The Colonisation of Calves in Czech Large-Scale Dairy Farms by Clonally-Related Clostridioides difficile of the Sequence Type 11 Represented by Ribotypes 033 and 126
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FVL/Treml/ITA 2019
Veterinární a Farmaceutická Univerzita Brno
PubMed
32549307
PubMed Central
PMC7356540
DOI
10.3390/microorganisms8060901
PII: microorganisms8060901
Knihovny.cz E-zdroje
- Klíčová slova
- Clostridioides difficile, Holstein, Thr82Ile, calves, digestate, ribotype 033, ribotype 126,
- Publikační typ
- časopisecké články MeSH
To investigate a possible Clostridioides difficile reservoir in the Czech Republic, we performed a study in 297 calves from 29 large-scale dairy farms. After enrichment, faecal samples were inoculated onto selective agar for C. difficile. From the 297 samples, 44 C. difficile isolates were cultured (prevalence of 14.8%, 10 farms). The Holstein breed and use of digestate were associated with C. difficile colonisation (p ˂ 0.05). C. difficile isolates belonged to the ribotype/sequence type: RT033/ST11 (n = 37), RT126/ST11 (n = 6) and RT046/ST35 (n = 1). A multiple-locus variable-number tandem-repeat analysis revealed four clonal complexes of RT033 isolates and one clonal complex of RT126 isolates. All isolates were sensitive to amoxicillin, metronidazole and vancomycin. Forty isolates were resistant to ciprofloxacin, twenty-one to clindamycin, seven to erythromycin, seven to tetracycline and six to moxifloxacin. Moxifloxacin resistant isolates revealed an amino-acid substitution Thr82Ile in the GyrA. In conclusion, the calves of Holstein breed from farms using digestate as a product of bio-gas plants are more likely to be colonised by clonally-related C. difficile of ST 11 represented by ribotypes 033 and 126. The identified resistance to moxifloxacin with a Thr82Ile substitution in the GyrA highlights the need for further monitoring by the "One health approach".
Zobrazit více v PubMed
Lawson P.A., Citron D.M., Tyrrell K.L., Finegold S.M. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prevot 1938. Anaerobe. 2016;40:95–99. doi: 10.1016/j.anaerobe.2016.06.008. PubMed DOI
Cassini A., Plachouras D., Eckmanns T., Abu Sin M., Blank H.P., Ducomble T., Haller S., Harder T., Klingeberg A., Sixtensson M., et al. Burden of Six Healthcare-Associated Infections on European Population Health: Estimating IncidenceBased Disability-Adjusted Life Years through a Population Prevalence-Based Modelling Study. PLoS Med. 2016;13:e1002150. doi: 10.1371/journal.pmed.1002150. PubMed DOI PMC
Barbut F., Day N., Bouée S., Youssouf A., Grandvoinnet L., Lalande V., Couturier J., Eckert C. Toxigenic Clostridium difficile carriage in general practice: Results of a laboratory-based cohort study. Clin. Microbiol. Infect. 2019;25:588–594. doi: 10.1016/j.cmi.2018.12.024. PubMed DOI
Knight D.R., Riley T.V. Genomic Delineation of Zoonotic Origins of Clostridium difficile. Front. Public Health. 2019;7:164. doi: 10.3389/fpubh.2019.00164. PubMed DOI PMC
Jobstl M., Heuberger S., Indra A., Nepf R., Köfer R., Wagner M. Clostridium difficile in raw products of animal origin. Int. J. Food Microbiol. 2010;138:172–175. doi: 10.1016/j.ijfoodmicro.2009.12.022. PubMed DOI
Candel-Pérez C., Ros-Berruezo G., Martínez-Graciá C. A review of Clostridioides (Clostridium) difficile occurrence through the food chain. Food Microbiol. 2019;77:118–129. doi: 10.1016/j.fm.2018.08.012. PubMed DOI
Tkalec V., Janezic S., Skok B., Simonic T., Mesaric S., Vrabic T., Rupnik M. High Clostridium difficile contamination rates of domestic and imported potatoes compared to some other vegetables in Slovenia. Food Microbiol. 2019;78:194–200. doi: 10.1016/j.fm.2018.10.017. PubMed DOI
Knight D.R., Putsathit P., Elliott B., Riley T.V. Contamination of Australian newborn calf carcasses at slaughter with Clostridium difficile. Clin. Microbiol. Infect. 2016;22:266. doi: 10.1016/j.cmi.2015.11.017. PubMed DOI
Schneeberg A., Neubauer H., Schmoock G., Grossmann E., Seyboldt C. Presence of Clostridium diffcile PCR ribotype clusters related to 033, 078 and 045 in diarrhoeic calves in Germany. J. Med. Microbiol. 2013;62:1190–1198. doi: 10.1099/jmm.0.056473-0. PubMed DOI
Rodriguez C., Avesani V., Van Broeck J., Taminiau B., Delmée M., Daube G. Presence of Clostridium difficile in pigs and cattle intestinal contents and carcass contamination at the slaughterhouse in Belgium. Int. J. Food Microbiol. 2013;166:256–262. doi: 10.1016/j.ijfoodmicro.2013.07.017. PubMed DOI
Zidaric V., Pardon B., Dos Vultos T., Deprez P., Brouwer M.S., Roberts A.P., Henriques A.O., Rupnik M. Different antibiotic resistance and sporulation properties within multiclonal Clostridium difficile PCR ribotypes 078, 126, and 033 in a single calf farm. Appl. Environ. Microbiol. 2012;78:8515–8522. doi: 10.1128/AEM.02185-12. PubMed DOI PMC
Bandelj P., Blagus R., Briski F., Frlic O., Rataj A.V., Rupnik M., Ocepek M., Vengust M. Identification of risk factors influencing Clostridium difficile prevalence in middle-size dairy farms. Vet. Res. 2016;47:41. doi: 10.1186/s13567-016-0326-0. PubMed DOI PMC
Zhang W.Z., Li W.G., Liu Y.Q., Gu W.P., Zhang Q., Li H., Liu Z.J., Zhang X., Wu Y., Lu J.X. The molecular characters and antibiotic resistance of Clostridioides difficile from economic animals in China. BMC Microbiol. 2020;20:70. doi: 10.1186/s12866-020-01757-z. PubMed DOI PMC
Magistrali C.F., Maresca C., Cucco L., Bano L., Drigo I., Filippini G., Dettori A., Broccatelli S., Pezzotti G. Prevalence and risk factors associated with Clostridium difficile shedding in veal calves in Italy. Anaerobe. 2015;33:42–47. doi: 10.1016/j.anaerobe.2015.01.010. PubMed DOI
Knight D.R., Kullin B., Androga G.O., Barbut F., Eckert C., Johnson S., Spigaglia P., Tateda K., Tsai P.J., Riley T.V. Evolutionary and Genomic Insights into Clostridioides difficile Sequence Type 11: A Diverse Zoonotic and Antimicrobial-Resistant Lineage of Global One Health Importance. mBio. 2019;10:e00446-19. doi: 10.1128/mBio.00446-19. PubMed DOI PMC
Rupnik M., Brazier J.S., Duerden B.I., Grabnar M., Stubbs S.L.J. Comparison of toxinotyping and PCR ribotyping of Clostridium difficile strains and description of novel toxinotypes. Microbiology. 2001;147:439–447. doi: 10.1099/00221287-147-2-439. PubMed DOI
Dingle K.E., Didelot X., Quan T.P., Eyre D.W., Stoesser N., Marwick C.A., Coia J., Brown D., Buchanan S., Ijaz U.Z., et al. A Role for Tetracycline Selection in Recent Evolution of Agriculture-Associated Clostridium difficile PCR Ribotype 078. mBio. 2019;10:e02790-18. doi: 10.1128/mBio.02790-18. PubMed DOI PMC
Davies K.A., Ashwin H., Longshaw C.M., Burns D.A., Davis G.L., Wilcox M.H., EUCLID Study Group Diversity of Clostridium difficile PCR ribotypes in Europe: Results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID), 2012 and 2013. Eurosurveillance. 2016;21:30294. doi: 10.2807/1560-7917.ES.2016.21.29.30294. PubMed DOI
Kecerova Z., Cizek A., Nyc O., Krutova M. Clostridium difficile isolates derived from Czech horses are resistant to enrofloxacin; cluster to clades 1 and 5 and ribotype 033 predominates. Anaerobe. 2019;56:17–21. doi: 10.1016/j.anaerobe.2019.01.005. PubMed DOI
EUCAST: Clinical Breakpoints. [(accessed on 26 April 2020)]; Available online: http://www.eucast.org/clinical_breakpoints/
Clinical and Laboratory Standards Institute . Approved Standard M11-A7. 7th ed. CLSI; Wayne, PA, USA: 2007. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria.
Spigaglia P., Mastrantonio P. Comparative analysis of Clostridium difficile clinical isolates belonging to different genetic lineages and time periods. J. Med. Microbiol. 2004;53:1129–1136. doi: 10.1099/jmm.0.45682-0. PubMed DOI
Dridi L., Tankovic J., Burghoffer B., Barbut F., Petit J.C. gyrA and gyrB mutations are implicated in cross-resistance to Ciprofloxacin and moxifloxacin in Clostridium difficile. Antimicrob. Agents Chemother. 2002;46:3418–3421. doi: 10.1128/AAC.46.11.3418-3421.2002. PubMed DOI PMC
Corver J., Bakker D., Brouwer M.S., Harmanus C., Hensgens M.P., Roberts A.P., Lipman L.J., Kuijper E.J., van Leeuwen H.C. Analysis of a Clostridium difficile PCR ribotype 078 100 kilobase island reveals the presence of a novel transposon, Tn6164. BMC Microbiol. 2012;12:130. doi: 10.1186/1471-2180-12-130. PubMed DOI PMC
Fawley W.N., Knetsch C.W., MacCannell D.R., Harmanus C., Du T., Mulvey M.R., Paulick A., Anderson L., Kuijper E.J., Wilcox M.H. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS ONE. 2015;10:e0118150. doi: 10.1371/journal.pone.0118150. PubMed DOI PMC
Indra A., Huhulescu S., Schneeweis M., Hasenberger P., Kernbichler S., Fiedler A., Wewalka G., Allerberger F., Kuijper E.J. Characterization of Clostridium difficile isolates using capillary gel electrophoresis-based PCR ribotyping. J. Med. Microbiol. 2008;57:1377–1382. doi: 10.1099/jmm.0.47714-0. PubMed DOI PMC
Griffiths D., Fawley W., Kachrimanidou M., Bowden R., Crook D.W., Fung R., Golubchik T., Harding R.M., Jeffery K.J., Jolley K.A., et al. Multilocus sequence typing of Clostridium difficile. J. Clin. Microbiol. 2010;48:770–778. doi: 10.1128/JCM.01796-09. PubMed DOI PMC
Jolley K.A., Bray J.E., Maiden M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124. doi: 10.12688/wellcomeopenres.14826.1. PubMed DOI PMC
Persson S., Torpdahl M., Olsen K.E. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin. Microbiol. Infect. 2008;14:1057–1064. doi: 10.1111/j.1469-0691.2008.02092.x. PubMed DOI
van den Berg R.J., Schaap I., Templeton K.E., Klaassen C.H., Kuijper E.J. Typing and subtyping of Clostridium difficile isolates by using multiple-locus variable-number tandem-repeat analysis. J. Clin. Microbiol. 2007;45:1024–1028. doi: 10.1128/JCM.02023-06. PubMed DOI PMC
Weese J.S. Clostridium (Clostridioides) difficile in animals. J. Vet. Diagn. Investig. 2020;32:213–221. doi: 10.1177/1040638719899081. PubMed DOI PMC
Diaz C.R., Seyboldt C., Rupnik M. Non-human C. difficile Reservoirs and Sources: Animals, Food, Environment. Adv. Exp. Med. Biol. 2018;1050:227–243. PubMed
Fröschle B., Messelhäusser U., Höller C. and Lebuhn, M. Fate of Clostridium botulinum and incidence of pathogenic clostridia in biogas processes. J. Appl. Microbiol. 2015;119:936–947. doi: 10.1111/jam.12909. PubMed DOI
Le Maréchal C., Gateau C., Poezevara T., Couturier J., Rouxel S., Syed Zaidi R., Houard E., Pourcher A.M., Denis M., Barbut F. Characterization of Clostridioides difficile strains isolated from manure and digestate in five agricultural biogas plants. Anaerobe. 2020;62:102180. doi: 10.1016/j.anaerobe.2020.102180. PubMed DOI
Kachrimanidou M., Tzika E., Filioussis G. Clostridioides (Clostridium) difficile in Food-Producing Animals, Horses and Household Pets: A Comprehensive Review. Microorganisms. 2019;7:667. doi: 10.3390/microorganisms7120667. PubMed DOI PMC
Anniballi F., Fillo S., Giordani F., Auricchio B., Tehran D.A., di Stefano E., Mandarino G., De Medici D., Lista F. Multiple-locus variable number of tandem repeat analysis as a tool for molecular epidemiology of botulism: The Italian experience. Infect. Genet Evol. 2016;46:28–32. doi: 10.1016/j.meegid.2016.10.014. PubMed DOI
Bandelj P., Harmanus C., Blagus R., Cotman M., Kuijper E.J., Ocepek M., Vengust M. Quantification of Clostridioides (Clostridium) difficile in feces of calves of different age and determination of predominant Clostridioides difficile ribotype 033 relatedness and transmission between family dairy farms using multilocus variable-number tandem-repeat analysis. BMC Vet. Res. 2018;14:298. PubMed PMC
Krutova M., Nyc O., Matejkova J., Allerberger F., Wilcox M.H., Kuijper E.J. Molecular characterisation of Czech Clostridium difficile isolates collected in 2013–2015. Int. J. Med. Microbiol. 2016;306:479–485. doi: 10.1016/j.ijmm.2016.07.003. PubMed DOI
Eckert C., Emirian A., Le Monnier A., Cathala L., De Montclos H., Goret J., Berger P., Petit A., De Chevigny A., Jean-Pierre H., et al. Prevalence and pathogenicity of binary toxin-positive Clostridium difficile strains that do not produce toxins A and B. New Microbes New Infect. 2014;3:12–17. doi: 10.1016/j.nmni.2014.10.003. PubMed DOI PMC
Krutova M., Wilcox M.H., Kuijper E.J. The pitfalls of laboratory diagnostics of Clostridium difficile infection. Clin. Microbiol. Infect. 2018;24:682–683. doi: 10.1016/j.cmi.2018.02.026. PubMed DOI
Krutova M., Kinross P., Barbut F., Hajdu A., Wilcox M.H., Kuijper E.J., Survey Contributors How to: Surveillance of Clostridium difficile infections. Clin. Microbiol. Infect. 2018;24:469–475. doi: 10.1016/j.cmi.2017.12.008. PubMed DOI
Pham T.D.M., Ziora Z.M., Blaskovich M.A.T. Quinolone antibiotics. Medchemcomm. 2019;10:1719–1739. doi: 10.1039/C9MD00120D. PubMed DOI PMC
Eyre D.W., Davies K.A., Davis G., Fawley W.N., Dingle K.E., De Maio N., Karas A., Crook D.W., Peto T.E.A., Walker A.S., et al. Two Distinct Patterns of Clostridium difficile Diversity Across Europe Indicating Contrasting Routes of Spread. Clin. Infect. Dis. 2018;67:1035–1044. doi: 10.1093/cid/ciy252. PubMed DOI PMC