The Colonisation of Calves in Czech Large-Scale Dairy Farms by Clonally-Related Clostridioides difficile of the Sequence Type 11 Represented by Ribotypes 033 and 126

. 2020 Jun 15 ; 8 (6) : . [epub] 20200615

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32549307

Grantová podpora
FVL/Treml/ITA 2019 Veterinární a Farmaceutická Univerzita Brno

Odkazy

PubMed 32549307
PubMed Central PMC7356540
DOI 10.3390/microorganisms8060901
PII: microorganisms8060901
Knihovny.cz E-zdroje

To investigate a possible Clostridioides difficile reservoir in the Czech Republic, we performed a study in 297 calves from 29 large-scale dairy farms. After enrichment, faecal samples were inoculated onto selective agar for C. difficile. From the 297 samples, 44 C. difficile isolates were cultured (prevalence of 14.8%, 10 farms). The Holstein breed and use of digestate were associated with C. difficile colonisation (p ˂ 0.05). C. difficile isolates belonged to the ribotype/sequence type: RT033/ST11 (n = 37), RT126/ST11 (n = 6) and RT046/ST35 (n = 1). A multiple-locus variable-number tandem-repeat analysis revealed four clonal complexes of RT033 isolates and one clonal complex of RT126 isolates. All isolates were sensitive to amoxicillin, metronidazole and vancomycin. Forty isolates were resistant to ciprofloxacin, twenty-one to clindamycin, seven to erythromycin, seven to tetracycline and six to moxifloxacin. Moxifloxacin resistant isolates revealed an amino-acid substitution Thr82Ile in the GyrA. In conclusion, the calves of Holstein breed from farms using digestate as a product of bio-gas plants are more likely to be colonised by clonally-related C. difficile of ST 11 represented by ribotypes 033 and 126. The identified resistance to moxifloxacin with a Thr82Ile substitution in the GyrA highlights the need for further monitoring by the "One health approach".

Zobrazit více v PubMed

Lawson P.A., Citron D.M., Tyrrell K.L., Finegold S.M. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prevot 1938. Anaerobe. 2016;40:95–99. doi: 10.1016/j.anaerobe.2016.06.008. PubMed DOI

Cassini A., Plachouras D., Eckmanns T., Abu Sin M., Blank H.P., Ducomble T., Haller S., Harder T., Klingeberg A., Sixtensson M., et al. Burden of Six Healthcare-Associated Infections on European Population Health: Estimating IncidenceBased Disability-Adjusted Life Years through a Population Prevalence-Based Modelling Study. PLoS Med. 2016;13:e1002150. doi: 10.1371/journal.pmed.1002150. PubMed DOI PMC

Barbut F., Day N., Bouée S., Youssouf A., Grandvoinnet L., Lalande V., Couturier J., Eckert C. Toxigenic Clostridium difficile carriage in general practice: Results of a laboratory-based cohort study. Clin. Microbiol. Infect. 2019;25:588–594. doi: 10.1016/j.cmi.2018.12.024. PubMed DOI

Knight D.R., Riley T.V. Genomic Delineation of Zoonotic Origins of Clostridium difficile. Front. Public Health. 2019;7:164. doi: 10.3389/fpubh.2019.00164. PubMed DOI PMC

Jobstl M., Heuberger S., Indra A., Nepf R., Köfer R., Wagner M. Clostridium difficile in raw products of animal origin. Int. J. Food Microbiol. 2010;138:172–175. doi: 10.1016/j.ijfoodmicro.2009.12.022. PubMed DOI

Candel-Pérez C., Ros-Berruezo G., Martínez-Graciá C. A review of Clostridioides (Clostridium) difficile occurrence through the food chain. Food Microbiol. 2019;77:118–129. doi: 10.1016/j.fm.2018.08.012. PubMed DOI

Tkalec V., Janezic S., Skok B., Simonic T., Mesaric S., Vrabic T., Rupnik M. High Clostridium difficile contamination rates of domestic and imported potatoes compared to some other vegetables in Slovenia. Food Microbiol. 2019;78:194–200. doi: 10.1016/j.fm.2018.10.017. PubMed DOI

Knight D.R., Putsathit P., Elliott B., Riley T.V. Contamination of Australian newborn calf carcasses at slaughter with Clostridium difficile. Clin. Microbiol. Infect. 2016;22:266. doi: 10.1016/j.cmi.2015.11.017. PubMed DOI

Schneeberg A., Neubauer H., Schmoock G., Grossmann E., Seyboldt C. Presence of Clostridium diffcile PCR ribotype clusters related to 033, 078 and 045 in diarrhoeic calves in Germany. J. Med. Microbiol. 2013;62:1190–1198. doi: 10.1099/jmm.0.056473-0. PubMed DOI

Rodriguez C., Avesani V., Van Broeck J., Taminiau B., Delmée M., Daube G. Presence of Clostridium difficile in pigs and cattle intestinal contents and carcass contamination at the slaughterhouse in Belgium. Int. J. Food Microbiol. 2013;166:256–262. doi: 10.1016/j.ijfoodmicro.2013.07.017. PubMed DOI

Zidaric V., Pardon B., Dos Vultos T., Deprez P., Brouwer M.S., Roberts A.P., Henriques A.O., Rupnik M. Different antibiotic resistance and sporulation properties within multiclonal Clostridium difficile PCR ribotypes 078, 126, and 033 in a single calf farm. Appl. Environ. Microbiol. 2012;78:8515–8522. doi: 10.1128/AEM.02185-12. PubMed DOI PMC

Bandelj P., Blagus R., Briski F., Frlic O., Rataj A.V., Rupnik M., Ocepek M., Vengust M. Identification of risk factors influencing Clostridium difficile prevalence in middle-size dairy farms. Vet. Res. 2016;47:41. doi: 10.1186/s13567-016-0326-0. PubMed DOI PMC

Zhang W.Z., Li W.G., Liu Y.Q., Gu W.P., Zhang Q., Li H., Liu Z.J., Zhang X., Wu Y., Lu J.X. The molecular characters and antibiotic resistance of Clostridioides difficile from economic animals in China. BMC Microbiol. 2020;20:70. doi: 10.1186/s12866-020-01757-z. PubMed DOI PMC

Magistrali C.F., Maresca C., Cucco L., Bano L., Drigo I., Filippini G., Dettori A., Broccatelli S., Pezzotti G. Prevalence and risk factors associated with Clostridium difficile shedding in veal calves in Italy. Anaerobe. 2015;33:42–47. doi: 10.1016/j.anaerobe.2015.01.010. PubMed DOI

Knight D.R., Kullin B., Androga G.O., Barbut F., Eckert C., Johnson S., Spigaglia P., Tateda K., Tsai P.J., Riley T.V. Evolutionary and Genomic Insights into Clostridioides difficile Sequence Type 11: A Diverse Zoonotic and Antimicrobial-Resistant Lineage of Global One Health Importance. mBio. 2019;10:e00446-19. doi: 10.1128/mBio.00446-19. PubMed DOI PMC

Rupnik M., Brazier J.S., Duerden B.I., Grabnar M., Stubbs S.L.J. Comparison of toxinotyping and PCR ribotyping of Clostridium difficile strains and description of novel toxinotypes. Microbiology. 2001;147:439–447. doi: 10.1099/00221287-147-2-439. PubMed DOI

Dingle K.E., Didelot X., Quan T.P., Eyre D.W., Stoesser N., Marwick C.A., Coia J., Brown D., Buchanan S., Ijaz U.Z., et al. A Role for Tetracycline Selection in Recent Evolution of Agriculture-Associated Clostridium difficile PCR Ribotype 078. mBio. 2019;10:e02790-18. doi: 10.1128/mBio.02790-18. PubMed DOI PMC

Davies K.A., Ashwin H., Longshaw C.M., Burns D.A., Davis G.L., Wilcox M.H., EUCLID Study Group Diversity of Clostridium difficile PCR ribotypes in Europe: Results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID), 2012 and 2013. Eurosurveillance. 2016;21:30294. doi: 10.2807/1560-7917.ES.2016.21.29.30294. PubMed DOI

Kecerova Z., Cizek A., Nyc O., Krutova M. Clostridium difficile isolates derived from Czech horses are resistant to enrofloxacin; cluster to clades 1 and 5 and ribotype 033 predominates. Anaerobe. 2019;56:17–21. doi: 10.1016/j.anaerobe.2019.01.005. PubMed DOI

EUCAST: Clinical Breakpoints. [(accessed on 26 April 2020)]; Available online: http://www.eucast.org/clinical_breakpoints/

Clinical and Laboratory Standards Institute . Approved Standard M11-A7. 7th ed. CLSI; Wayne, PA, USA: 2007. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria.

Spigaglia P., Mastrantonio P. Comparative analysis of Clostridium difficile clinical isolates belonging to different genetic lineages and time periods. J. Med. Microbiol. 2004;53:1129–1136. doi: 10.1099/jmm.0.45682-0. PubMed DOI

Dridi L., Tankovic J., Burghoffer B., Barbut F., Petit J.C. gyrA and gyrB mutations are implicated in cross-resistance to Ciprofloxacin and moxifloxacin in Clostridium difficile. Antimicrob. Agents Chemother. 2002;46:3418–3421. doi: 10.1128/AAC.46.11.3418-3421.2002. PubMed DOI PMC

Corver J., Bakker D., Brouwer M.S., Harmanus C., Hensgens M.P., Roberts A.P., Lipman L.J., Kuijper E.J., van Leeuwen H.C. Analysis of a Clostridium difficile PCR ribotype 078 100 kilobase island reveals the presence of a novel transposon, Tn6164. BMC Microbiol. 2012;12:130. doi: 10.1186/1471-2180-12-130. PubMed DOI PMC

Fawley W.N., Knetsch C.W., MacCannell D.R., Harmanus C., Du T., Mulvey M.R., Paulick A., Anderson L., Kuijper E.J., Wilcox M.H. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS ONE. 2015;10:e0118150. doi: 10.1371/journal.pone.0118150. PubMed DOI PMC

Indra A., Huhulescu S., Schneeweis M., Hasenberger P., Kernbichler S., Fiedler A., Wewalka G., Allerberger F., Kuijper E.J. Characterization of Clostridium difficile isolates using capillary gel electrophoresis-based PCR ribotyping. J. Med. Microbiol. 2008;57:1377–1382. doi: 10.1099/jmm.0.47714-0. PubMed DOI PMC

Griffiths D., Fawley W., Kachrimanidou M., Bowden R., Crook D.W., Fung R., Golubchik T., Harding R.M., Jeffery K.J., Jolley K.A., et al. Multilocus sequence typing of Clostridium difficile. J. Clin. Microbiol. 2010;48:770–778. doi: 10.1128/JCM.01796-09. PubMed DOI PMC

Jolley K.A., Bray J.E., Maiden M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124. doi: 10.12688/wellcomeopenres.14826.1. PubMed DOI PMC

Persson S., Torpdahl M., Olsen K.E. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin. Microbiol. Infect. 2008;14:1057–1064. doi: 10.1111/j.1469-0691.2008.02092.x. PubMed DOI

van den Berg R.J., Schaap I., Templeton K.E., Klaassen C.H., Kuijper E.J. Typing and subtyping of Clostridium difficile isolates by using multiple-locus variable-number tandem-repeat analysis. J. Clin. Microbiol. 2007;45:1024–1028. doi: 10.1128/JCM.02023-06. PubMed DOI PMC

Weese J.S. Clostridium (Clostridioides) difficile in animals. J. Vet. Diagn. Investig. 2020;32:213–221. doi: 10.1177/1040638719899081. PubMed DOI PMC

Diaz C.R., Seyboldt C., Rupnik M. Non-human C. difficile Reservoirs and Sources: Animals, Food, Environment. Adv. Exp. Med. Biol. 2018;1050:227–243. PubMed

Fröschle B., Messelhäusser U., Höller C. and Lebuhn, M. Fate of Clostridium botulinum and incidence of pathogenic clostridia in biogas processes. J. Appl. Microbiol. 2015;119:936–947. doi: 10.1111/jam.12909. PubMed DOI

Le Maréchal C., Gateau C., Poezevara T., Couturier J., Rouxel S., Syed Zaidi R., Houard E., Pourcher A.M., Denis M., Barbut F. Characterization of Clostridioides difficile strains isolated from manure and digestate in five agricultural biogas plants. Anaerobe. 2020;62:102180. doi: 10.1016/j.anaerobe.2020.102180. PubMed DOI

Kachrimanidou M., Tzika E., Filioussis G. Clostridioides (Clostridium) difficile in Food-Producing Animals, Horses and Household Pets: A Comprehensive Review. Microorganisms. 2019;7:667. doi: 10.3390/microorganisms7120667. PubMed DOI PMC

Anniballi F., Fillo S., Giordani F., Auricchio B., Tehran D.A., di Stefano E., Mandarino G., De Medici D., Lista F. Multiple-locus variable number of tandem repeat analysis as a tool for molecular epidemiology of botulism: The Italian experience. Infect. Genet Evol. 2016;46:28–32. doi: 10.1016/j.meegid.2016.10.014. PubMed DOI

Bandelj P., Harmanus C., Blagus R., Cotman M., Kuijper E.J., Ocepek M., Vengust M. Quantification of Clostridioides (Clostridium) difficile in feces of calves of different age and determination of predominant Clostridioides difficile ribotype 033 relatedness and transmission between family dairy farms using multilocus variable-number tandem-repeat analysis. BMC Vet. Res. 2018;14:298. PubMed PMC

Krutova M., Nyc O., Matejkova J., Allerberger F., Wilcox M.H., Kuijper E.J. Molecular characterisation of Czech Clostridium difficile isolates collected in 2013–2015. Int. J. Med. Microbiol. 2016;306:479–485. doi: 10.1016/j.ijmm.2016.07.003. PubMed DOI

Eckert C., Emirian A., Le Monnier A., Cathala L., De Montclos H., Goret J., Berger P., Petit A., De Chevigny A., Jean-Pierre H., et al. Prevalence and pathogenicity of binary toxin-positive Clostridium difficile strains that do not produce toxins A and B. New Microbes New Infect. 2014;3:12–17. doi: 10.1016/j.nmni.2014.10.003. PubMed DOI PMC

Krutova M., Wilcox M.H., Kuijper E.J. The pitfalls of laboratory diagnostics of Clostridium difficile infection. Clin. Microbiol. Infect. 2018;24:682–683. doi: 10.1016/j.cmi.2018.02.026. PubMed DOI

Krutova M., Kinross P., Barbut F., Hajdu A., Wilcox M.H., Kuijper E.J., Survey Contributors How to: Surveillance of Clostridium difficile infections. Clin. Microbiol. Infect. 2018;24:469–475. doi: 10.1016/j.cmi.2017.12.008. PubMed DOI

Pham T.D.M., Ziora Z.M., Blaskovich M.A.T. Quinolone antibiotics. Medchemcomm. 2019;10:1719–1739. doi: 10.1039/C9MD00120D. PubMed DOI PMC

Eyre D.W., Davies K.A., Davis G., Fawley W.N., Dingle K.E., De Maio N., Karas A., Crook D.W., Peto T.E.A., Walker A.S., et al. Two Distinct Patterns of Clostridium difficile Diversity Across Europe Indicating Contrasting Routes of Spread. Clin. Infect. Dis. 2018;67:1035–1044. doi: 10.1093/cid/ciy252. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Detection of Plasmid-Mediated Resistance to Metronidazole in Clostridioides difficile from River Water

. 2022 Aug 31 ; 10 (4) : e0080622. [epub] 20220811

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...