal.pone.0115142. PubMed DOI PMC
Gao P., Ma C., Sun Z., Wang L., Huang S., Su X., Xu J., Zhang H. Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome. 2017;5:1–14. doi: 10.1186/s40168-017-0315-1. PubMed DOI PMC
Xi Y., Shuling N., Kunyuan T., Qiuyang Z., Hewen D., ChenCheng G., Tianhe Y., Liancheng L., Xin F. Characteristics of the intestinal flora of specific pathogen free chickens with age. Microb. Pathog. 2019;132:325–334. doi: 10.1016/j.micpath.2019.05.014. PubMed DOI
Stanley D., Geier M.S., Hughes R.J., Denman S., Moore R.J. Highly Variable Microbiota Development in the Chicken Gastrointestinal Tract. PLoS ONE. 2013;8:e84290. doi: 10.1371/journal.pone.0084290. PubMed DOI PMC
Ranjitkar S., Lawley B., Tannock G., Engberg R.M. Bacterial Succession in the Broiler Gastrointestinal Tract. Appl. Environ. Microbiol. 2016;82:2399–2410. doi: 10.1128/AEM.02549-15. PubMed DOI PMC
Kubasova T., Kollarcikova M., Crhanova M., Karasova D., Cejkova D., Sebkova A., Matiasovicova J., Faldynova M., Pokorna A., Cizek A., et al. Contact with adult hen affects development of caecal microbiota in newly hatched chicks. PLoS ONE. 2019;14:e0212446. doi: 10.1371/journal.pone.0212446. PubMed DOI PMC
Varmuzova K., Kubasova T., Davidova-Gerzova L., Sisak F., Havlickova H., Sebkova A., Faldynova M., Rychlik I. Composition of Gut Microbiota Influences Resistance of Newly Hatched Chickens to Salmonella Enteritidis Infection. Front. Microbiol. 2016;7:957. doi: 10.3389/fmicb.2016.00957. PubMed DOI PMC
Rantala M., Nurmi E. Prevention of the growth ofSalmonella infantisin chicks by the flora of the alimentary tract of chickens. Br. Poult. Sci. 1973;14:627–630. doi: 10.1080/00071667308416073. PubMed DOI
Stanley D., Hughes R.J., Geier M.S., Moore R.J. Bacteria within the Gastrointestinal Tract Microbiota Correlated with Improved Growth and Feed Conversion: Challenges Presented for the Identification of Performance Enhancing Probiotic Bacteria. Front. Microbiol. 2016;7:187. doi: 10.3389/fmicb.2016.00187. PubMed DOI PMC
Rikimaru K., Takahashi H. A simple and efficient method for extraction of PCR-amplifiable DNA from chicken eggshells. Anim. Sci. J. 2009;80:220–223. doi: 10.1111/j.1740-0929.2008.00624.x. PubMed DOI
Medvecky M., Cejkova D., Polansky O., Karasova D., Kubasova T., Cizek A., Rychlik I. Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genom. 2018;19:1–15. doi: 10.1186/s12864-018-4959-4. PubMed DOI PMC
Kubasova T., Kollarcikova M., Crhanova M., Karasova D., Cejkova D., Sebkova A., Matiasovicova J., Faldynova M., Sisak F., Babak V., et al. Gut Anaerobes Capable of Chicken Caecum Colonisation. Microorganisms. 2019;7:597. doi: 10.3390/microorganisms7120597. PubMed DOI PMC
Kollarcikova M., Faldynova M., Matiasovicova J., Jahodarova E., Kubasova T., Seidlerova Z., Babak V., Videnska P., Cizek A., Rychlik I. Different Bacteroides Species Colonise Human and Chicken Intestinal Tract. Microorganisms. 2020;8:1483. doi: 10.3390/microorganisms8101483. PubMed DOI PMC
Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Peña A.G., Goodrich J.K., Gordon J.I., et al. QIIME Allows Analysis of High-Throughput Community Sequencing data. Nat. Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC
Johnson T.J., Youmans B.P., Noll S., Cardona C., Evans N.P., Karnezos T.P., Ngunjiri J.M., Abundo M.C., Lee C.-W. A Consistent and Predictable Commercial Broiler Chicken Bacterial Microbiota in Antibiotic-Free Production Displays Strong Correlations with Performance. Appl. Environ. Microbiol. 2018;84:e00362-18. doi: 10.1128/AEM.00362-18. PubMed DOI PMC
Bucher M.G., Zwirzitz B., Oladeinde A., Cook K., Plymel C., Zock G., Lakin S., Aggrey S.E., Ritz C., Looft T., et al. Reused poultry litter microbiome with competitive exclusion potential against Salmonella Heidelberg. J. Environ. Qual. 2020;49:869–881. doi: 10.1002/jeq2.20081. PubMed DOI
De Cesare A., Caselli E., Lucchi A., Sala C., Parisi A., Manfreda G., Mazzacane S. Impact of a probiotic-based cleaning product on the microbiological profile of broiler litters and chicken caeca microbiota. Poult. Sci. 2019;98:3602–3610. doi: 10.3382/ps/pez148. PubMed DOI
Martín E., Fallschissel K., Kampfer P., Jäckel U. Detection of Jeotgalicoccus spp. in poultry house air. Syst. Appl. Microbiol. 2010;33:188–192. doi: 10.1016/j.syapm.2010.03.008. PubMed DOI
Cressman M.D., Yu Z., Nelson M.C., Moeller S.J., Lilburn M.S., Zerby H.N. Interrelations between the Microbiotas in the Litter and in the Intestines of Commercial Broiler Chickens. Appl. Environ. Microbiol. 2010;76:6572–6582. doi: 10.1128/AEM.00180-10. PubMed DOI PMC
Adkins P., Dufour S., Spain J., Calcutt M., Reilly T., Stewart G., Middleton J. Cross-sectional study to identify staphylococcal species isolated from teat and inguinal skin of different-aged dairy heifers. J. Dairy Sci. 2018;101:3213–3225. doi: 10.3168/jds.2017-13974. PubMed DOI
Callaway T.R., Dowd S., Wolcott R.D., Sun Y., McReynolds J.L., Edrington T.S., Byrd J.A., Anderson R.C., Krueger N., Nisbet D.J. Evaluation of the bacterial diversity in cecal contents of laying hens fed various molting diets by using bacterial tag-encoded FLX amplicon pyrosequencing. Poult. Sci. 2009;88:298–302. doi: 10.3382/ps.2008-00222. PubMed DOI
Nordentoft S., Mølbak L., Bjerrum L., De Vylder J., Van Immerseel F., Pedersen K. The influence of the cage system and colonisation of Salmonella Enteritidis on the microbial gut flora of laying hens studied by T-RFLP and 454 pyrosequencing. BMC Microbiol. 2011;11:187. doi: 10.1186/1471-2180-11-187. PubMed DOI PMC
Videnska P., Rahman M., Faldynova M., Babak V., Matulova M.E., Prukner-Radovcic E., Krizek I., Smole-Mozina S., Kovac J., Szmolka A., et al. Characterization of Egg Laying Hen and Broiler Fecal Microbiota in Poultry Farms in Croatia, Czech Republic, Hungary and Slovenia. PLoS ONE. 2014;9:e110076. doi: 10.1371/journal.pone.0110076. PubMed DOI PMC
Wang L., Lilburn M., Yu Z. Intestinal Microbiota of Broiler Chickens As Affected by Litter Management Regimens. Front. Microbiol. 2016;7:593. doi: 10.3389/fmicb.2016.00593. PubMed DOI PMC
Oppliger A., Charrière N., Droz P.-O., Rinsoz T. Exposure to Bioaerosols in Poultry Houses at Different Stages of Fattening; Use of Real-time PCR for Airborne Bacterial Quantification. Ann. Occup. Hyg. 2008;52:405–412. doi: 10.1093/annhyg/men021. PubMed DOI PMC
Olsen R., Kudirkiene E., Thøfner I., Pors S., Karlskov-Mortensen P., Li L., Papasolomontos S., Angastiniotou C., Christensen J. Impact of egg disinfection of hatching eggs on the eggshell microbiome and bacterial load. Poult. Sci. 2017;96:3901–3911. doi: 10.3382/ps/pex182. PubMed DOI
Trudeau S., Thibodeau A., Côté J.-C., Gaucher M.-L., Fravalo P. Contribution of the Broiler Breeders’ Fecal Microbiota to the Establishment of the Eggshell Microbiota. Front. Microbiol. 2020;11:666. doi: 10.3389/fmicb.2020.00666. PubMed DOI PMC
Maki J.J., Bobeck E.A., Sylte M.J., Looft T. Eggshell and environmental bacteria contribute to the intestinal microbiota of growing chickens. J. Anim. Sci. Biotechnol. 2020;11:1–17. doi: 10.1186/s40104-020-00459-w. PubMed DOI PMC
Wilson K.M., Rodrigues D., Briggs W.N., Duff A.F., Chasser K.M., Bielke L.R. Evaluation of the impact of in ovo administered bacteria on microbiome of chicks through 10 days of age. Poult. Sci. 2019;98:5949–5960. doi: 10.3382/ps/pez388. PubMed DOI
de Oliveira J.E., van der Hoeven-Hangoor E., van de Linde I.B., Montijn R.C., van der Vossen J.M.B.M. In ovo inoculation of chicken embryos with probiotic bacteria and its effect on posthatch Salmonella susceptibility. Poult. Sci. 2014;93:818–829. doi: 10.3382/ps.2013-03409. PubMed DOI
Succession, Replacement, and Modification of Chicken Litter Microbiota