Diversity and Biomineralization Potential of the Epilithic Bacterial Communities Inhabiting the Oldest Public Stone Monument of Cluj-Napoca (Transylvania, Romania)

. 2017 ; 8 () : 372. [epub] 20170307

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28326074

In this study, we investigated the biomineralization potential and diversity of the epilithic bacterial communities dwelling on the limestone statue of Saint Donatus, the oldest public monument of Cluj-Napoca city (Transylvania region, NW Romania). Their spatial distribution together with phylogenetic and metabolic diversity, as well as their capacity to precipitate calcium carbonate was evaluated by combining molecular and phenotypic fingerprinting methods with X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron-microscopy analyses. The results of real-time quantitative PCR, molecular fingerprinting and community-level physiological profiling showed that diverse and abundant bacterial assemblages that differ in relation to their collection site colonized the statue. The cultivation and molecular identification procedures allowed the characterization of 79 bacterial isolates belonging to Proteobacteria (73.4%), Firmicutes (19%), and Actinobacteria (7.6%). Amongst them, the 22 strains identified as being capable of calcium carbonate precipitation were found to belong mostly to Bacillus and Pseudomonas genera. We found that bacteria acted as nucleation sites, inducing the formation of nanoscale aggregates that were shown to be principally composed of vaterite. Furthermore, we expanded the current knowledge on culturable diversity of carbonatogenic bacteria by providing evidence for biogenic vaterite/calcite formation mediated by: Pseudomonas synxantha, P. graminis, Brevibacterium iodinum, Streptomyces albidoflavus, and Stenotrophomonas chelatiphaga. Overall, this study highlights the need to evaluate the carbonatogenetic potential of all the bacterial communities present on stone artwork prior to designing an efficient conservation treatment based on biomineralization.

Zobrazit více v PubMed

Asnicar F., Weingart G., Tickle T. L., Huttenhower C., Segata N. (2015). Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3:e1029 10.7717/peerj.1029 PubMed DOI PMC

Balog A.-A., Cobîrzan N., Mosonyi E. (2014). Microstructural analysis for investigation of limestone damages - a case study of the Fortress Wall of Cluj-Napoca, Romania. Rom. J. Phys. 59 608–613.

Banciu H. L. (2013). Diversity of endolithic prokaryotes living in stone monuments. Stud. UBB Biol. 58 99–109. Available at: http://studia.ubbcluj.ro/download/pdf/Biologia_pdf/2013_1/05.pdf

Banks E. D., Taylor N. M., Gulley J., Lubbers B. R., Giarrizzo J. G., Bullen H. A., et al. (2010). Bacterial calcium carbonate precipitation in cave environments: a function of calcium homeostasis. Geomicrobiol. J. 27 444–454. 10.1080/01490450903485136 DOI

Baskar S., Baskar R., Lee N., Theophilus P. K. (2008). Speleothems from Mawsmai and Krem Phyllut caves, Meghalaya, India: some evidences on biogenic activities. Environ. Geol. 57 1169–1186. 10.1007/s00254-008-1413-y DOI

Baskar S., Baskar R., Mauclaire L., McKenzie J. A. (2006). Microbially induced calcite precipitation in culture experiments: possible origin for stalactites in Sahastradhara caves, Dehradun, India. Curr. Sci. 90 58–64.

Ben Chekroun K., Rodriguez-Navarro C., Gonzalez-Munoz M. T., Arias J. M., Cultrone G., Rodriguez-Gallego M. (2004). Precipitation and growth morphology of calcium carbonate induced by Myxococcus xanthus: implications for recognition of bacterial carbonates. J. Sediment. Res. 74 868–876. 10.1306/050504740868 DOI

Boquet E., Boronat A., Ramos-Cormenzana A. (1973). Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246 527–529. 10.1038/246527a0 DOI

Brânzilă M., Ştefan P. (2009). Golia monastery from Iasi (Romania) - alteration and deterioration of the building limestones. Geologie 2 5–18. 10.1016/j.apsoil.2005.05.003 DOI

Braun B., Böckelmann U., Grohmann E., Szewzyk U. (2006). Polyphasic characterization of the bacterial community in an urban soil profile with in situ and culture-dependent methods. Appl. Soil Ecol. 31 267–279. 10.1016/j.apsoil.2005.05.003 DOI

Buck J. D. (1982). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl. Environ. Microbiol. 44 992–993. PubMed PMC

Cameotra S., Dakal T. (2012). Carbonatogenesis: microbial contribution to the conservation of monuments and artwork of stone. Conserv. Sci. Cult. Herit. 12 79–108. 10.6092/issn.1973-9494/3383 DOI

Cañveras J. C., Sanchez-Moral S., Sloer V., Saiz-Jimenez C. (2001). Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol. J. 18 223–240. 10.1080/01490450152467769 DOI

Chou C.-W., Seagren E. A., Aydilek A. H., Lai M. (2011). Biocalcification of sand through ureolysis. J. Geotech. Geoenvironmental Eng. 137 1179–1189. 10.1061/(ASCE)GT.1943-5606.0000532 DOI

Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., et al. (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37 D141–D145. 10.1093/nar/gkn879 PubMed DOI PMC

Cole J. R., Wang Q., Fish J. A., Chai B., McGarrell D. M., Sun Y., et al. (2014). Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42 D633–D642. 10.1093/nar/gkt1244 PubMed DOI PMC

Daskalakis M. I., Rigas F., Bakolas A., Magoulas A., Kotoulas G., Katsikis I., et al. (2015). Vaterite bio-precipitation induced by Bacillus pumilus isolated from a solutional cave in Paiania, Athens, Greece. Int. Biodeterior. Biodegrad. 99 73–84. 10.1016/j.ibiod.2014.12.005 DOI

Dhami N. K., Reddy M. S., Mukherjee A. (2013). Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. J. Microbiol. Biotechnol. 23 707–714. 10.4014/jmb.1212.11087 PubMed DOI

Dhami N. K., Reddy M. S., Mukherjee A. (2014a). Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization. Appl. Biochem. Biotechnol. 172 2552–2561. 10.1007/s12010-013-0694-0 PubMed DOI

Dhami N. K., Sudhakara Reddy M., Mukherjee A. (2014b). Application of calcifying bacteria for remediation of stones and cultural heritages. Front. Microbiol. 5:304 10.3389/fmicb.2014.00304 PubMed DOI PMC

Ettenauer J., Piñar G., Sterflinger K., Gonzalez-Muñoz M. T., Jroundi F. (2011). Molecular monitoring of the microbial dynamics occurring on historical limestone buildings during and after the in situ application of different bio-consolidation treatments. Sci. Total Environ. 409 5337–5352. 10.1016/j.scitotenv.2011.08.063 PubMed DOI PMC

Ferrer M. R., Quevedo-Sarmiento J., Rivadeneyra M. A., Bejar V., Delgado R., Ramos-Cormenzana A. (1988). Calcium carbonate precipitation by two groups of moderately halophilic microorganisms at different temperatures and salt concentrations. Curr. Microbiol. 17 221–227. 10.1007/BF01589456 DOI

Gebauer D., Gunawidjaja P. N., Ko J. Y. P., Bacsik Z., Aziz B., Liu L., et al. (2010). Proto-calcite and proto-vaterite in amorphous calcium carbonates. Angew. Chem. Int. Ed. 49 8889–8891. 10.1002/anie.201003220 PubMed DOI

Gil E., Mas Á., Lerma C., Vercher J. (2015). Exposure factors influence stone deterioration by crystallization of soluble salts. Adv. Mater. Sci. Eng. 2015:348195 10.1155/2015/348195 DOI

González-Muñoz M. T., Rodriguez-Navarro C., Martínez-Ruiz F., Arias J. M., Merroun M. L., Rodriguez-Gallego M. (2010). Bacterial biomineralization: new insights from Myxococcus -induced mineral precipitation. Geol. Soc. Lond. Spec. Publ. 336 31–50. 10.1144/SP336.3 DOI

Gorbushina A. A. (2007). Life on the rocks. Environ. Microbiol. 9 1613–1631. 10.1111/j.1462-2920.2007.01301.x PubMed DOI

Jagadeesha Kumar B. G., Prabhakara R., Pushpa H. (2013). Biomineralization of calcium carbonate by different bacterial strains and their application in concrete crack remediation. Int. J. Adv. Eng. Technol. 6 202–213.

Jimenez-Lopez C., Jroundi F., Pascolini C., Rodriguez-Navarro C., Piñar-Larrubia G., Rodriguez-Gallego M., et al. (2008). Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. Int. Biodeterior. Biodegrad. 62 352–363. 10.1016/j.ibiod.2008.03.002 DOI

Jroundi F., Gómez-Suaga P., Jimenez-Lopez C., González-Muñoz M. T., Fernandez-Vivas M. A. (2012). Stone-isolated carbonatogenic bacteria as inoculants in bioconsolidation treatments for historical limestone. Sci. Total Environ. 425 89–98. 10.1016/j.scitotenv.2012.02.059 PubMed DOI

Jroundi F., Gonzalez-Muñoz M. T., Garcia-Bueno A., Rodriguez-Navarro C. (2014). Consolidation of archaeological gypsum plaster by bacterial biomineralization of calcium carbonate. Acta Biomater. 10 3844–3854. 10.1016/j.actbio.2014.03.007 PubMed DOI

Kiel G., Gaylarde C. C. (2006). Bacterial diversity in biofilms on external surfaces of historic buildings in Porto Alegre. World J. Microbiol. Biotechnol. 22 293–297. 10.1007/s11274-005-9035-y DOI

Koch R., Racataianu P. C., Bucur I. (2008). Examples of weathering and deterioration of Tertiary building stones at St. Michaels Cathedral in Cluj-Napoca (Romania). Stud. UBB Geol. 53 25–39. 10.5038/1937-8602.53.2.3 DOI

Laiz L., Groth I., Gonzalez I., Saiz-Jimenez C. (1999). Microbiological study of the dripping waters in Altamira cave (Santillana del Mar, Spain). J. Microbiol. Methods 36 129–138. 10.1016/S0167-7012(99)00018-4 PubMed DOI

Lan W., Li H., Wang W. D., Katayama Y., Gu J. D. (2010). Microbial community analysis of fresh and old microbial biofilms on Bayon Temple sandstone of Angkor Thom, Cambodia. Microb. Ecol. 60 105–115. 10.1007/s00248-010-9707-5 PubMed DOI PMC

Le Métayer-Levrel G., Castanier S., Orial G., Loubière J.-F.,, Perthuisot J.-P. (1999). Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment. Geol. 126 25–34. 10.1016/S0037-0738(99)00029-9 DOI

Lisci M., Monte M., Pacini E. (2003). Lichens and higher plants on stone: a review. Int. Biodeterior. Biodegrad. 51 1–17. 10.1016/S0964-8305(02)00071-9 DOI

López-Moreno A., Sepúlveda-Sánchez J. D., Alonso Guzmán E. M., Le Borgne S. (2014). Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: influence of calcium on EPS production and biofilm formation by these isolates. Biofouling 30 547–560. 10.1080/08927014.2014.888715 PubMed DOI

Mann S. (2001). Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. New York, NY: Oxford University Press.

McNamara C. J., Perry T. D., Bearce K. A., Hernandez-Duque G., Mitchell R. (2006). Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microb. Ecol. 51 51–64. 10.1007/s00248-005-0200-5 PubMed DOI

Miller A. Z., Sanmartín P., Pereira-Pardo L., Dionísio A., Saiz-Jimenez C., Macedo M. F., et al. (2012). Bioreceptivity of building stones: a review. Sci. Total Environ. 426 1–12. 10.1016/j.scitotenv.2012.03.026 PubMed DOI

Okwadha G. D. O., Li J. (2010). Optimum conditions for microbial carbonate precipitation. Chemosphere 81 1143–1148. 10.1016/j.chemosphere.2010.09.066 PubMed DOI

Ortega-Morales B. O., Narváez-Zapata J. A., Schmalenberger A., Sosa-López A., Tebbe C. C. (2004). Biofilms fouling ancient limestone Mayan monuments in Uxmal, Mexico: a cultivation-independent analysis. Biofilms 1 79–90. 10.1017/S1479050504001188 DOI

Pentecost A., Whitton B. A. (eds) (2000). “Limestones,” in The Ecology of Cyanobacteria, (Dordrecht: Kluwer Academic Publishers), 257–279. 10.1007/0-306-46855-7_9 DOI

Rodriguez-Navarro C., Jimenez-Lopez C., Rodriguez-Navarro A., Gonzalez-Muñoz M. T., Rodriguez-Gallego M. (2007). Bacterially mediated mineralization of vaterite. Geochim. Cosmochim. Acta 71 1197–1213. 10.1016/j.gca.2006.11.031 DOI

Rodriguez-Navarro C., Rodriguez-Gallego M., Ben Chekroun K., Gonzalez-Muñoz M. T. (2003). Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl. Environ. Microbiol. 69 2182–2193. 10.1128/AEM.69.4.2182-2193.2003 PubMed DOI PMC

Ruijter J. M., Ramakers C., Hoogaars W. M. H., Karlen Y., Bakker O., van den Hoff M. J. B., et al. (2009). Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 37:e45 10.1093/nar/gkp045 PubMed DOI PMC

Rusznyák A., Akob D. M., Nietzsche S., Eusterhues K., Totsche K. U., Neu T. R., et al. (2012). Calcite biomineralization by bacterial isolates from the recently discovered pristine karstic herrenberg cave. Appl. Environ. Microbiol. 78 1157–1167. 10.1128/AEM.06568-11 PubMed DOI PMC

Sabãu I. (2002). Metamorfoze ale Barocului Transilvan: Sculptura, 1st Edn, Vol. I. Cluj-Napoca: Editura Dacia. [In Romanian].

Saiz-Jimenez C. (1997). Biodeterioration vs biodegradation: the role of microorganisms in the removal of pollutants deposited on historic buildings. Int. Biodeterior. Biodegrad. 40 225–232. 10.1016/S0964-8305(97)00035-8 DOI

Sato M., Matsuda S. (1969). Structure of vaterite and infrared spectra. Z. Kristallogr. 129 405–410. 10.1524/zkri.1969.129.5-6.405 DOI

Scheerer S., Ortega-Morales O., Gaylarde C. (2009). Microbial deterioration of stone monuments–an updated overview. Adv. Appl. Microbiol. 66 97–139. 10.1016/S0065-2164(08)00805-8 PubMed DOI

Seifan M., Samani A. K., Berenjian A. (2016). Induced calcium carbonate precipitation using Bacillus species. Appl. Microbiol. Biotechnol. 100 9895–9906. 10.1007/s00253-016-7701-7 PubMed DOI

Shirakawa M. A., Cincotto M. A., Atencio D., Gaylarde C. C., John V. M. (2011). Effect of culture medium on biocalcification by Pseudomonas putida, Lysinibacillus sphaericus and Bacillus subtilis. Braz. J. Microbiol. 42 499–507. 10.1590/S1517-838220110002000014 PubMed DOI PMC

Silva-Castro G. A., Uad I., Rivadeneyra A., Vilchez J. I., Martin-Ramos D., González-López J., et al. (2013). Carbonate precipitation of bacterial strains isolated from sediments and seawater: formation mechanisms. Geomicrobiol. J. 30 840–850. 10.1080/01490451.2013.777492 DOI

Smalla K., Oros-Sichler M., Milling A., Heuer H., Baumgarte S., Becker R., et al. (2007). Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: Do the different methods provide similar results? J. Microbiol. Methods 69 470–479. 10.1016/j.mimet.2007.02.014 PubMed DOI

Sondi I., Juraěić M. (2010). Whiting events and the formation of aragonite in Mediterranean karstic marine lakes: new evidence on its biologically induced inorganic origin. Sedimentology 57 85–95. 10.1111/j.1365-3091.2009.01090.x DOI

Steiger M., Charola A. E., Sterflinger K. (2014). “Weathering and deterioration,” in Stone in Architecture: Properties, Durability, 5th Edn, eds Siegesmund S., Snethlage R. (Berlin: Springer-Verlag; ), 225–316. 10.1007/978-3-642-45155-3_4 DOI

Stocks-Fischer S., Galinat J. K., Bang S. S. (1999). Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31 1563–1571. 10.1016/S0038-0717(99)00082-6 DOI

Suihko M. L., Alakomi H. L., Gorbushina A., Fortune I., Marquardt J., Saarela M. (2007). Characterization of aerobic bacterial and fungal microbiota on surfaces of historic Scottish monuments. Syst. Appl. Microbiol. 30 494–508. 10.1016/j.syapm.2007.05.001 PubMed DOI

Tourney J., Ngwenya B. T. (2014). The role of bacterial extracellular polymeric substances in geomicrobiology. Chem. Geol. 386 115–132. 10.1016/j.chemgeo.2014.08.011 DOI

Vagenas N. V., Gatsouli A., Kontoyannis C. G. (2003). Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy. Talanta 59 831–836. 10.1016/S0039-9140(02)00638-0 PubMed DOI

Walsh J. H. (2001). Ecological considerations of biodeterioration. Int. Biodeterior. Biodegrad. 48 16–25. 10.1016/S0964-8305(01)00063-4 DOI

Warscheid T., Braams J. (2000). Biodeterioration of stone: a review. Int. Biodeterior. Biodegrad. 46 343–368. 10.1016/S0964-8305(00)00109-8 DOI

Wei H., Shen Q., Zhao Y., Wang D.-J., Xu D.-F. (2003). Influence of polyvinylpyrrolidone on the precipitation of calcium carbonate and on the transformation of vaterite to calcite. J. Cryst. Growth 250 516–524. 10.1016/S0022-0248(02)02484-3 DOI

Zhu T., Dittrich M. (2016). Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front. Bioeng. Biotechnol. 4:4 10.3389/fbioe.2016.00004 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Succession, Replacement, and Modification of Chicken Litter Microbiota

. 2022 Dec 20 ; 88 (24) : e0180922. [epub] 20221205

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...