Detection of Plasmid-Mediated Resistance to Metronidazole in Clostridioides difficile from River Water

. 2022 Aug 31 ; 10 (4) : e0080622. [epub] 20220811

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35950844

Clostridioides difficile is one of the most important human pathogens. The identification of its possible sources is important for the understanding of C. difficile infection (CDI) epidemiology. A total of 16 water samples from wastewater and surface water in South Moravia in the Czech Republic and 82 samples of fish and gulls were collected between May and July 2019. C. difficile isolates were cultured by direct plating and after enrichment on chromogenic media. Susceptibility testing to eight antimicrobials was performed by Etest. C. difficile isolates were characterized by ribotyping, multilocus sequence typing, multilocus tandem repeats analysis, and toxin gene detection. Samples from fish and gulls were C. difficile negative; a total of 15 C. difficile isolates from 8 out of 16 water samples were cultured (6 out of 14 surface water samples yielded 6 isolates, and 2 out of 2 wastewater samples yielded 9 isolates). Direct plating was culture positive in 6 out of 16 samples (12 isolates), and enrichment culture was positive in an additional 2 out of 16 samples (3 isolates). Twelve different ribotyping profiles and 14 sequence types of clades 1, 4, and 5 were identified. Five isolates did not carry genes for toxins, and eight isolates carried genes for toxins A and B; the remaining two isolates (RT078) carried the genes for toxins A, B, and binary. All C. difficile isolates were susceptible to amoxicillin, moxifloxacin, tetracycline, and vancomycin and resistant to ciprofloxacin. A high level of erythromycin resistance (>256 mg/L) was detected in eight isolates. Clindamycin resistance was found in 14 isolates, 6 of which showed a high level of resistance (>256 mg/L) and carried ermB. Surprisingly, one isolate (RT010, ST15) showed resistance to metronidazole (12 mg/L) with the presence of the plasmid pCD-METRO. In conclusion, a diverse spectrum of C. difficile strains was found in wastewater and surface water. A recently discovered plasmid-bound resistance to metronidazole was detected in C. difficile from the surface water sample. IMPORTANCE The combination of direct plating and culture after enrichment was used in order to gain a spectrum of C. difficile ribotypes present in the water samples. Toxigenic C. difficile ribotypes detected in surface water and in wastewater treatment plants overlapped with those derived from patients with CDI and/or animals. Importantly, a recently discovered plasmid-mediated resistance to metronidazole, a drug used for the treatment of CDI, was detected in C. difficile from river water.

Zobrazit více v PubMed

Larson HE, Price AB, Honour P, Borriello SP. 1978. Clostridium difficile and the aetiology of pseudomembranous colitis. Lancet 1:1063–1066. doi:10.1016/S0140-6736(78)90912-1. PubMed DOI

Lawson PA, Citron DM, Tyrrell KL, Finegold SM. 2016. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O'Toole 1935) Prévot 1938. Anaerobe 40:95–99. doi:10.1016/j.anaerobe.2016.06.008. PubMed DOI

Oren A, Rupnik M. 2018. Clostridium difficile and Clostridioides difficile: two validly published and correct names. Anaerobe 52:125–126. doi:10.1016/j.anaerobe.2018.07.005. PubMed DOI

Knight DR, Riley TV. 2019. Genomic delineation of zoonotic origins of Clostridium difficile. Front Public Health 7:164. doi:10.3389/fpubh.2019.00164. PubMed DOI PMC

Barbut F, Day N, Bouée S, Youssouf A, Grandvoinnet L, Lalande V, Couturier J, Eckert C. 2019. Toxigenic Clostridium difficile carriage in general practice: results of a laboratory-based cohort study. Clin Microbiol Infect 25:588–594. doi:10.1016/j.cmi.2018.12.024. PubMed DOI

Cui QQ, Yang J, Sun SJ, Li ZR, Qiang CX, Niu YN, Li RX, Shi DY, Wei HL, Tian TT, Xu KY, Wang WG, Zhao JH. 2021. Carriage of Clostridioides difficile in healthy infants in the community of Handan, China: a 1-year follow-up study. Anaerobe 67:102295. doi:10.1016/j.anaerobe.2020.102295. PubMed DOI

Kampouri E, Croxatto A, Prod’hom G, Guery B. 2021. Clostridioides difficile infection, still a long way to go. J Clin Med 10:389. doi:10.3390/jcm10030389. PubMed DOI PMC

Moradigaravand D, Gouliouris T, Ludden C, Reuter S, Jamrozy D, Blane B, Naydenova P, Judge K, Aliyu S, Hadjirin N, Holmes M, Török E, Brown N, Parkhill J, Peacock S. 2018. Genomic survey of Clostridium difficile reservoirs in the East of England implicates environmental contamination of wastewater treatment plants by clinical lineages. Microb Genom 4:e000162. doi:10.1099/mgen.0.000162. PubMed DOI PMC

Alam MJ, Walk ST, Endres BT, Basseres E, Khaleduzzaman M, Amadio J, Musick WL, Christensen JL, Kuo J, Atmar RL, Garey KW. 2017. Community environmental contamination of toxigenic Clostridium difficile. Open Forum Infect Dis 4:ofx018. doi:10.1093/ofid/ofx018. PubMed DOI PMC

Rodriguez-Palacios A, Mo KQ, Shah BU, Msuya J, Bijedic N, Deshpande A, Ilic S. 2020. Global and historical distribution of Clostridioides difficile in the human diet (1981–2019): systematic review and meta-analysis of 21886 samples reveal sources of heterogeneity, high-risk foods, and unexpected higher prevalence toward the tropic. Front Med 7. doi:10.3389/fmed.2020.00009. PubMed DOI PMC

Baghani A, Alimohammadi M, Aliramezani A, Talebi M, Mesdaghinia A, Douraghi M. 2020. Isolation and characterization of a multidrug-resistant Clostridioides difficile toxinotype V from municipal wastewater treatment plant. J Environ Health Sci Eng 18:1281–1288. doi:10.1007/s40201-020-00546-0. PubMed DOI PMC

Metcalf D, Avery BP, Janecko N, Matic N, Reid-Smith R, Weese JS. 2011. Clostridium difficile in seafood and fish. Anaerobe 17:85–86. doi:10.1016/j.anaerobe.2011.02.008. PubMed DOI

Boekhoud IM, Hornung BVH, Sevilla E, Harmanus C, Bos-Sanders IMJG, Terveer EM, Bolea R, Corver J, Kuijper EJ, Smits WK. 2020. Plasmid-mediated metronidazole resistance in Clostridioides difficile. Nat Commun 11:598. doi:10.1038/s41467-020-14382-1. PubMed DOI PMC

Krutova M, Capek V, Nycova E, Vojackova S, Balejova M, Geigerova L, Tejkalova R, Havlinova L, Vagnerova I, Cermak P, Ryskova L, Jezek P, Zamazalova D, Vesela D, Kucharova A, Nemcova D, Curdova M, Nyc O, Drevinek P. 2020. The association of a reduced susceptibility to moxifloxacin in causative Clostridium (Clostridioides) difficile strain with the clinical outcome of patients. Antimicrob Resist Infect Control 9:98. doi:10.1186/s13756-020-00765-y. PubMed DOI PMC

Krutova M, Zouharova M, Matejkova J, Tkadlec J, Krejčí J, Faldyna M, Nyc O, Bernardy J. 2018. The emergence of Clostridium difficile PCR ribotype 078 in piglets in the Czech Republic clusters with Clostridium difficile PCR ribotype 078 isolates from Germany, Japan and Taiwan. Int J Med Microbiol 308:770–775. doi:10.1016/j.ijmm.2018.05.006. PubMed DOI

Masarikova M, Simkova I, Plesko M, Eretova V, Krutova M, Cizek A. 2020. The colonisation of calves in Czech large-scale dairy farms by clonally-related Clostridioides difficile of the sequence type 11 represented by ribotypes 033 and 126. Microorganisms 8:901. doi:10.3390/microorganisms8060901. PubMed DOI PMC

Kecerova Z, Cizek A, Nyc O, Krutova M. 2019. Clostridium difficile isolates derived from Czech horses are resistant to enrofloxacin; cluster to clades 1 and 5 and ribotype 033 predominates. Anaerobe 56:17–21. doi:10.1016/j.anaerobe.2019.01.005. PubMed DOI

Zidaric V, Beigot S, Lapajne S, Rupnik M. 2010. The occurrence and high diversity of Clostridium difficile genotypes in rivers. Anaerobe 16:371–375. doi:10.1016/j.anaerobe.2010.06.001. PubMed DOI

Steyer A, Gutiérrez-Aguirre I, Rački N, Beigot Glaser S, Brajer Humar B, Stražar M, Škrjanc I, Poljšak-Prijatelj M, Ravnikar M, Rupnik M. 2015. The detection rate of enteric viruses and Clostridium difficile in a waste water treatment plant effluent. Food Environ Virol 7:164–172. doi:10.1007/s12560-015-9183-7. PubMed DOI

Romano V, Pasquale V, Krovacek K, Mauri F, Demarta A, Dumontet S. 2012. Toxigenic Clostridium difficile PCR ribotypes from wastewater treatment plants in southern Switzerland. Appl Environ Microbiol 78:6643–6646. doi:10.1128/AEM.01379-12. PubMed DOI PMC

Lim SC, Hain-Saunders NMR, Imwattana K, Putsathit P, Collins DA, Riley TV. 2021. Genetically related Clostridium difficile from water sources and human CDI cases revealed by whole-genome sequencing. Environ Microbiol 24:1221–1230. doi:10.1111/1462-2920.15821. PubMed DOI

Clancy CJ, Buehrle D, Vu M, Wagener MM, Nguyen MH. 2021. Impact of revised Infectious Diseases Society of America and Society for Healthcare Epidemiology of America clinical practice guidelines on the treatment of Clostridium difficile infections in the United States. Clin Infect Dis 72:1944–1949. doi:10.1093/cid/ciaa484. PubMed DOI

Langlois DK, Koenigshof AM, Mani R. 2020. Metronidazole treatment of acute diarrhea in dogs: a randomized double blinded placebo-controlled clinical trial. J Vet Intern Med 34:98–104. doi:10.1111/jvim.15664. PubMed DOI PMC

Kralova S, Davidova-Gerzova L, Valcek A, Bezdicek M, Rychlik I, Rezacova V, Cizek A. 2022. Paraphocaeicola brunensis gen. nov., sp. nov., carrying two variants of nimB resistance gene from Bacteroides fragilis, and Caecibacteroides pullorum gen. nov., sp. nov., two novel genera isolated from chicken caeca. Microbiol Spectr 10:e0195421. doi:10.1128/spectrum.01954-21. PubMed DOI PMC

Bandelj P, Trilar T, Racnik J, Zadravec M, Pirš T, Avbersek J, Micunovic J, Ocepek M, Vengust M. 2011. Zero prevalence of Clostridium difficile in wild passerine birds in Europe. FEMS Microbiol Lett 321:183–185. doi:10.1111/j.1574-6968.2011.02333.x. PubMed DOI

Rivas L, Dupont PY, Gilpin BJ, Cornelius AJ. 2020. Isolation and characterization of Clostridium difficile from a small survey of wastewater, food and animals in New Zealand. Lett Appl Microbiol 70:29–35. doi:10.1111/lam.13238. PubMed DOI

Romano V, Pasquale V, Lemee L, El Meouche I, Pestel-Caron M, Capuano F, Buono P, Dumontet S. 2018. Clostridioides difficile in the environment, food, animals and humans in southern Italy: occurrence and genetic relatedness. Comp Immunol Microbiol Infect Dis 59:41–46. doi:10.1016/j.cimid.2018.08.006. PubMed DOI

Krutova M, Nyc O, Matejkova J, Allerberger F, Wilcox MH, Kuijper EJ. 2016. Molecular characterisation of Czech Clostridium difficile isolates collected in 2013–2015. Int J Med Microbiol 306:479–485. doi:10.1016/j.ijmm.2016.07.003. PubMed DOI

Sedláček J, Bábek O, Nováková T. 2017. Sedimentary record and anthropogenic pollution of a complex, multiple source fed dam reservoirs: an example from the Nové Mlýny reservoir, Czech Republic. Sci Total Environ 574:1456–1471. doi:10.1016/j.scitotenv.2016.08.127. PubMed DOI

International Standards Organization. 2006. Water quality— sampling for microbiological analysis, p 26. ISO 19458. International Standards Organization, Geneva, Switzerland.

EUCAST. Clinical breakpoints. http://www.eucast.org/clinical_breakpoints/. Retrieved 1 July 2020.

Clinical and Laboratory Standards Institute. 2020. Performance standards for antimicrobial susceptibility testing, 30th ed. M100. Clinical and Laboratory Standards Institute, Wayne, PA.

Spigaglia P, Mastrantonio P. 2004. Comparative analysis of Clostridium difficile clinical isolates belonging to different genetic lineages and time periods. J Med Microbiol 53:1129–1136. doi:10.1099/jmm.0.45682-0. PubMed DOI

Fawley WN, Knetsch CW, MacCannell DR, Harmanus C, Du T, Mulvey MR, Paulick A, Anderson L, Kuijper EJ, Wilcox MH. 2015. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS One 10:e0118150. doi:10.1371/journal.pone.0118150. PubMed DOI PMC

Bidet P, Barbut F, Lalande V, Burghoffer B, Petit JC. 1999. Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol Lett 175:261–266. doi:10.1111/j.1574-6968.1999.tb13629.x. PubMed DOI

Indra A, Huhulescu S, Schneeweis M, Hasenberger P, Kernbichler S, Fiedler A, Wewalka G, Allerberger F, Kuijper EJ. 2008. Characterization of Clostridium difficile isolates using capillary gel electrophoresis-based PCR ribotyping. J Med Microbiol 57:1377–1382. doi:10.1099/jmm.0.47714-0. PubMed DOI PMC

Griffiths D, Fawley W, Kachrimanidou M, Bowden R, Crook DW, Fung R, Golubchik T, Harding RM, Jeffery KJ, Jolley KA, Kirton R, Peto TE, Rees G, Stoesser N, Vaughan A, Walker AS, Young BC, Wilcox M, Dingle KE. 2010. Multilocus sequence typing of Clostridium difficile. J Clin Microbiol 48:770–778. doi:10.1128/JCM.01796-09. PubMed DOI PMC

van den Berg RJ, Schaap I, Templeton KE, Klaassen CH, Kuijper EJ. 2007. Typing and subtyping of Clostridium difficile isolates by using multiple-locus variable-number tandem-repeat analysis. J Clin Microbiol 45:1024–1028. doi:10.1128/JCM.02023-06. PubMed DOI PMC

Persson S, Torpdahl M, Olsen KE. 2008. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin Microbiol Infect 14:1057–1064. doi:10.1111/j.1469-0691.2008.02092.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...