Succession, Replacement, and Modification of Chicken Litter Microbiota
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36468876
PubMed Central
PMC9765293
DOI
10.1128/aem.01809-22
Knihovny.cz E-zdroje
- Klíčová slova
- antibiotic resistance, bedding, cecum, chicken, litter, microbiota,
- MeSH
- cékum mikrobiologie MeSH
- kur domácí * mikrobiologie MeSH
- mikrobiota * genetika MeSH
- RNA ribozomální 16S genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Chickens are in constant interaction with their environment, e.g., bedding and litter, and their microbiota. However, how litter microbiota develops over time and whether bedding and litter microbiota may affect the cecal microbiota is not clear. We addressed these questions using sequencing of V3/V4 variable region of 16S rRNA genes of cecal, bedding, and litter samples from broiler breeder chicken flocks for 4 months of production. Cecal, bedding, and litter samples were populated by microbiota of distinct composition. The microbiota in the bedding material did not expand in the litter. Similarly, major species from litter microbiota did not expand in the cecum. Only cecal microbiota was found in the litter forming approximately 20% of total litter microbiota. A time-dependent development of litter microbiota was observed. Escherichia coli, Staphylococcus saprophyticus, and Weissella jogaejeotgali were characteristic of fresh litter during the first month of production. Corynebacterium casei, Lactobacillus gasseri, and Lactobacillus salivarius dominated in a 2-month-old litter, Brevibacterium, Brachybacterium, and Sphingobacterium were characteristic for 3-month-old litter, and Salinococcus, Dietzia, Yaniella, and Staphylococcus lentus were common in a 4-month-old litter. Although the development was likely determined by physicochemical conditions in the litter, it might be interesting to test some of these species for active modification of litter to improve the chicken environment and welfare. IMPORTANCE Despite intimate contact, the composition of bedding, litter, and cecal microbiota differs considerably. Species characteristic for litter microbiota at different time points of chicken production were identified thus opening the possibility for active manipulation of litter microbiota.
Zobrazit více v PubMed
Torok VA, Hughes RJ, Ophel-Keller K, Ali M, Macalpine R. 2009. Influence of different litter materials on cecal microbiota colonization in broiler chickens. Poult Sci 88:2474–2481. 10.3382/ps.2008-00381. PubMed DOI
Bindari YR, Moore RJ, Van TTH, Hilliar M, Wu SB, Walkden-Brown SW, Gerber PF. 2021. Microbial communities of poultry house dust, excreta and litter are partially representative of microbiota of chicken caecum and ileum. PLoS One 16:e0255633. 10.1371/journal.pone.0255633. PubMed DOI PMC
Ostovic M, Ravic I, Kovacic M, Ekert Kabalin A, Matkovic K, Sabolek I, Pavicic Z, Mencik S, Horvatek Tomic D. 2021. Differences in fungal contamination of broiler litter between summer and winter fattening periods. Arh Hig Rada Toksikol 72:140–147. 10.2478/aiht-2021-72-3508. PubMed DOI PMC
Gontar Ł, Sitarek-Andrzejczyk M, Kochański M, Buła M, Drutowska A, Zych D, Markiewicz J. 2022. Dynamics and diversity of microbial contamination in poultry bedding materials containing parts of medicinal plants. Materials (Basel) 15:1290. 10.3390/ma15041290. PubMed DOI PMC
Wang L, Lilburn M, Yu Z. 2016. Intestinal microbiota of broiler chickens as affected by litter management regimens. Front Microbiol 7:593. 10.3389/fmicb.2016.00593. PubMed DOI PMC
Bucher MG, Zwirzitz B, Oladeinde A, Cook K, Plymel C, Zock G, Lakin S, Aggrey SE, Ritz C, Looft T, Lipp E, Agga GE, Abdo Z, Sistani KR. 2020. Reused poultry litter microbiome with competitive exclusion potential against Salmonella Heidelberg. J Environ Qual 49:869–881. 10.1002/jeq2.20081. PubMed DOI
Lu J, Sanchez S, Hofacre C, Maurer JJ, Harmon BG, Lee MD. 2003. Evaluation of broiler litter with reference to the microbial composition as assessed by using 16S rRNA and functional gene markers. Appl Environ Microbiol 69:901–908. 10.1128/AEM.69.2.901-908.2003. PubMed DOI PMC
De Cesare A, Caselli E, Lucchi A, Sala C, Parisi A, Manfreda G, Mazzacane S. 2019. Impact of a probiotic-based cleaning product on the microbiological profile of broiler litters and chicken caeca microbiota. Poult Sci 98:3602–3610. 10.3382/ps/pez148. PubMed DOI
Cressman MD, Yu Z, Nelson MC, Moeller SJ, Lilburn MS, Zerby HN. 2010. Interrelations between the microbiotas in the litter and in the intestines of commercial broiler chickens. Appl Environ Microbiol 76:6572–6582. 10.1128/AEM.00180-10. PubMed DOI PMC
Johnson TJ, Youmans BP, Noll S, Cardona C, Evans NP, Karnezos TP, Ngunjiri JM, Abundo MC, Lee CW. 2018. A consistent and predictable commercial broiler chicken bacterial microbiota in antibiotic-free production displays strong correlations with performance. Appl Environ Microbiol 84:e00362-18. 10.1128/AEM.00362-18. PubMed DOI PMC
Videnska P, Sedlar K, Lukac M, Faldynova M, Gerzova L, Cejkova D, Sisak F, Rychlik I. 2014. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS One 9:e115142. 10.1371/journal.pone.0115142. PubMed DOI PMC
Poly F, Threadgill D, Stintzi A. 2004. Identification of Campylobacter jejuni ATCC 43431-specific genes by whole microbial genome comparisons. J Bacteriol 186:4781–4795. 10.1128/JB.186.14.4781-4795.2004. PubMed DOI PMC
Juricova H, Matiasovicova J, Kubasova T, Cejkova D, Rychlik I. 2021. The distribution of antibiotic resistance genes in chicken gut microbiota commensals. Sci Rep 11:3290. 10.1038/s41598-021-82640-3. PubMed DOI PMC
Kollarcikova M, Faldynova M, Matiasovicova J, Jahodarova E, Kubasova T, Seidlerova Z, Babak V, Videnska P, Cizek A, Rychlik I. 2020. Different Bacteroides species colonise human and chicken intestinal tract. Microorganisms 8:1483. 10.3390/microorganisms8101483. PubMed DOI PMC
Wadud S, Michaelsen A, Gallagher E, Parcsi G, Zemb O, Stuetz R, Manefield M. 2012. Bacterial and fungal community composition over time in chicken litter with high or low moisture content. Br Poult Sci 53:561–569. 10.1080/00071668.2012.723802. PubMed DOI
Medvecky M, Cejkova D, Polansky O, Karasova D, Kubasova T, Cizek A, Rychlik I. 2018. Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genomics 19:561. 10.1186/s12864-018-4959-4. PubMed DOI PMC
Khan MT, Duncan SH, Stams AJ, van Dijl JM, Flint HJ, Harmsen HJ. 2012. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME J 6:1578–1585. 10.1038/ismej.2012.5. PubMed DOI PMC
Kubasova T, Seidlerova Z, Rychlik I. 2021. Ecological adaptations of gut microbiota members and their consequences for use as a new generation of probiotics. Int J Mol Sci 22:5471. 10.3390/ijms22115471. PubMed DOI PMC
Herp S, Brugiroux S, Garzetti D, Ring D, Jochum LM, Beutler M, Eberl C, Hussain S, Walter S, Gerlach RG, Ruscheweyh HJ, Huson D, Sellin ME, Slack E, Hanson B, Loy A, Baines JF, Rausch P, Basic M, Bleich A, Berry D, Stecher B. 2019. Mucispirillum schaedleri antagonizes Salmonella virulence to protect mice against colitis. Cell Host Microbe 25:681–694.e688. 10.1016/j.chom.2019.03.004. PubMed DOI
Grice EA, Segre JA. 2011. The skin microbiome. Nat Rev Microbiol 9:244–253. 10.1038/nrmicro2537. PubMed DOI PMC
Martin E, Fallschissel K, Kampfer P, Jackel U. 2010. Detection of Jeotgalicoccus spp. in poultry house air. Syst Appl Microbiol 33:188–192. 10.1016/j.syapm.2010.03.008. PubMed DOI
Oppliger A, Charriere N, Droz PO, Rinsoz T. 2008. Exposure to bioaerosols in poultry houses at different stages of fattening; use of real-time PCR for airborne bacterial quantification. Ann Occup Hyg 52:405–412. 10.1093/annhyg/men021. PubMed DOI PMC
Monnet C, Correia K, Sarthou AS, Irlinger F. 2006. Quantitative detection of Corynebacterium casei in cheese by real-time PCR. Appl Environ Microbiol 72:6972–6979. 10.1128/AEM.01303-06. PubMed DOI PMC
Cogan TM, Goerges S, Gelsomino R, Larpin S, Hohenegger M, Bora N, Jamet E, Rea MC, Mounier J, Vancanneyt M, Gueguen M, Desmasures N, Swings J, Goodfellow M, Ward AC, Sebastiani H, Irlinger F, Chamba JF, Beduhn R, Scherer S. 2014. Biodiversity of the surface microbial consortia from limburger, reblochon, livarot, tilsit, and gubbeen cheeses. Microbiol Spectr 2:CM-0010-2012. PubMed
Delcenserie V, Taminiau B, Delhalle L, Nezer C, Doyen P, Crevecoeur S, Roussey D, Korsak N, Daube G. 2014. Microbiota characterization of a Belgian protected designation of origin cheese, Herve cheese, using metagenomic analysis. J Dairy Sci 97:6046–6056. 10.3168/jds.2014-8225. PubMed DOI
Tanasupawat S, Hashimoto Y, Ezaki T, Kozaki M, Komagata K. 1992. Staphylococcus piscifermentans sp. nov., from fermented fish in Thailand. Int J Syst Bacteriol 42:577–581. 10.1099/00207713-42-4-577. PubMed DOI
Guo J, Luo W, Fan J, Suyama T, Zhang WX. 2020. Co-inoculation of Staphylococcus piscifermentans and salt-tolerant yeasts inhibited biogenic amines formation during soy sauce fermentation. Food Res Int 137:109436. 10.1016/j.foodres.2020.109436. PubMed DOI
Tao Z, Wu X, Liu W, Takahashi H, Xie S, Ohshima C, He Q. 2022. Prevalence of histamine-forming bacteria in two kinds of salted fish at town markets of Guangdong province of South China. J Food Prot 85:956–960. 10.4315/JFP-21-215. PubMed DOI
Jo E, Hwang S, Cha J. 2022. Transcriptome analysis of halotolerant Staphylococcus saprophyticus isolated from Korean fermented shrimp. Foods 11:524. 10.3390/foods11040524. PubMed DOI PMC
Lapidus A, Pukall R, Labuttii K, Copeland A, Del Rio TG, Nolan M, Chen F, Lucas S, Tice H, Cheng JF, Bruce D, Goodwin L, Pitluck S, Rohde M, Goker M, Pati A, Ivanova N, Mavrommatis K, Chen A, Palaniappan K, D'Haeseleer P, Chain P, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. 2009. Complete genome sequence of Brachybacterium faecium type strain (Schefferle 6–10). Stand Genomic Sci 1:3–11. 10.4056/sigs.492. PubMed DOI PMC
Leuschner RG, Hammes WP. 1998. Degradation of histamine and tyramine by Brevibacterium linens during surface ripening of Munster cheese. J Food Prot 61:874–878. 10.4315/0362-028x-61.7.874. PubMed DOI
Oladeinde A, Abdo Z, Zwirzitz B, Woyda R, Lakin SM, Press MO, Cox NA, Thomas J, Looft T, Rothrock MJ, Jr., Zock G, Plumblee Lawrence J, Cudnik D, Ritz C, Aggrey SE, Liachko I, Grove JR, Wiersma C. 2022. Litter commensal bacteria can limit the horizontal gene transfer of antimicrobial resistance to Salmonella in chickens. Appl Environ Microbiol 88:e0251721. 10.1128/aem.02517-21. PubMed DOI PMC
Hahm MS, Son JS, Hwang YJ, Kwon DK, Ghim SY. 2017. Alleviation of salt stress in pepper (Capsicum annum L.) plants by plant growth-promoting Rhizobacteria. J Microbiol Biotechnol 27:1790–1797. 10.4014/jmb.1609.09042. PubMed DOI
Andrei A-Ş, Păuşan MR, Tămaş T, Har N, Barbu-Tudoran L, Leopold N, Banciu HL. 2017. Diversity and biomineralization potential of the epilithic bacterial communities inhabiting the oldest public stone monument of Cluj-Napoca (Transylvania, Romania). Front Microbiol 8:372. 10.3389/fmicb.2017.00372. PubMed DOI PMC
Roman-Ponce B, Li YH, Vasquez-Murrieta MS, Sui XH, Chen WF, Estrada-de Los Santos P, Wang ET. 2015. Brevibacterium metallicus sp. nov., an endophytic bacterium isolated from roots of Prosopis laegivata grown at the edge of a mine tailing in Mexico. Arch Microbiol 197:1151–1158. 10.1007/s00203-015-1156-6. PubMed DOI
Chen YG, Cui XL, Pukall R, Li HM, Yang YL, Xu LH, Wen ML, Peng Q, Jiang CL. 2007. Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int J Syst Evol Microbiol 57:2327–2332. 10.1099/ijs.0.64783-0. PubMed DOI
Titah HS, Abdullah SRS, Idris M, Anuar N, Basri H, Mukhlisin M, Tangahu BV, Purwanti IF, Kurniawan SB. 2018. Arsenic resistance and biosorption by isolated Rhizobacteria from the roots of Ludwigia octovalvis. Int J Microbiol 2018:3101498. 10.1155/2018/3101498. PubMed DOI PMC
Covas C, Caetano T, Cruz A, Santos T, Dias L, Klein G, Abdulmawjood A, Rodriguez-Alcala LM, Pimentel LL, Gomes A, Freitas AC, Garcia-Serrano A, Fontecha J, Mendo S. 2017. Pedobacter lusitanus sp. nov., isolated from sludge of a deactivated uranium mine. Int J Syst Evol Microbiol 67:1339–1348. 10.1099/ijsem.0.001814. PubMed DOI
Chen YG, Cui XL, Li WJ, Xu LH, Wen ML, Peng Q, Jiang CL. 2008. Salinicoccus salitudinis sp. nov., a new moderately halophilic bacterium isolated from a saline soil sample. Extremophiles 12:197–203. 10.1007/s00792-007-0116-8. PubMed DOI
Shin NR, Whon TW, Roh SW, Kim MS, Kim YO, Bae JW. 2012. Oceanisphaera sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 62:1552–1557. 10.1099/ijs.0.034645-0. PubMed DOI
Kampfer P, Langer S, Martin E, Jackel U, Busse HJ. 2010. Dietzia aerolata sp. nov., isolated from the air of a duck barn, and emended description of the genus Dietzia Rainey et al. 1995. Int J Syst Evol Microbiol 60:393–396. 10.1099/ijs.0.012807-0. PubMed DOI
Liu D, Mariman R, Gerlofs-Nijland ME, Boere JF, Folkerts G, Cassee FR, Pinelli E. 2019. Microbiome composition of airborne particulate matter from livestock farms and their effect on innate immune receptors and cells. Sci Total Environ 688:1298–1307. 10.1016/j.scitotenv.2019.06.217. PubMed DOI
Sudagidan M, Ozalp VC, Can O, Eligul H, Yurt MNZ, Tasbasi BB, Acar EE, Kavruk M, Kocak O. 2022. Surface microbiota and associated staphylococci of houseflies (Musca domestica) collected from different environmental sources. Microb Pathog 164:105439. 10.1016/j.micpath.2022.105439. PubMed DOI
Bahrndorff S, de Jonge N, Skovgard H, Nielsen JL. 2017. Bacterial communities associated with houseflies (Musca domestica L.) sampled within and between farms. PLoS One 12:e0169753. 10.1371/journal.pone.0169753. PubMed DOI PMC
Park R, Dzialo MC, Spaepen S, Nsabimana D, Gielens K, Devriese H, Crauwels S, Tito RY, Raes J, Lievens B, Verstrepen KJ. 2019. Microbial communities of the house fly Musca domestica vary with geographical location and habitat. Microbiome 7:147. 10.1186/s40168-019-0748-9. PubMed DOI PMC
Rychlik I. 2020. Composition and function of chicken gut microbiota. Animals (Basel) 10:103. 10.3390/ani10010103. PubMed DOI PMC
Guo S, Xi Y, Xia Y, Wu T, Zhao D, Zhang Z, Ding B. 2021. Dietary Lactobacillus fermentum and Bacillus coagulans supplementation modulates intestinal immunity and microbiota of broiler chickens challenged by Clostridium perfringens. Front Vet Sci 8:680742. 10.3389/fvets.2021.680742. PubMed DOI PMC
Volf J, Crhanova M, Karasova D, Faldynova M, Kubasova T, Seidlerova Z, Sebkova A, Zeman M, Juricova H, Matiasovicova J, Foltyn M, Tvrdon Z, Rychlik I. 2021. Eggshell and feed microbiota do not represent major sources of gut anaerobes for chickens in commercial production. Microorganisms 9:1480. 10.3390/microorganisms9071480. PubMed DOI PMC
Crhanova M, Karasova D, Juricova H, Matiasovicova J, Jahodarova E, Kubasova T, Seidlerova Z, Cizek A, Rychlik I. 2019. Systematic Culturomics shows that half of chicken caecal microbiota members can be grown in vitro except for two lineages of Clostridiales and a single lineage of Bacteroidetes. Microorganisms 7:496. 10.3390/microorganisms7110496. PubMed DOI PMC
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, et al. . 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. 10.1038/s41587-019-0209-9. PubMed DOI PMC
Girardot C, Scholtalbers J, Sauer S, Su SY, Furlong EE. 2016. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers. BMC Bioinformatics 17:419. 10.1186/s12859-016-1284-2. PubMed DOI PMC
Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. 10.1093/bioinformatics/bty560. PubMed DOI PMC
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. 10.1038/nmeth.3869. PubMed DOI PMC
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome 6:90. 10.1186/s40168-018-0470-z. PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–596. 10.1093/nar/gks1219. PubMed DOI PMC
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. 10.1186/gb-2011-12-6-r60. PubMed DOI PMC