Composition and Function of Chicken Gut Microbiota
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007404
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO0518
Ministerstvo Zemědělství
QK1810462
Ministerstvo Zemědělství
PubMed
31936291
PubMed Central
PMC7022619
DOI
10.3390/ani10010103
PII: ani10010103
Knihovny.cz E-zdroje
- Klíčová slova
- Bacteroidetes, Firmicutes, caecum, chicken, development, faecal, gut microbiota, ileum,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Studies analyzing the composition of gut microbiota are quite common at present, mainly due to the rapid development of DNA sequencing technologies within the last decade. This is valid also for chickens and their gut microbiota. However, chickens represent a specific model for host-microbiota interactions since contact between parents and offspring has been completely interrupted in domesticated chickens. Nearly all studies describe microbiota of chicks from hatcheries and these chickens are considered as references and controls. In reality, such chickens represent an extreme experimental group since control chicks should be, by nature, hatched in nests in contact with the parent hen. Not properly realising this fact and utilising only 16S rRNA sequencing results means that many conclusions are of questionable biological relevance. The specifics of chicken-related gut microbiota are therefore stressed in this review together with current knowledge of the biological role of selected microbiota members. These microbiota members are then evaluated for their intended use as a form of next-generation probiotics.
Zobrazit více v PubMed
Stanley D., Geier M.S., Chen H., Hughes R.J., Moore R.J. Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences. BMC Microbiol. 2015;15:51. doi: 10.1186/s12866-015-0388-6. PubMed DOI PMC
Stanley D., Hughes R.J., Geier M.S., Moore R.J. Bacteria within the Gastrointestinal Tract Microbiota Correlated with Improved Growth and Feed Conversion: Challenges Presented for the Identification of Performance Enhancing Probiotic Bacteria. Front. Microbiol. 2016;7:187. doi: 10.3389/fmicb.2016.00187. PubMed DOI PMC
Willson N.L., Nattrass G.S., Hughes R.J., Moore R.J., Stanley D., Hynd P.I., Forder R.E.A. Correlations between intestinal innate immune genes and cecal microbiota highlight potential for probiotic development for immune modulation in poultry. Appl. Microbiol. Biotechnol. 2018;102:9317–9329. doi: 10.1007/s00253-018-9281-1. PubMed DOI
Videnska P., Sedlar K., Lukac M., Faldynova M., Gerzova L., Cejkova D., Sisak F., Rychlik I. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS ONE. 2014;9:e115142. doi: 10.1371/journal.pone.0115142. PubMed DOI PMC
Lee J.Y., Kang S.K., Heo Y.J., Shin D.W., Park T.E., Han G.G., Jin G.D., Lee H.B., Jung E., Kim H.S., et al. Influence of Flaxseed Oil on Fecal Microbiota, Egg Quality and Fatty Acid Composition of Egg Yolks in Laying Hens. Curr. Microbiol. 2016;72:259–266. doi: 10.1007/s00284-015-0946-z. PubMed DOI
Qi Z., Shi S., Tu J., Li S. Comparative metagenomic sequencing analysis of cecum microbiotal diversity and function in broilers and layers. 3 Biotech. 2019;9:316. doi: 10.1007/s13205-019-1834-1. PubMed DOI PMC
Long C., Wang J., Zhang H.J., Wu S.G., Qi G.H. Effects of dietary rapeseed meal supplementation on cecal microbiota in laying hens with different flavin-containing monooxygenase 3 genotypes. Poult. Sci. 2017;96:1748–1758. doi: 10.3382/ps/pew449. PubMed DOI
Videnska P., Faldynova M., Juricova H., Babak V., Sisak F., Havlickova H., Rychlik I. Chicken faecal microbiota and disturbances induced by single or repeated therapy with tetracycline and streptomycin. BMC Vet. Res. 2013;9:30. doi: 10.1186/1746-6148-9-30. PubMed DOI PMC
Wang J., Fan H., Han Y., Wei J.P., Zhao J.Z., Zhou Z.J. Pyrosequencing of the broiler chicken gastrointestinal tract reveals the regional similarity and dissimilarity of microbial community. Can. J. Anim. Sci. 2017;97:302–313. doi: 10.1139/cjas-2015-0120. DOI
Kollarcikova M., Kubasova T., Karasova D., Crhanova M., Cejkova D., Sisak F., Rychlik I. Use of 16S rRNA gene sequencing for prediction of new opportunistic pathogens in chicken ileal and cecal microbiota. Poult. Sci. 2019;98:2347–2353. doi: 10.3382/ps/pey594. PubMed DOI
Yan W., Sun C., Zheng J., Wen C., Ji C., Zhang D., Chen Y., Hou Z., Yang N. Efficacy of Fecal Sampling as a Gut Proxy in the Study of Chicken Gut Microbiota. Front. Microbiol. 2019;10:2126. doi: 10.3389/fmicb.2019.02126. PubMed DOI PMC
Oakley B.B., Lillehoj H.S., Kogut M.H., Kim W.K., Maurer J.J., Pedroso A., Lee M.D., Collett S.R., Johnson T.J., Cox N.A. The chicken gastrointestinal microbiome. FEMS Microbiol. Lett. 2014;360:100–112. doi: 10.1111/1574-6968.12608. PubMed DOI
Nordentoft S., Molbak L., Bjerrum L., De Vylder J., Van Immerseel F., Pedersen K. The influence of the cage system and colonisation of Salmonella Enteritidis on the microbial gut flora of laying hens studied by T-RFLP and 454 pyrosequencing. BMC Microbiol. 2011;11:187. doi: 10.1186/1471-2180-11-187. PubMed DOI PMC
Candela M., Vitali B., Matteuzzi D., Brigidi P. Evaluation of the rrn operon copy number in Bifidobacterium using real-time PCR. Lett. Appl. Microbiol. 2004;38:229–232. doi: 10.1111/j.1472-765X.2003.01475.x. PubMed DOI
Rothrock M.J., Jr., Locatelli A., Feye K.M., Caudill A.J., Guard J., Hiett K., Ricke S.C. A Microbiomic Analysis of a Pasture-Raised Broiler Flock Elucidates Foodborne Pathogen Ecology Along the Farm-To-Fork Continuum. Front. Vet. Sci. 2019;6:260. doi: 10.3389/fvets.2019.00260. PubMed DOI PMC
Gao P., Ma C., Sun Z., Wang L., Huang S., Su X., Xu J., Zhang H. Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome. 2017;5:91. doi: 10.1186/s40168-017-0315-1. PubMed DOI PMC
Svihus B., Hetland H., Choct M., Sundby F. Passage rate through the anterior digestive tract of broiler chickens fed on diets with ground and whole wheat. Br. Poult. Sci. 2002;43:662–668. doi: 10.1080/0007166021000025037. PubMed DOI
Hughes R.J. Relationship between digesta transit time and apparent metabolisable energy value of wheat in chickens. Br. Poult. Sci. 2008;49:716–720. doi: 10.1080/00071660802449145. PubMed DOI
Warriss P.D., Wilkins L.J., Brown S.N., Phillips A.J., Allen V. Defaecation and weight of the gastrointestinal tract contents after feed and water withdrawal in broilers. Br. Poult. Sci. 2004;45:61–66. doi: 10.1080/0007166041668879. PubMed DOI
Svihus B., Choct M., Classen H.L. Function and nutritional roles of the avian caeca: A review. World Poult. Sci. J. 2013;69:249–263. doi: 10.1017/S0043933913000287. DOI
Hinton A., Jr., Buhr R.J., Ingram K.D. Physical, chemical, and microbiological changes in the ceca of broiler chickens subjected to incremental feed withdrawal. Poult. Sci. 2000;79:483–488. doi: 10.1093/ps/79.4.483. PubMed DOI
Duke G.E. Relationship of cecal and colonic motility to diet, habitat, and cecal anatomy in several avian species. J. Exp. Zool. Suppl. 1989;3:38–47. doi: 10.1002/jez.1402520507. PubMed DOI
Duke G.E., Eccleston E., Kirkwood S., Louis C.F., Bedbury H.P. Cellulose digestion by domestic turkeys fed low or high fiber diets. J. Nutr. 1984;114:95–102. doi: 10.1093/jn/114.1.95. PubMed DOI
Varmuzova K., Kubasova T., Davidova-Gerzova L., Sisak F., Havlickova H., Sebkova A., Faldynova M., Rychlik I. Composition of Gut Microbiota Influences Resistance of Newly Hatched Chickens to Salmonella Enteritidis Infection. Front. Microbiol. 2016;7:957. doi: 10.3389/fmicb.2016.00957. PubMed DOI PMC
Han Z., Willer T., Pielsticker C., Gerzova L., Rychlik I., Rautenschlein S. Differences in host breed and diet influence colonization by Campylobacter jejuni and induction of local immune responses in chicken. Gut Pathog. 2016;8:56. doi: 10.1186/s13099-016-0133-1. PubMed DOI PMC
Polansky O., Sekelova Z., Faldynova M., Sebkova A., Sisak F., Rychlik I. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota. Appl. Environ. Microbiol. 2016;82:1569–1576. doi: 10.1128/AEM.03473-15. PubMed DOI PMC
Line J.E., Hiett K.L., Guard-Bouldin J., Seal B.S. Differential carbon source utilization by Campylobacter jejuni 11168 in response to growth temperature variation. J. Microbiol. Methods. 2010;80:198–202. doi: 10.1016/j.mimet.2009.12.011. PubMed DOI
Mohammed K.A., Miles R.J., Halablab M.A. The pattern and kinetics of substrate metabolism of Campylobacter jejuni and Campylobacter coli. Lett. Appl. Microbiol. 2004;39:261–266. doi: 10.1111/j.1472-765X.2004.01574.x. PubMed DOI
Crhanova M., Karasova D., Juricova H., Matiasovicova J., Jahodarova E., Kubasova T., Seidlerova Z., Cizek A., Rychlik I. Systematic Culturomics Shows that Half of Chicken Caecal Microbiota Members can be Grown in Vitro Except for Two Lineages of Clostridiales and a Single Lineage of Bacteroidetes. Microorganisms. 2019;7:496. doi: 10.3390/microorganisms7110496. PubMed DOI PMC
Medvecky M., Cejkova D., Polansky O., Karasova D., Kubasova T., Cizek A., Rychlik I. Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genom. 2018;19:561. doi: 10.1186/s12864-018-4959-4. PubMed DOI PMC
Sergeant M.J., Constantinidou C., Cogan T.A., Bedford M.R., Penn C.W., Pallen M.J. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS ONE. 2014;9:e91941. doi: 10.1371/journal.pone.0091941. PubMed DOI PMC
Khan M.T., Duncan S.H., Stams A.J., van Dijl J.M., Flint H.J., Harmsen H.J. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME J. 2012;6:1578–1585. doi: 10.1038/ismej.2012.5. PubMed DOI PMC
Eeckhaut V., Wang J., Van Parys A., Haesebrouck F., Joossens M., Falony G., Raes J., Ducatelle R., Van Immerseel F. The Probiotic Butyricicoccus pullicaecorum Reduces Feed Conversion and Protects from Potentially Harmful Intestinal Microorganisms and Necrotic Enteritis in Broilers. Front. Microbiol. 2016;7:1416. doi: 10.3389/fmicb.2016.01416. PubMed DOI PMC
Esquivel-Elizondo S., Ilhan Z.E., Garcia-Pena E.I., Krajmalnik-Brown R. Insights into Butyrate Production in a Controlled Fermentation System via Gene Predictions. mSystems. 2017;2:e00051-17. doi: 10.1128/mSystems.00051-17. PubMed DOI PMC
Vital M., Karch A., Pieper D.H. Colonic Butyrate-Producing Communities in Humans: An Overview Using Omics Data. mSystems. 2017;2:e00130-17. doi: 10.1128/mSystems.00130-17. PubMed DOI PMC
Thiennimitr P., Winter S.E., Winter M.G., Xavier M.N., Tolstikov V., Huseby D.L., Sterzenbach T., Tsolis R.M., Roth J.R., Baumler A.J. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc. Natl. Acad. Sci. USA. 2011;108:17480–17485. doi: 10.1073/pnas.1107857108. PubMed DOI PMC
Winter S.E., Thiennimitr P., Winter M.G., Butler B.P., Huseby D.L., Crawford R.W., Russell J.M., Bevins C.L., Adams L.G., Tsolis R.M., et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010;467:426–429. doi: 10.1038/nature09415. PubMed DOI PMC
Adamberg S., Tomson K., Vija H., Puurand M., Kabanova N., Visnapuu T., Jogi E., Alamae T., Adamberg K. Degradation of Fructans and Production of Propionic Acid by Bacteroides thetaiotaomicron are Enhanced by the Shortage of Amino Acids. Front. Nutr. 2014;1:21. doi: 10.3389/fnut.2014.00021. PubMed DOI PMC
Isar J., Agarwal L., Saran S., Saxena R.K. Succinic acid production from Bacteroides fragilis: Process optimization and scale up in a bioreactor. Anaerobe. 2006;12:231–237. doi: 10.1016/j.anaerobe.2006.07.001. PubMed DOI
Strobel H.J. Vitamin B12-dependent propionate production by the ruminal bacterium Prevotella ruminicola 23. Appl. Environ. Microbiol. 1992;58:2331–2333. doi: 10.1128/AEM.58.7.2331-2333.1992. PubMed DOI PMC
Schnorr S.L., Candela M., Rampelli S., Centanni M., Consolandi C., Basaglia G., Turroni S., Biagi E., Peano C., Severgnini M., et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 2014;5:3654. doi: 10.1038/ncomms4654. PubMed DOI PMC
Gorvitovskaia A., Holmes S.P., Huse S.M. Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome. 2016;4:15. doi: 10.1186/s40168-016-0160-7. PubMed DOI PMC
Gerzova L., Babak V., Sedlar K., Faldynova M., Videnska P., Cejkova D., Jensen A.N., Denis M., Kerouanton A., Ricci A., et al. Characterization of Antibiotic Resistance Gene Abundance and Microbiota Composition in Feces of Organic and Conventional Pigs from Four EU Countries. PLoS ONE. 2015;10:e0132892. doi: 10.1371/journal.pone.0132892. PubMed DOI PMC
Mulder I.E., Schmidt B., Stokes C.R., Lewis M., Bailey M., Aminov R.I., Prosser J.I., Gill B.P., Pluske J.R., Mayer C.D., et al. Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biol. 2009;7:79. doi: 10.1186/1741-7007-7-79. PubMed DOI PMC
Kubasova T., Davidova-Gerzova L., Merlot E., Medvecky M., Polansky O., Gardan-Salmon D., Quesnel H., Rychlik I. Housing Systems Influence Gut Microbiota Composition of Sows but Not of Their Piglets. PLoS ONE. 2017;12:e0170051. doi: 10.1371/journal.pone.0170051. PubMed DOI PMC
Kubasova T., Kollarcikova M., Crhanova M., Karasova D., Cejkova D., Sebkova A., Matiasovicova J., Faldynova M., Sisak F., Babak V., et al. Gut anaerobes capable of chicken caecum colonisation. Microorganisms. 2019;7:597. doi: 10.3390/microorganisms7120597. PubMed DOI PMC
Noda S., Shimizu D., Yuki M., Kitade O., Ohkuma M. Host-Symbiont Cospeciation of Termite-Gut Cellulolytic Protists of the Genera Teranympha and Eucomonympha and their Treponema Endosymbionts. Microbes Environ. 2018;33:26–33. doi: 10.1264/jsme2.ME17096. PubMed DOI PMC
Angelakis E., Bachar D., Yasir M., Musso D., Djossou F., Gaborit B., Brah S., Diallo A., Ndombe G.M., Mediannikov O., et al. Treponema species enrich the gut microbiota of traditional rural populations but are absent from urban individuals. New Microbes New Infect. 2019;27:14–21. doi: 10.1016/j.nmni.2018.10.009. PubMed DOI PMC
Obregon-Tito A.J., Tito R.Y., Metcalf J., Sankaranarayanan K., Clemente J.C., Ursell L.K., Zech Xu Z., Van Treuren W., Knight R., Gaffney P.M., et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat. Commun. 2015;6:6505. doi: 10.1038/ncomms7505. PubMed DOI PMC
Niu Q., Li P., Hao S., Kim S.W., Du T., Hua J., Huang R. Characteristics of Gut Microbiota in Sows and Their Relationship with Apparent Nutrient Digestibility. Int. J. Mol. Sci. 2019;20:870. doi: 10.3390/ijms20040870. PubMed DOI PMC
Kubasova T., Davidova-Gerzova L., Babak V., Cejkova D., Montagne L., Le-Floc’h N., Rychlik I. Effects of host genetics and environmental conditions on fecal microbiota composition of pigs. PLoS ONE. 2018;13:e0201901. doi: 10.1371/journal.pone.0201901. PubMed DOI PMC
He X., McLean J.S., Edlund A., Yooseph S., Hall A.P., Liu S.Y., Dorrestein P.C., Esquenazi E., Hunter R.C., Cheng G., et al. Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. Proc. Natl. Acad. Sci. USA. 2015;112:244–249. doi: 10.1073/pnas.1419038112. PubMed DOI PMC
Kubasova T., Kollarcikova M., Crhanova M., Karasova D., Cejkova D., Sebkova A., Matiasovicova J., Faldynova M., Pokorna A., Cizek A., et al. Contact with adult hen affects development of caecal microbiota in newly hatched chicks. PLoS ONE. 2019;14:e0212446. doi: 10.1371/journal.pone.0212446. PubMed DOI PMC
Deng P., Swanson K.S. Gut microbiota of humans, dogs and cats: Current knowledge and future opportunities and challenges. Br. J. Nutr. 2015;113:S6–S17. doi: 10.1017/S0007114514002943. PubMed DOI
Mathur R., Barlow G.M. Obesity and the microbiome. Expert Rev. Gastroenterol. Hepatol. 2015;9:1087–1099. doi: 10.1586/17474124.2015.1051029. PubMed DOI
Xi Y., Shuling N., Kunyuan T., Qiuyang Z., Hewen D., ChenCheng G., Tianhe Y., Liancheng L., Xin F. Characteristics of the intestinal flora of specific pathogen free chickens with age. Microb. Pathog. 2019;132:325–334. doi: 10.1016/j.micpath.2019.05.014. PubMed DOI
Siegerstetter S.C., Petri R.M., Magowan E., Lawlor P.G., Zebeli Q., O’Connell N.E., Metzler-Zebeli B.U. Fecal Microbiota Transplant from Highly Feed-Efficient Donors Shows Little Effect on Age-Related Changes in Feed-Efficiency-Associated Fecal Microbiota from Chickens. Appl. Environ. Microbiol. 2018;84:e02330-17. doi: 10.1128/AEM.02330-17. PubMed DOI PMC
Zou A., Sharif S., Parkinson J. Lactobacillus elicits a ‘Marmite effect’ on the chicken cecal microbiome. NPJ Biofilms Microbiomes. 2018;4:27. doi: 10.1038/s41522-018-0070-5. PubMed DOI PMC
Stanley D., Geier M.S., Hughes R.J., Denman S.E., Moore R.J. Highly variable microbiota development in the chicken gastrointestinal tract. PLoS ONE. 2013;8:e84290. doi: 10.1371/journal.pone.0084290. PubMed DOI PMC
Volf J., Polansky O., Varmuzova K., Gerzova L., Sekelova Z., Faldynova M., Babak V., Medvecky M., Smith A.L., Kaspers B., et al. Transient and Prolonged Response of Chicken Cecum Mucosa to Colonization with Different Gut Microbiota. PLoS ONE. 2016;11:e0163932. doi: 10.1371/journal.pone.0163932. PubMed DOI PMC
Thomas M., Wongkuna S., Ghimire S., Kumar R., Antony L., Doerner K.C., Singery A., Nelson E., Woyengo T., Chankhamhaengdecha S., et al. Gut Microbial Dynamics during Conventionalization of Germfree Chicken. mSphere. 2019;4:e00035-19. doi: 10.1128/mSphere.00035-19. PubMed DOI PMC
Awad W.A., Mann E., Dzieciol M., Hess C., Schmitz-Esser S., Wagner M., Hess M. Age-Related Differences in the Luminal and Mucosa-Associated Gut Microbiome of Broiler Chickens and Shifts Associated with Campylobacter jejuni Infection. Front. Cell. Infect. Microbiol. 2016;6:154. doi: 10.3389/fcimb.2016.00154. PubMed DOI PMC
Ranjitkar S., Lawley B., Tannock G., Engberg R.M. Bacterial Succession in the Broiler Gastrointestinal Tract. Appl. Environ. Microbiol. 2016;82:2399–2410. doi: 10.1128/AEM.02549-15. PubMed DOI PMC
Rantala M., Nurmi E. Prevention of the growth of Salmonella infantis in chicks by the flora of the alimentary tract of chickens. Br. Poult. Sci. 1973;14:627–630. doi: 10.1080/00071667308416073. PubMed DOI
Cressman M.D., Yu Z., Nelson M.C., Moeller S.J., Lilburn M.S., Zerby H.N. Interrelations between the microbiotas in the litter and in the intestines of commercial broiler chickens. Appl. Environ. Microbiol. 2010;76:6572–6582. doi: 10.1128/AEM.00180-10. PubMed DOI PMC
Wang L., Lilburn M., Yu Z. Intestinal Microbiota of Broiler Chickens as Affected by Litter Management Regimens. Front. Microbiol. 2016;7:593. doi: 10.3389/fmicb.2016.00593. PubMed DOI PMC
O’Brien K.M., Chimenti M.S., Farnell M., Tabler T., Bair T., Bray J.L., Nonnenmann M.W. High throughput genomic sequencing of bioaerosols in broiler chicken production facilities. Microb. Biotechnol. 2016;9:782–791. doi: 10.1111/1751-7915.12380. PubMed DOI PMC
Baldwin S., Hughes R.J., Hao Van T.T., Moore R.J., Stanley D. At-hatch administration of probiotic to chickens can introduce beneficial changes in gut microbiota. PLoS ONE. 2018;13:e0194825. doi: 10.1371/journal.pone.0194825. PubMed DOI PMC
Beirao B.C.B., Ingberman M., Favaro C., Jr., Mesa D., Bittencourt L.C., Fascina V.B., Caron L.F. Effect of an Enterococcus faecium probiotic on specific IgA following live Salmonella Enteritidis vaccination of layer chickens. Avian Pathol. 2018;47:325–333. doi: 10.1080/03079457.2018.1450487. PubMed DOI
Mazanko M.S., Gorlov I.F., Prazdnova E.V., Makarenko M.S., Usatov A.V., Bren A.B., Chistyakov V.A., Tutelyan A.V., Komarova Z.B., Mosolova N.I., et al. Bacillus Probiotic Supplementations Improve Laying Performance, Egg Quality, Hatching of Laying Hens, and Sperm Quality of Roosters. Probiotics Antimicrob. Proteins. 2018;10:367–373. doi: 10.1007/s12602-017-9369-4. PubMed DOI
Weinack O.M., Snoeyenbos G.H., Soerjadi-Liem A.S. Further studies on competitive exclusion of Salmonella typhimurium by lactobacilli in chickens. Avian Dis. 1985;29:1273–1276. doi: 10.2307/1590485. PubMed DOI
Adler H.E., DaMassa A.J. Effect of ingested Lactobacilli on Salmonella infantis and Escherichia coli and on intestinal flora, pasted vents, and chick growth. Avian Dis. 1980;24:868–878. doi: 10.2307/1589962. PubMed DOI
Milbradt E.L., Zamae J.R., Araujo Junior J.P., Mazza P., Padovani C.R., Carvalho V.R., Sanfelice C., Rodrigues D.M., Okamoto A.S., Andreatti Filho R.L. Control of Salmonella Enteritidis in turkeys using organic acids and competitive exclusion product. J. Appl. Microbiol. 2014;117:554–563. doi: 10.1111/jam.12537. PubMed DOI
Ferreira A.J., Ferreira C.S., Knobl T., Moreno A.M., Bacarro M.R., Chen M., Robach M., Mead G.C. Comparison of three commercial competitive-exclusion products for controlling Salmonella colonization of broilers in Brazil. J. Food Prot. 2003;66:490–492. doi: 10.4315/0362-028X-66.3.490. PubMed DOI
Nakamura A., Ota Y., Mizukami A., Ito T., Ngwai Y.B., Adachi Y. Evaluation of aviguard, a commercial competitive exclusion product for efficacy and after-effect on the antibody response of chicks to Salmonella. Poult. Sci. 2002;81:1653–1660. doi: 10.1093/ps/81.11.1653. PubMed DOI
Palmu L., Camelin I. The use of competitive exclusion in broilers to reduce the level of Salmonella contamination on the farm and at the processing plant. Poult. Sci. 1997;76:1501–1505. doi: 10.1093/ps/76.11.1501. PubMed DOI
Methner U., Barrow P.A., Martin G., Meyer H. Comparative study of the protective effect against Salmonella colonisation in newly hatched SPF chickens using live, attenuated Salmonella vaccine strains, wild-type Salmonella strains or a competitive exclusion product. Int. J. Food Microbiol. 1997;35:223–230. doi: 10.1016/S0168-1605(96)01236-6. PubMed DOI
Van Immerseel F., De Buck J., Pasmans F., Velge P., Bottreau E., Fievez V., Haesebrouck F., Ducatelle R. Invasion of Salmonella enteritidis in avian intestinal epithelial cells in vitro is influenced by short-chain fatty acids. Int. J. Food Microbiol. 2003;85:237–248. doi: 10.1016/S0168-1605(02)00542-1. PubMed DOI
Winter S.E., Baumler A.J. A breathtaking feat: To compete with the gut microbiota, Salmonella drives its host to provide a respiratory electron acceptor. Gut Microbes. 2011;2:58–60. doi: 10.4161/gmic.2.1.14911. PubMed DOI PMC
Ludvigsen J., Svihus B., Rudi K. Rearing Room Affects the Non-dominant Chicken Cecum Microbiota, While Diet Affects the Dominant Microbiota. Front. Vet. Sci. 2016;3:16. doi: 10.3389/fvets.2016.00016. PubMed DOI PMC
Zhao X., Guo Y., Guo S., Tan J. Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens. Appl. Microbiol. Biotechnol. 2013;97:6477–6488. doi: 10.1007/s00253-013-4970-2. PubMed DOI
Tayeri V., Seidavi A., Asadpour L., Phillips C.J.C. A comparison of the effects of antibiotics, probiotics, synbiotics and prebiotics on the performance and carcass characteristics of broilers. Vet. Res. Commun. 2018;42:195–207. doi: 10.1007/s11259-018-9724-2. PubMed DOI
Wu Y., Zhen W., Geng Y., Wang Z., Guo Y. Pretreatment with probiotic Enterococcus faecium NCIMB 11181 ameliorates necrotic enteritis-induced intestinal barrier injury in broiler chickens. Sci. Rep. 2019;9:10256. doi: 10.1038/s41598-019-46578-x. PubMed DOI PMC
Latorre J.D., Hernandez-Velasco X., Vicente J.L., Wolfenden R., Hargis B.M., Tellez G. Effects of the inclusion of a Bacillus direct-fed microbial on performance parameters, bone quality, recovered gut microflora, and intestinal morphology in broilers consuming a grower diet containing corn distillers dried grains with solubles. Poult. Sci. 2017;96:2728–2735. doi: 10.3382/ps/pex082. PubMed DOI PMC
Brisbin J.T., Gong J., Orouji S., Esufali J., Mallick A.I., Parvizi P., Shewen P.E., Sharif S. Oral treatment of chickens with lactobacilli influences elicitation of immune responses. Clin. Vaccine Immunol. 2011;18:1447–1455. doi: 10.1128/CVI.05100-11. PubMed DOI PMC
Haghighi H.R., Gong J., Gyles C.L., Hayes M.A., Zhou H., Sanei B., Chambers J.R., Sharif S. Probiotics stimulate production of natural antibodies in chickens. Clin. Vaccine Immunol. 2006;13:975–980. doi: 10.1128/CVI.00161-06. PubMed DOI PMC
Schreuder J., Velkers F.C., Bouwstra R.J., Beerens N., Stegeman J.A., de Boer W.F., Elbers A.R.W., van Hooft P., Feberwee A., Bossers A., et al. Limited changes in the fecal microbiome composition of laying hens after oral inoculation with wild duck feces. Poult. Sci. 2019;98:6542–6551. doi: 10.3382/ps/pez526. PubMed DOI PMC
Papanicolas L.E., Choo J.M., Wang Y., Leong L.E.X., Costello S.P., Gordon D.L., Wesselingh S.L., Rogers G.B. Bacterial viability in faecal transplants: Which bacteria survive? EBioMedicine. 2019;41:509–516. doi: 10.1016/j.ebiom.2019.02.023. PubMed DOI PMC
Donaldson E.E., Stanley D., Hughes R.J., Moore R.J. The time-course of broiler intestinal microbiota development after administration of cecal contents to incubating eggs. PeerJ. 2017;5:e3587. doi: 10.7717/peerj.3587. PubMed DOI PMC
Ferrario C., Alessandri G., Mancabelli L., Gering E., Mangifesta M., Milani C., Lugli G.A., Viappiani A., Duranti S., Turroni F., et al. Untangling the cecal microbiota of feral chickens by culturomic and metagenomic analyses. Environ. Microbiol. 2017;19:4771–4783. doi: 10.1111/1462-2920.13943. PubMed DOI
Xu Y., Yang H., Zhang L., Su Y., Shi D., Xiao H., Tian Y. High-throughput sequencing technology to reveal the composition and function of cecal microbiota in Dagu chicken. BMC Microbiol. 2016;16:259. doi: 10.1186/s12866-016-0877-2. PubMed DOI PMC
Laursen M.F., Laursen R.P., Larnkjaer A., Molgaard C., Michaelsen K.F., Frokiaer H., Bahl M.I., Licht T.R. Faecalibacterium Gut Colonization Is Accelerated by Presence of Older Siblings. mSphere. 2017;2:e00448-17. doi: 10.1128/mSphere.00448-17. PubMed DOI PMC
Lagier J.C., Khelaifia S., Alou M.T., Ndongo S., Dione N., Hugon P., Caputo A., Cadoret F., Traore S.I., Seck E.H., et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 2016;1:16203. doi: 10.1038/nmicrobiol.2016.203. PubMed DOI
Lau J.T., Whelan F.J., Herath I., Lee C.H., Collins S.M., Bercik P., Surette M.G. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med. 2016;8:72. doi: 10.1186/s13073-016-0327-7. PubMed DOI PMC
Browne H.P., Forster S.C., Anonye B.O., Kumar N., Neville B.A., Stares M.D., Goulding D., Lawley T.D. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533:543–546. doi: 10.1038/nature17645. PubMed DOI PMC
Succession, Replacement, and Modification of Chicken Litter Microbiota
Host Species Adaptation of Obligate Gut Anaerobes Is Dependent on Their Environmental Survival
The distribution of antibiotic resistance genes in chicken gut microbiota commensals
Different Bacteroides Species Colonise Human and Chicken Intestinal Tract