Paraphocaeicola brunensis gen. nov., sp. nov., Carrying Two Variants of nimB Resistance Gene from Bacteroides fragilis, and Caecibacteroides pullorum gen. nov., sp. nov., Two Novel Genera Isolated from Chicken Caeca
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35170999
PubMed Central
PMC8849064
DOI
10.1128/spectrum.01954-21
Knihovny.cz E-zdroje
- Klíčová slova
- Bacteroidaceae, Caecibacteroides pullorum gen. nov., Paraphocaeicola brunensis gen. nov., metronidazole resistance, nimB gene, phylogenomics, polyphasic taxonomy, sp. nov.,
- MeSH
- antibakteriální látky MeSH
- antibiotická rezistence MeSH
- Bacteroidaceae klasifikace účinky léků genetika izolace a purifikace MeSH
- Bacteroides fragilis klasifikace účinky léků genetika izolace a purifikace MeSH
- bakteriální léková rezistence genetika MeSH
- bakteriální proteiny genetika MeSH
- cékum mikrobiologie MeSH
- fylogeneze * MeSH
- kur domácí mikrobiologie MeSH
- RNA ribozomální 16S MeSH
- techniky typizace bakterií MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- bakteriální proteiny MeSH
- NimB protein, Bacteroides fragilis MeSH Prohlížeč
- RNA ribozomální 16S MeSH
Three difficult-to-cultivate, strictly anaerobic strains, AN20T, AN421T, and AN502, were analyzed within a project studying possible probiotics for newly hatched chickens. Phylogenetic analyses showed that strains AN20T, AN421T, and AN502 formed two well-separated phylogenetic lineages in all phylogenetic and phylogenomic trees comprising members of the family Bacteroidaceae. Comparison to reference genomes of type species Bacteroides fragilis NCTC 9343T, Phocaeicola abscessus CCUG 55929T, and Capsularis zoogleoformans ATCC 33285T showed low relatedness based on the calculated genome-to-genome distance and orthologous average nucleotide identity. Analysis of fatty acid profiles showed iso-C15:0, anteiso-C15:0, C16:0, C18:1ω9c, and iso-C17:0 3OH as the major fatty acids for all three strains and additionally C16:0 3OH for AN421T and AN502. A specific combination of respiratory quinones different from related taxa was found in analyzed strains, MK-5 plus MK-11 in strain AN20T and MK-5 plus MK-10 in strains AN421T and AN502. Strains AN421T and AN502 harbor complete CRISPR loci with CRISPR array, type II-C, accompanied by a set of cas genes (cas9, cas1, and cas2) in close proximity. Interestingly, strain AN20T was found to harbor two copies of nimB gene with >95% similarity to nimB of B. fragilis, suggesting a horizontal gene transfer between these taxa. In summary, three isolates characterized in this study represent two novel species, which we proposed to be classified in two novel genera of the family Bacteroidaceae, for which the names Paraphocaeicola brunensis sp. nov. (AN20T = CCM 9041T = DSM 111154T) and Caecibacteroides pullorum sp. nov. (AN421T= CCM 9040T = DSM 111155T) are proposed. IMPORTANCE This study represents follow-up research on three difficult-to-cultivate anaerobic isolates originally isolated within a project focused on strains that are able to stably colonize newly hatched chickens, thus representing possible probiotics. This project is exceptional in that it successfully isolates several miscellaneous strains that required modified and richly supplemented anaerobic media, as information on many gut-colonizing bacteria is based predominantly on metagenomic studies. Superior colonization of newly hatched chickens by Bacteroides spp., Phocaeicola spp., or related taxa can be considered of importance for development of future probiotics. Although different experiments can also be performed with provisionally characterized isolates, precise taxonomical definition is necessary for subsequent broad communication. The aim of this study is therefore to thoroughly characterize these isolates that represent novel genera and precisely determine their taxonomic position among related taxa to facilitate further research and communication involving these strains.
CEITEC VFU University of Veterinary Sciences Brno Brno Czech Republic
Department of Bacteriology Veterinary Research Institute v 5 1 Brno Czech Republic
Department of Internal Medicine Hematology and Oncology Masaryk University Brno Czech Republic
Department of Internal Medicine Hematology and Oncology University Hospital Brno Czech Republic
Structural Biology Brussels Vrije Universiteit Brussel Brussels Belgium
Zobrazit více v PubMed
Krieg NR, Ludwig W, Euzéby JP, Whitman WB. 2015. Bacteroidetes phyl. nov., p 25–469. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB. (ed), Bergey’s manual of systematics of archaea and bacteria. Springer, New York, NY.
García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T, Kyrpides NC, Hahnke RL, Göker M. 2019. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 10:2083. doi:10.3389/fmicb.2019.02083. PubMed DOI PMC
Wexler AG, Goodman AL. 2017. An insider’s perspective: Bacteroides as a window into the microbiome. Nat Microbiol 2:17026. doi:10.1038/nmicrobiol.2017.26. PubMed DOI PMC
Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, Harris HMB, Coakley M, Lakshminarayanan B, O'Sullivan O, Fitzgerald GF, Deane J, O'Connor M, Harnedy N, O'Connor K, O'Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O'Toole PW. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184. doi:10.1038/nature11319. PubMed DOI
Wexler HM. 2007. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20:593–621. doi:10.1128/CMR.00008-07. PubMed DOI PMC
Macrina FL. 1993. Conjugal transfer in anaerobic bacteria, p 331–348. In Clewell DB (ed), Bacterial conjugation. Springer US, Boston, MA.
Shoemaker NB, Vlamakis H, Hayes K, Salyers AA. 2001. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl Environ Microbiol 67:561–568. doi:10.1128/AEM.67.2.561-568.2001. PubMed DOI PMC
Shafquat Y, Jabeen K, Farooqi J, Mehmood K, Irfan S, Hasan R, Zafar A. 2019. Antimicrobial susceptibility against metronidazole and carbapenem in clinical anaerobic isolates from Pakistan. Antimicrob Resist Infect Control 8:99. doi:10.1186/s13756-019-0549-8. PubMed DOI PMC
Kubasova T, Kollarcikova M, Crhanova M, Karasova D, Cejkova D, Sebkova A, Matiasovicova J, Faldynova M, Sisak F, Babak V, Pokorna A, Cizek A, Rychlik I. 2019. Gut anaerobes capable of chicken caecum colonisation. Microorganisms 7:597. doi:10.3390/microorganisms7120597. PubMed DOI PMC
Medvecky M, Cejkova D, Polansky O, Karasova D, Kubasova T, Cizek A, Rychlik I. 2018. Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genomics 19:561. doi:10.1186/s12864-018-4959-4. PubMed DOI PMC
Crhanova M, Karasova D, Juricova H, Matiasovicova J, Jahodarova E, Kubasova T, Seidlerova Z, Cizek A, Rychlik I. 2019. Systematic culturomics shows that half of chicken caecal microbiota members can be grown in vitro except for two lineages of Clostridiales and a single lineage of Bacteroidetes. Microorganisms 7:496. doi:10.3390/microorganisms7110496. PubMed DOI PMC
Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. doi:10.1099/ijsem.0.001755. PubMed DOI PMC
Kim M, Oh H-S, Park S-C, Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351. doi:10.1099/ijs.0.059774-0. PubMed DOI
Stackebrandt E, Goebel BM. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849. doi:10.1099/00207713-44-4-846. DOI
Na S-I, Kim YO, Yoon S-H, Ha S, Baek I, Chun J. 2018. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285. doi:10.1007/s12275-018-8014-6. PubMed DOI
Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. doi:10.1186/1471-2105-14-60. PubMed DOI PMC
Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C, Zhou J, Oren A, Zhang Y-Z. 2014. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 196:2210–2215. doi:10.1128/JB.01688-14. PubMed DOI PMC
Suresh G, Lodha TD, Indu B, Sasikala C, Ramana CV. 2019. Taxogenomics resolves conflict in the genus Rhodobacter: a two and half decades pending thought to reclassify the genus Rhodobacter. Front Microbiol 11:1111. doi:10.3389/fmicb.2020.01111. PubMed DOI PMC
Aliyu H, Lebre P, Blom J, Cowan D, De Maayer P. 2016. Phylogenomic re-assessment of the thermophilic genus Geobacillus. Syst Appl Microbiol 39:527–533. doi:10.1016/j.syapm.2016.09.004. PubMed DOI
Meier-Kolthoff JP, Klenk H-P, Göker M. 2014. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356. doi:10.1099/ijs.0.056994-0. PubMed DOI
Barrangou R, Horvath P. 2017. A decade of discovery: CRISPR functions and applications. Nat Microbiol 2:17092. doi:10.1038/nmicrobiol.2017.92. PubMed DOI
Makarova KS, Koonin EV. 2015. Annotation and classification of CRISPR-Cas systems. Methods Mol Biol 1311:47–75. doi:10.1007/978-1-4939-2687-9_4. PubMed DOI PMC
Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M. 2007. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181. doi:10.1093/dnares/dsm018. PubMed DOI PMC
Ryan D, Prezza G, Westermann AJ. 2020. An RNA-centric view on gut Bacteroidetes. Biol Chem 402:55–72. doi:10.1515/hsz-2020-0230. PubMed DOI
Tajkarimi M, Wexler HM. 2017. CRISPR-Cas systems in Bacteroides fragilis, an important pathobiont in the human gut microbiome. Front Microbiol 8:2234. doi:10.3389/fmicb.2017.02234. PubMed DOI PMC
Baptista RP, Reis-Cunha JL, DeBarry JD, Chiari E, Kissinger Jc Bartholomeu DC, Macedo AM. 2018. Assembly of highly repetitive genomes using short reads: the genome of discrete typing unit III Trypanosoma cruzi strain 231. Microb Genom 4:e000156. doi:10.1099/mgen.0.000156. PubMed DOI PMC
Almendros C, Guzmán NM, García-Martínez J, Mojica FJM. 2016. Anti-cas spacers in orphan CRISPR4 arrays prevent uptake of active CRISPR–Cas I-F systems. Nat Microbiol 1. doi:10.1038/nmicrobiol.2016.81. PubMed DOI
Goh YJ, Barrangou R. 2019. Harnessing CRISPR-Cas systems for precision engineering of designer probiotic lactobacilli. Curr Opin Biotechnol 56:163–171. doi:10.1016/j.copbio.2018.11.009. PubMed DOI
Ramachandran G, Bikard D. 2019. Editing the microbiome the CRISPR way. Philos Trans R Soc Lond B Biol Sci 374:20180103. doi:10.1098/rstb.2018.0103. PubMed DOI PMC
Alauzet C, Lozniewski A, Marchandin H. 2019. Metronidazole resistance and nim genes in anaerobes: a review. Anaerobe 55:40–53. doi:10.1016/j.anaerobe.2018.10.004. PubMed DOI
Alauzet C, Aujoulat F, Lozniewski A, Marchandin H. 2019. A sequence database analysis of 5-nitroimidazole reductase and related proteins to expand knowledge on enzymes responsible for metronidazole inactivation. Anaerobe 55:29–34. doi:10.1016/j.anaerobe.2018.10.005. PubMed DOI
Sóki J, Gal M, Brazier JS, Rotimi VO, Urbán E, Nagy E, Duerden BI. 2006. Molecular investigation of genetic elements contributing to metronidazole resistance in Bacteroides strains. J Antimicrob Chemother 57:212–220. doi:10.1093/jac/dki443. PubMed DOI
Razavi M, Kristiansson E, Flach C-F, Larsson DGJ. 2020. The association between insertion sequences and antibiotic resistance genes. mSphere 5:e00418-20. doi:10.1128/mSphere.00418-20. PubMed DOI PMC
Löfmark S, Fang H, Hedberg M, Edlund C. 2005. Inducible metronidazole resistance and nim genes in clinical Bacteroides fragilis group isolates. Antimicrob Agents Chemother 49:1253–1256. doi:10.1128/AAC.49.3.1253-1256.2005. PubMed DOI PMC
Gal M, Brazier JS. 2004. Metronidazole resistance in Bacteroides spp. carrying nim genes and the selection of slow-growing metronidazole-resistant mutants. J Antimicrob Chemother 54:109–116. doi:10.1093/jac/dkh296. PubMed DOI
Wang J, Shoemaker NB, Wang GR, Salyers AA. 2000. Characterization of a Bacteroides mobilizable transposon, NBU2, which carries a functional lincomycin resistance gene. J Bacteriol 182:3559–3571. doi:10.1128/JB.182.12.3559-3571.2000. PubMed DOI PMC
Sydenham TV, Overballe-Petersen S, Hasman H, Wexler H, Kemp M, Justesen US. 2019. Complete genome assembly of clinical multidrug resistant Bacteroides fragilis isolates enables comprehensive identification of antimicrobial resistance genes and plasmids. bioRxiv. doi:10.1101/633602. PubMed DOI PMC
Song Y, Liu C, Finegold SM. 2015. Bacteroides, p 1–24. In Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons, Hoboken, NJ.
Shah HN, Chattaway MA, Rajakurana L, Gharbia SE. 2015. Prevotella, p 1–25. In Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons, Hoboken, NJ.
Lan PTN, Sakamoto M, Sakata S, Benno Y. 2006. Bacteroides barnesiae sp. nov., Bacteroides salanitronis sp. nov. and Bacteroides gallinarum sp. nov., isolated from chicken caecum. Int J Syst Evol Microbiol 56:2853–2859. doi:10.1099/ijs.0.64517-0. PubMed DOI
Combs GF. 2012. Chapter 8 - Vitamin K, p 213–232. In Combs GF (ed), The vitamins, 4th ed. Academic Press, San Diego, CA.
Ueki A, Abe K, Ohtaki Y, Kaku N, Watanabe K, Ueki K. 2011. Bacteroides paurosaccharolyticus sp. nov., isolated from a methanogenic reactor treating waste from cattle farms. Int J Syst Evol Microbiol 61:448–453. doi:10.1099/ijs.0.022566-0. PubMed DOI
Clavel T, Saalfrank A, Charrier C, Haller D. 2010. Isolation of bacteria from mouse caecal samples and description of Bacteroides sartorii sp. nov. Arch Microbiol 192:427–435. doi:10.1007/s00203-010-0568-6. PubMed DOI
Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, Goulding D, Lawley TD. 2016. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533:543–546. doi:10.1038/nature17645. PubMed DOI PMC
Golding CG, Lamboo LL, Beniac DR, Booth TF. 2016. The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci Rep 6:26516. doi:10.1038/srep26516. PubMed DOI PMC
Cook AE, Meyers PR. 2003. Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns. Int J Syst Evol Microbiol 53:1907–1915. doi:10.1099/ijs.0.02680-0. PubMed DOI
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170. PubMed DOI PMC
Peng Y, Leung HCM, Yiu SM, Chin FYL. 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28:1420–1428. doi:10.1093/bioinformatics/bts174. PubMed DOI
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. 2011. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27:578–579. doi:10.1093/bioinformatics/btq683. PubMed DOI
Hunt M, Newbold C, Berriman M, Otto TD. 2014. A comprehensive evaluation of assembly scaffolding tools. Genome Biol 15:R42. doi:10.1186/gb-2014-15-3-r42. PubMed DOI PMC
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197. PubMed DOI PMC
Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, Maio ND, Matschiner M, Mendes FK, Müller NF, Ogilvie HA, Plessis L, Du Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu C-H, Xie D, Zhang C, Stadler T, Drummond AJ. 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 15:e1006650. doi:10.1371/journal.pcbi.1006650. PubMed DOI PMC
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst Biol 67:901–904. doi:10.1093/sysbio/syy032. PubMed DOI PMC
Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM, Cole JR, Konstantinidis KT. 2018. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res 46:W282–W288. doi:10.1093/nar/gky467. PubMed DOI PMC
Meier-Kolthoff JP, Göker M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182. doi:10.1038/s41467-019-10210-3. PubMed DOI PMC
Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM. 2016. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17:132. doi:10.1186/s13059-016-0997-x. PubMed DOI PMC
Lefort V, Desper R, Gascuel O. 2015. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 32:2798–2800. doi:10.1093/molbev/msv150. PubMed DOI PMC
Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O. 2014. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS One 9:e104984. doi:10.1371/journal.pone.0104984. PubMed DOI PMC
Lee I, Ouk Kim Y, Park S-C, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103. doi:10.1099/ijsem.0.000760. PubMed DOI
Li W, O'Neill KR, Haft DH, DiCuccio M, Chetvernin V, Badretdin A, Coulouris G, Chitsaz F, Derbyshire MK, Durkin AS, Gonzales NR, Gwadz M, Lanczycki CJ, Song JS, Thanki N, Wang J, Yamashita RA, Yang M, Zheng C, Marchler-Bauer A, Thibaud-Nissen F. 2021. RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res 49:D1020–D1028. doi:10.1093/nar/gkaa1105. PubMed DOI PMC
Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O'Neill K, Li W, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, Lu F, Marchler GH, Song JS, Thanki N, Yamashita RA, Zheng C, Thibaud-Nissen F, Geer LY, Marchler-Bauer A, Pruitt KD. 2018. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 46:D851–D860. doi:10.1093/nar/gkx1068. PubMed DOI PMC
Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314. doi:10.1093/nar/gky1085. PubMed DOI PMC
Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402. doi:10.1186/1471-2164-12-402. PubMed DOI PMC
Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, Sharma AN, Doshi S, Courtot M, Lo R, Williams LE, Frye JG, Elsayegh T, Sardar D, Westman EL, Pawlowski AC, Johnson TA, Brinkman FSL, Wright GD, McArthur AG. 2017. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45:D566–D573. doi:10.1093/nar/gkw1004. PubMed DOI PMC
Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. doi:10.1093/jac/dks261. PubMed DOI PMC
Doster E, Lakin SM, Dean CJ, Wolfe C, Young JG, Boucher C, Belk KE, Noyes NR, Morley PS. 2020. MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res 48:D561–D569. doi:10.1093/nar/gkz1010. PubMed DOI PMC
Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, Rolain J-M. 2014. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 58:212–220. doi:10.1128/AAC.01310-13. PubMed DOI PMC
Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I, Tyson GH, Zhao S, Hsu C-H, McDermott PF, Tadesse DA, Morales C, Simmons M, Tillman G, Wasilenko J, Folster JP, Klimke W. 2019. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother 63:e00483-19. doi:10.1128/AAC.00483-19. PubMed DOI PMC
Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. doi:10.1128/AAC.02412-14. PubMed DOI PMC
Chen L, Zheng D, Liu B, Yang J, Jin Q. 2016. VFDB 2016: hierarchical and refined dataset for big data analysis–10 years on. Nucleic Acids Res 44:D694–697. doi:10.1093/nar/gkv1239. PubMed DOI PMC
Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. 2006. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32–D36. doi:10.1093/nar/gkj014. PubMed DOI PMC
Biswas A, Staals RHJ, Morales SE, Fineran PC, Brown CM. 2016. CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genomics 17:356. doi:10.1186/s12864-016-2627-0. PubMed DOI PMC
Song W, Sun H-X, Zhang C, Cheng L, Peng Y, Deng Z, Wang D, Wang Y, Hu M, Liu W, Yang H, Shen Y, Li J, You L, Xiao M. 2019. Prophage Hunter: an integrative hunting tool for active prophages. Nucleic Acids Res 47:W74–W80. doi:10.1093/nar/gkz380. PubMed DOI PMC
Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–W21. doi:10.1093/nar/gkw387. PubMed DOI PMC
Atlas RM. 2010. Handbook of microbiological media, 4th ed. CRC Press, Boca Raton, FL.
Frazier WC. 1926. A method for the detection of changes in gelatin due to bacteria. J Infect Dis 39:302–309. doi:10.1093/infdis/39.4.302. DOI
Barrow GI, Feltham RKA. 1993. Cowan and Steel’s manual for the identification of medical bacteria, 3rd edition. Cambridge University Press, Cambridge, UK.
Gupta P, Samant K, Sahu A. 2012. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int J Microbiol 2012:1–5. doi:10.1155/2012/578925. PubMed DOI PMC
Barry AL, Bernsohn KL, Thrupp LD. 1969. Four-hour urease test for distinguishing between Klebsiella and Enterobacter. Appl Microbiol 18:156–158. doi:10.1128/am.18.2.156-158.1969. PubMed DOI PMC
Schreckenberger PC, Blazevic DJ. 1974. Rapid methods for biochemical testing of anaerobic bacteria. Appl Microbiol 28:759–762. doi:10.1128/am.28.5.759-762.1974. PubMed DOI PMC
CLSI. 2012. Methods for antimicrobial susceptibility testing of anaerobic bacteria; approved standard—eighth edition. CLSI document M11-A8. Clinical and Laboratory Standards Institute, Wayne, PA.
Hecht DW. 2002. Evolution of anaerobe susceptibility testing in the United States. Clin Infect Dis 35:S28–S35. doi:10.1086/341917. PubMed DOI
Nagy E, Urbán E, Nord CE. 2011. Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. Clin Microbiol Infect 17:371–379. doi:10.1111/j.1469-0691.2010.03256.x. PubMed DOI
Sasser M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. Microbial ID, Inc, Newark, DE.