Contact with adult hens affects the composition of skin and respiratory tract microbiota in newly hatched chicks
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38052128
PubMed Central
PMC10746563
DOI
10.1016/j.psj.2023.103302
PII: S0032-5791(23)00821-0
Knihovny.cz E-zdroje
- Klíčová slova
- caecum, chicken, respiratory tract microbiota, skin, trachea,
- MeSH
- dýchací soustava MeSH
- Escherichia coli genetika MeSH
- kur domácí * MeSH
- mikrobiota * MeSH
- RNA ribozomální 16S analýza MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Chickens in commercial production are hatched in hatcheries without any contact with their parents and colonization of their skin and respiratory tract is therefore dependent on environmental sources only. However, since chickens evolved to be hatched in nests, in this study we evaluated the importance of contact between hens and chicks for the development of chicken skin and tracheal microbiota. Sequencing of PCR amplified V3/V4 variable regions of the 16S rRNA gene showed that contact with adult hens decreased the abundance of E. coli, Proteus mirabilis and Clostridium perfringens both in skin and the trachea, and Acinetobacter johnsonii and Cutibacterium acnes in skin microbiota only. These species were replaced by Lactobacillus gallinarum, Lactobacillus aviarius, Limosilactobacillus reuteri, and Streptococcus pasterianus in the skin and tracheal microbiota of contact chicks. Lactobacilli can be therefore investigated for their probiotic effect in respiratory tract in the future. Skin and respiratory microbiota of contact chickens was also enriched for Phascolarctobacterium, Succinatimonas, Flavonifractor, Blautia, and [Ruminococcus] torque though, since these are strict anaerobes from the intestinal tract, it is likely that only DNA from nonviable cells was detected for these taxa.
Zobrazit více v PubMed
Abundo M.E.C., Ngunjiri J.M., Taylor K.J.M., Ji H., Ghorbani A., K C.M., Weber B.P., Johnson T.J., Lee C.W. Assessment of two DNA extraction kits for profiling poultry respiratory microbiota from multiple sample types. PLoS One. 2021;16 PubMed PMC
Bindari Y.R., Moore R.J., Van T.T.H., Hilliar M., Wu S.B., Walkden-Brown S.W., Gerber P.F. Microbial communities of poultry house dust, excreta and litter are partially representative of microbiota of chicken caecum and ileum. PLoS One. 2021;16 PubMed PMC
Bizjak T., Sellstedt A., Gratz R., Nordin A. Presence and activity of nitrogen-fixing bacteria in Scots pine needles in a boreal forest: a nitrogen-addition experiment. Tree Physiol. 2023;43:1354–1364. PubMed PMC
Bokulich N.A., Kaehler B.D., Rideout J.R., Dillon M., Bolyen E., Knight R., Huttley G.A., Caporaso J.G. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2′s q2-feature-classifier plugin. Microbiome. 2018;6:90. PubMed PMC
Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith G.A., Alexander H., Alm E.J., Arumugam M., Asnicar F., Bai Y., Bisanz J.E., Bittinger K., Brejnrod A., Brislawn C.J., Brown C.T., Callahan B.J., Caraballo-Rodriguez A.M., Chase J., Cope E.K., Da Silva R., Diener C., Dorrestein P.C., Douglas G.M., Durall D.M., Duvallet C., Edwardson C.F., Ernst M., Estaki M., Fouquier J., Gauglitz J.M., Gibbons S.M., Gibson D.L., Gonzalez A., Gorlick K., Guo J., Hillmann B., Holmes S., Holste H., Huttenhower C., Huttley G.A., Janssen S., Jarmusch A.K., Jiang L., Kaehler B.D., Kang K.B., Keefe C.R., Keim P., Kelley S.T., Knights D., Koester I., Kosciolek T., Kreps J., Langille M.G.I., Lee J., Ley R., Liu Y.X., Loftfield E., Lozupone C., Maher M., Marotz C., Martin B.D., McDonald D., McIver L.J., Melnik A.V., Metcalf J.L., Morgan S.C., Morton J.T., Naimey A.T., Navas-Molina J.A., Nothias L.F., Orchanian S.B., Pearson T., Peoples S.L., Petras D., Preuss M.L., Pruesse E., Rasmussen L.B., Rivers A., Robeson M.S., 2nd, Rosenthal P., Segata N., Shaffer M., Shiffer A., Sinha R., Song S.J., Spear J.R., Swafford A.D., Thompson L.R., Torres P.J., Trinh P., Tripathi A., Turnbaugh P.J., Ul-Hasan S., van der Hooft J.J.J., Vargas F., Vazquez-Baeza Y., Vogtmann E., von Hippel M., Walters W., Wan Y., Wang M., Warren J., Weber K.C., Williamson C.H.D., Willis A.D., Xu Z.Z., Zaneveld J.R., Zhang Y., Zhu Q., Knight R., Caporaso J.G. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–857. PubMed PMC
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J., Holmes S.P. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. PubMed PMC
Chen S., Zhou Y., Chen Y., Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. PubMed PMC
Flowers L., Grice E.A. The skin microbiota: balancing risk and reward. Cell Host Microbe. 2020;28:190–200. PubMed PMC
Girardot C., Scholtalbers J., Sauer S., Su S.Y., Furlong E.E. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers. BMC Bioinform. 2016;17:419. PubMed PMC
Glendinning L., McLachlan G., Vervelde L. Age-related differences in the respiratory microbiota of chickens. PLoS One. 2017;12 PubMed PMC
Grice E.A., Segre J.A. The skin microbiome. Nat. Rev. Microbiol. 2011;9:244–253. PubMed PMC
Hinton A., Jr., Ingram K.D. Use of oleic acid to reduce the population of the bacterial flora of poultry skin. J. Food Prot. 2000;63:1282–1286. PubMed
Johnson T.J., Youmans B.P., Noll S., Cardona C., Evans N.P., Karnezos T.P., Ngunjiri J.M., Abundo M.C., Lee C.W. A consistent and predictable commercial broiler chicken bacterial microbiota in antibiotic-free production displays strong correlations with performance. Appl. Environ. Microbiol. 2018;84 :e00362-18. PubMed PMC
Juricova H., Matiasovicova J., Faldynova M., Sebkova A., Kubasova T., Prikrylova H., Karasova D., Crhanova M., Havlickova H., Rychlik I. Probiotic Lactobacilli do not protect chickens against Salmonella Enteritidis infection by competitive exclusion in the intestinal tract but in feed, outside the chicken host. Microorganisms. 2022;10:219. PubMed PMC
Kubasova T., Faldynova M., Crhanova M., Karasova D., Zeman M., Babak V., Rychlik I. Succession, replacement, and modification of chicken litter microbiota. Appl. Environ. Microbiol. 2022;88 PubMed PMC
Kubasova T., Kollarcikova M., Crhanova M., Karasova D., Cejkova D., Sebkova A., Matiasovicova J., Faldynova M., Pokorna A., Cizek A., Rychlik I. Contact with adult hen affects development of caecal microbiota in newly hatched chicks. PLoS One. 2019;14 PubMed PMC
Liu D., Mariman R., Gerlofs-Nijland M.E., Boere J.F., Folkerts G., Cassee F.R., Pinelli E. Microbiome composition of airborne particulate matter from livestock farms and their effect on innate immune receptors and cells. Sci. Total Environ. 2019;688:1298–1307. PubMed
Marcolla C.S., Ju T., Willing B.P. Cecal Microbiota development and physiological responses of broilers following early life microbial inoculation using different delivery methods and microbial sources. Appl. Environ. Microbiol. 2023;89 PubMed PMC
Medvecky M., Cejkova D., Polansky O., Karasova D., Kubasova T., Cizek A., Rychlik I. Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genomics. 2018;19:561. PubMed PMC
Meng J., Huang X., Song L., Hou B., Qiao M., Zhang P., Zhao Q., Zhang B., Liu F. Effect of storage temperature on bacterial diversity in chicken skin. J. Appl. Microbiol. 2019;126:854–863. PubMed
Ngunjiri J.M., Taylor K.J.M., Abundo M.C., Jang H., Elaish M., Kc M., Ghorbani A., Wijeratne S., Weber B.P., Johnson T.J., Lee C.W. Farm stage, bird age, and body site dominantly affect the quantity, taxonomic composition, and dynamics of respiratory and gut microbiota of commercial layer chickens. Appl. Environ. Microbiol. 2019;85 e03137-18. PubMed PMC
Oakley B.B., Morales C.A., Line J., Berrang M.E., Meinersmann R.J., Tillman G.E., Wise M.G., Siragusa G.R., Hiett K.L., Seal B.S. The poultry-associated microbiome: network analysis and farm-to-fork characterizations. PLoS One. 2013;8:e57190. PubMed PMC
Oppliger A., Charriere N., Droz P.O., Rinsoz T. Exposure to bioaerosols in poultry houses at different stages of fattening; use of real-time PCR for airborne bacterial quantification. Ann. Occup. Hyg. 2008;52:405–412. PubMed PMC
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glockner F.O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. PubMed PMC
Ranjitkar S., Lawley B., Tannock G., Engberg R.M. Bacterial succession in the broiler gastrointestinal tract. Appl. Environ. Microbiol. 2016;82:2399–2410. PubMed PMC
Rantala M., Nurmi E. Prevention of the growth of Salmonella infantis in chicks by the flora of the alimentary tract of chickens. Br. Poult. Sci. 1973;14:627–630. PubMed
Rychlik I. Composition and function of chicken gut microbiota. Animals (Basel) 2020;10:103. PubMed PMC
Rychlik I., Karasova D., Crhanova M. Microbiota of chickens and their environment in commercial production. Avian Dis. 2023;67:1–9. PubMed
Shi M., Qin T., Cheng Z., Zheng D., Pu Z., Yang Z., Lim K.J., Yang M., Wang Z. Exploring the core bacteria and functional traits in Pecan (Carya illinoinensis) rhizosphere. Microbiol. Spectr. 2023;11 PubMed PMC
Sohail M.U., Hume M.E., Byrd J.A., Nisbet D.J., Shabbir M.Z., Ijaz A., Rehman H. Molecular analysis of the caecal and tracheal microbiome of heat-stressed broilers supplemented with prebiotic and probiotic. Avian Pathol. 2015;44:67–74. PubMed
Stanley D., Geier M.S., Hughes R.J., Denman S.E., Moore R.J. Highly variable microbiota development in the chicken gastrointestinal tract. PLoS One. 2013;8:e84290. PubMed PMC
Taylor K.J.M., Ngunjiri J.M., Abundo M.C., Jang H., Elaish M., Ghorbani A., Kc M., Weber B.P., Johnson T.J., Lee C.W. Respiratory and gut microbiota in commercial turkey flocks with disparate weight gain trajectories display differential compositional dynamics. Appl. Environ. Microbiol. 2020;86 :e00431-20. PubMed PMC
Van Goor A., Redweik G.A.J., Stromberg Z.R., Treadwell C.G., Xin H., Mellata M. Microbiome and biological blood marker changes in hens at different laying stages in conventional and cage free housings. Poult. Sci. 2020;99:2362–2374. PubMed PMC
Varmuzova K., Kubasova T., Davidova-Gerzova L., Sisak F., Havlickova H., Sebkova A., Faldynova M., Rychlik I. Composition of gut microbiota influences resistance of newly hatched chickens to Salmonella Enteritidis infection. Front. Microbiol. 2016;7:957. PubMed PMC
Videnska P., Sedlar K., Lukac M., Faldynova M., Gerzova L., Cejkova D., Sisak F., Rychlik I. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS One. 2014;9 PubMed PMC
Volf J., Crhanova M., Karasova D., Faldynova M., Kubasova T., Seidlerova Z., Sebkova A., Zeman M., Juricova H., Matiasovicova J., Foltyn M., Tvrdon Z., Rychlik I. Eggshell and feed microbiota do not represent major sources of gut anaerobes for chickens in commercial production. Microorganisms. 2021;9:1480. PubMed PMC
Wang J., Ishfaq M., Fan Q., Chen C., Li J. A respiratory commensal bacterium acts as a risk factor for Mycoplasma gallisepticum infection in chickens. Vet. Immunol. Immunopathol. 2020;230 PubMed
Wang M., Lin X., Jiao H., Uyanga V., Zhao J., Wang X., Li H., Zhou Y., Sun S., Lin H. Mild heat stress changes the microbiota diversity in the respiratory tract and the cecum of layer-type pullets. Poult. Sci. 2020;99:7015–7026. PubMed PMC
Wang S., Huang A., Gu Y., Li J., Huang L., Wang X., Tao Y., Liu Z., Wu C., Yuan Z., Hao H. Rational use of danofloxacin for treatment of Mycoplasma gallisepticum in chickens based on the clinical breakpoint and lung microbiota shift. Antibiotics (Basel) 2022;11:403. PubMed PMC
Zhang X., Peng Z., Li P., Mao Y., Shen R., Tao R., Diao X., Liu L., Zhao Y., Luo X. Complex internal microstructure of feather follicles on chicken skin promotes the bacterial cross-contamination of carcasses during the slaughtering process. Front. Microbiol. 2020;11 PubMed PMC
Zhou Y., Zhang M., Liu Q., Feng J. The alterations of tracheal microbiota and inflammation caused by different levels of ammonia exposure in broiler chickens. Poult. Sci. 2021;100:685–696. PubMed PMC