Systematic Culturomics Shows that Half of Chicken Caecal Microbiota Members can be Grown in Vitro Except for Two Lineages of Clostridiales and a Single Lineage of Bacteroidetes

. 2019 Oct 28 ; 7 (11) : . [epub] 20191028

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31661802

Grantová podpora
RVO0518 Ministerstvo Zemědělství
CZ.02.1.01/0.0/0.0/16_025/0007404 Ministerstvo Školství, Mládeže a Tělovýchovy
18-15238Y Grantová Agentura České Republiky

Odkazy

PubMed 31661802
PubMed Central PMC6920758
DOI 10.3390/microorganisms7110496
PII: microorganisms7110496
Knihovny.cz E-zdroje

Epidemiological data show that the composition of gut microbiota influences host health, disease status, and even behaviour. However, to confirm these epidemiological observations in controlled experiments, pure cultures of gut anaerobes must be obtained. Since the culture of gut anaerobes is not a simple task due to the large number of bacterial species colonising the intestinal tract, in this study we inoculated 174 different culture media with caecal content from adult hens, and compared the microbiota composition in the original caecal samples and in bacterial masses growing in vitro by 16S rRNA sequencing. In total, 42% of gut microbiota members could be grown in vitro and since there were some species which were not cultured but for which the culture conditions are known, it is likely that more than half of chicken gut microbiota can be grown in vitro. However, there were two lineages of Clostridiales and a single lineage of Bacteroidetes which were common in chicken caecal microbiota but resistant to culture. Of the most selective culture conditions, nutrient broths supplemented with mono- or di-saccharides, including those present in fruits, positively selected for Lactobacillaceae. The addition of bile salts selected for Veillonellaceae and YCFA (yeast casitone fatty acid agar) enriched for Desulfovibrionaceae. In addition, Erysipelotrichaceae were positively selected by colistin, trimethoprim, streptomycin and nalidixic acid. Culture conditions tested in this study can be used for the selective enrichment of desired bacterial species but also point towards the specific functions of individual gut microbiota members.

Zobrazit více v PubMed

Videnska P., Sedlar K., Lukac M., Faldynova M., Gerzova L., Cejkova D., Sisak F., Rychlik I. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS ONE. 2014;9:e115142. doi: 10.1371/journal.pone.0115142. PubMed DOI PMC

Videnska P., Sisak F., Havlickova H., Faldynova M., Rychlik I. Influence of Salmonella enterica serovar Enteritidis infection on the composition of chicken cecal microbiota. BMC Vet. Res. 2013;9:140. doi: 10.1186/1746-6148-9-140. PubMed DOI PMC

Colles F.M., Cain R.J., Nickson T., Smith A.L., Roberts S.J., Maiden M.C., Lunn D., Dawkins M.S. Monitoring chicken flock behaviour provides early warning of infection by human pathogen Campylobacter. Proc. Biol. Sci. 2016;283:20152323. PubMed PMC

Kraimi N., Dawkins M., Gebhardt-Henrich S.G., Velge P., Rychlik I., Volf J., Creach P., Smith A., Colles F., Leterrier C. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: A review. Physiol. Behav. 2019:112658. doi: 10.1016/j.physbeh.2019.112658. PubMed DOI

Kubasova T., Kollarcikova M., Crhanova M., Karasova D., Cejkova D., Sebkova A., Matiasovicova J., Faldynova M., Pokorna A., Cizek A., et al. Contact with adult hen affects development of caecal microbiota in newly hatched chicks. PLoS ONE. 2019;14:e0212446. doi: 10.1371/journal.pone.0212446. PubMed DOI PMC

Impey C.S., Mead G.C., George S.M. Competitive exclusion of salmonellas from the chick caecum using a defined mixture of bacterial isolates from the caecal microflora of an adult bird. J. Hyg. (Lond) 1982;89:479–490. doi: 10.1017/S0022172400071047. PubMed DOI PMC

Penha Filho R.A., Diaz S.J., Fernando F.S., Chang Y.F., Andreatti Filho R.L., Berchieri Junior A. Immunomodulatory activity and control of Salmonella Enteritidis colonization in the intestinal tract of chickens by Lactobacillus based probiotic. Vet. Immunol. Immunopathol. 2015;167:64–69. doi: 10.1016/j.vetimm.2015.06.006. PubMed DOI

Netherwood T., Gilbert H.J., Parker D.S., O’Donnell A.G. Probiotics shown to change bacterial community structure in the avian gastrointestinal tract. Appl. Environ. Microbiol. 1999;65:5134–5138. PubMed PMC

La Ragione R.M., Woodward M.J. Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. Vet. Microbiol. 2003;94:245–256. doi: 10.1016/S0378-1135(03)00077-4. PubMed DOI

Videnska P., Faldynova M., Juricova H., Babak V., Sisak F., Havlickova H., Rychlik I. Chicken faecal microbiota and disturbances induced by single or repeated therapy with tetracycline and streptomycin. BMC Vet. Res. 2013;9:30. doi: 10.1186/1746-6148-9-30. PubMed DOI PMC

Medvecky M., Cejkova D., Polansky O., Karasova D., Kubasova T., Cizek A., Rychlik I. Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genomics. 2018;19:561. doi: 10.1186/s12864-018-4959-4. PubMed DOI PMC

Lagier J.C., Khelaifia S., Alou M.T., Ndongo S., Dione N., Hugon P., Caputo A., Cadoret F., Traore S.I., Seck E.H., et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 2016;1:16203. doi: 10.1038/nmicrobiol.2016.203. PubMed DOI

Lau J.T., Whelan F.J., Herath I., Lee C.H., Collins S.M., Bercik P., Surette M.G. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med. 2016;8:72. doi: 10.1186/s13073-016-0327-7. PubMed DOI PMC

Browne H.P., Forster S.C., Anonye B.O., Kumar N., Neville B.A., Stares M.D., Goulding D., Lawley T.D. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533:543–546. doi: 10.1038/nature17645. PubMed DOI PMC

Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Pena A.G., Goodrich J.K., Gordon J.I., et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC

Katoh K., Misawa K., Kuma K., Miyata T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic. Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Capella-Gutierrez S., Silla-Martinez J.M., Gabaldon T. Trimal: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC

Suchard M.A., Lemey P., Baele G., Ayres D.L., Drummond A.J., Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1. Virus Evol. 2018;4:vey016. doi: 10.1093/ve/vey016. PubMed DOI PMC

Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC

Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Minh B.Q., Nguyen M.A., von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013;30:1188–1195. doi: 10.1093/molbev/mst024. PubMed DOI PMC

Ochoa S., Martinez O.A., Fernandez H., Collado L. Comparison of media and growth conditions for culturing enterohepatic Helicobacter species. Lett. Appl. Microbiol. 2019;69:190–197. doi: 10.1111/lam.13192. PubMed DOI

Antunes L.C., Poppleton D., Klingl A., Criscuolo A., Dupuy B., Brochier-Armanet C., Beloin C., Gribaldo S. Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes. Elife. 2016;5:e14589. doi: 10.7554/eLife.14589. PubMed DOI PMC

Rutgeerts P., Ghoos Y., Vantrappen G. The enterohepatic circulation of bile acids during continuous liquid formula perfusion of the duodenum. J. Lipid. Res. 1983;24:614–619. PubMed

Volf J., Polansky O., Varmuzova K., Gerzova L., Sekelova Z., Faldynova M., Babak V., Medvecky M., Smith A.L., Kaspers B., et al. Transient and Prolonged Response of Chicken Cecum Mucosa to Colonization with Different Gut Microbiota. PLoS ONE. 2016;11:e0163932. doi: 10.1371/journal.pone.0163932. PubMed DOI PMC

Schnorr S.L., Candela M., Rampelli S., Centanni M., Consolandi C., Basaglia G., Turroni S., Biagi E., Peano C., Severgnini M., et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 2014;5:3654. doi: 10.1038/ncomms4654. PubMed DOI PMC

Gorvitovskaia A., Holmes S.P., Huse S.M. Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome. 2016;4:15. doi: 10.1186/s40168-016-0160-7. PubMed DOI PMC

Moran E.T., Jr. Nutrition of the developing embryo and hatchling. Poult. Sci. 2007;86:1043–1049. doi: 10.1093/ps/86.5.1043. PubMed DOI

Noy Y., Sklan D. Yolk utilisation in the newly hatched poult. Br. Poult. Sci. 1998;39:446–451. doi: 10.1080/00071669889042. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Succession, Replacement, and Modification of Chicken Litter Microbiota

. 2022 Dec 20 ; 88 (24) : e0180922. [epub] 20221205

Host Species Adaptation of Obligate Gut Anaerobes Is Dependent on Their Environmental Survival

. 2022 May 25 ; 10 (6) : . [epub] 20220525

Paraphocaeicola brunensis gen. nov., sp. nov., Carrying Two Variants of nimB Resistance Gene from Bacteroides fragilis, and Caecibacteroides pullorum gen. nov., sp. nov., Two Novel Genera Isolated from Chicken Caeca

. 2022 Feb 23 ; 10 (1) : e0195421. [epub] 20220216

Probiotic Lactobacilli Do Not Protect Chickens against Salmonella Enteritidis Infection by Competitive Exclusion in the Intestinal Tract but in Feed, Outside the Chicken Host

. 2022 Jan 20 ; 10 (2) : . [epub] 20220120

Ecological Adaptations of Gut Microbiota Members and Their Consequences for Use as a New Generation of Probiotics

. 2021 May 22 ; 22 (11) : . [epub] 20210522

The distribution of antibiotic resistance genes in chicken gut microbiota commensals

. 2021 Feb 08 ; 11 (1) : 3290. [epub] 20210208

Different Bacteroides Species Colonise Human and Chicken Intestinal Tract

. 2020 Sep 27 ; 8 (10) : . [epub] 20200927

Composition and Function of Chicken Gut Microbiota

. 2020 Jan 08 ; 10 (1) : . [epub] 20200108

Gut Anaerobes Capable of Chicken Caecum Colonisation

. 2019 Nov 21 ; 7 (12) : . [epub] 20191121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...